充分条件、必要条件与命题的四种形式

合集下载

教学设计5:1.3 充分条件、必要条件与命题的四种形式

教学设计5:1.3 充分条件、必要条件与命题的四种形式

1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。

2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。

(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。

3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。

(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。

解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。

真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。

充分、必要与充要条件

充分、必要与充要条件

解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的p是q的充分条件.
新课
复习
新课
小结
作业
例2、 下列“若p,则q”形式的命题中,哪些 命题中的q是p的必要条件? (1) 若 x=y,则x2=y2; (2) 若两个三角形全等,则这两个三角形的面积 相等; (3) 若a>b,则ac>bc.
⇔1<a≤2 或a≥10.
即方程有两个正根的充要条件是:1<a≤2 或 a≥10.
新课
复习
新课
小结
作业
判别充要条件 问题的
6 判别步骤: ① 认清条件和结论。 ② 考察p q和q p的真假。
7 判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
3、设集合M={x|x>2},N={x|x<3},
那么”x∈M或x∈N”是“x∈M∩N”的(B
A.充要条件 B必要不充分条件
)
C充分不必要
D不充分不必要
4、a∈R,|a|<3成立的一个必要不充分条件是(A ) A.a<3 B.|a|<2 C.a2<9 D.0<a<2
5、a>b成立的充分不必要的条件是( D ) A. ac>bc B. a/c>b/c C. a+c>b+c D. ac2>bc2 6.关于x的不等式:|x|+|x-1|>m的
作业
课本P 12 练习3、4。
复习
新课
小结
作业
新课
从集合角度理解:
复习
新课
小结

p
q,相当于P

1.3 充分条件、必要条件与命题的四种形式

1.3 充分条件、必要条件与命题的四种形式

简单命题与复合命题:
1)区别:是否有逻辑联结词.
2)复合命题的构成形式:



P且Q P或Q 非P
误解分析
准确地作出反设(即否定结论)是非常重要的,下面是一 些常见的结论的否定形式.
原结论 反设词 是 不是 都是 不都是 大于 不大于 小于 大于或等于
对所有x, 存在某x, 不成立 成立
作 见资料

(1) 对一切实数 x ,都有 x x 1 0
2
解:
x R, x x 1 0
2
命题的否为:
x R, x x 1 0
2
(2)存在实数 x 使得: x x 1 0
2
解:x R,
x x 1 0
2 2
命题的否为:
x R, x x 1 0
(2)命题p q真假的判断:
p 规定:当两个命题中有一个为真时, q 是 真命题;当两个都是假命题时,p q 是假命 题。
上题中(1)是假命题(2)是真命题,所以(3)为真 命题。
开关p,q的闭合 对应命题的真假, 则整个电路的接 通与断开分别对 应命题 p q 的 真与假.
p
q
(3)P或q形 式复合命题 的真值表
2
解:存在实数 x , 使得 x2 x
因为 x = 3时,x2>x成立
所以原命题是真命题
(2) x R, x x
2
解: 对任意实数x,都有 x2 > x
因为x=1时,不等式 x2 > x不成立
所以原命题是假命题
(3) x Q, x 8 0 解:
2
因为原方程只有 x 2 2 ,都不是有理数 所以原方程没有有理根

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命

充分条件、必要条件与命题的四种形式

充分条件、必要条件与命题的四种形式

学案三 充分条件、必要条件与命题的四种形式一、目标要求理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。

二、知识梳理1、充要条件(1)定义:(2)若p ⇒q ,但q ⇒/p,则p 是q 的若q ⇒p ,但p ⇒/q ,则p 是q 的2、四种命题(1)命题的四种形式:原命题: 逆命题:否命题: 逆否(2)四种命题的关系如下:三、基础训练1、a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A 充分非必要条件 B 必要非充分条件 C 充要条件 D 既非充分也非必要条件2、在ABC ∆中条件A 〉B 是B A 22cos cos <的 条件3、“ab<0”是方程a c by x =+22表示双曲线的 条件4、(2008山东文)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限。

在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 ( )A 、 3B 、 2C 、 1D 、 0 四、典例精析例1(2007山东 理)下列各小题中,p 是q 的充要条件的是① p:62>-<m m 或; q:32+++=m mx x y 有两个不同的零点。

② p:1)()(=-x f x f ;q:)(x f y =是偶函数。

③ p:βαcos cos =;q:βαtan tan =。

④ p:A =B A ;q:AC B C U U ⊆。

A. ①② B.②③ C.③④ D.①④例2已知p:2311≤--x ;q:).0(01222>≤-+-m m x x 若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。

例3已知数列{n a }的前n 项和)10(≠≠+=p p q p s n n 且,求数列{n a }成等比数列的充要条件。

五、综合训练一、选择题1、 条件p:∣x+1|>2;条件q:x>2,则p ⌝是q ⌝的( ) (A )充分不必要条件 (B ) 必要不充分条件︳(C)充要条件 (D )既不充分也不必要条件2、 是⎩⎨⎧>>3321x x ⎩⎨⎧>>+9x x 6x x 2121成立的 ( ) (A )充分不必要条件 (B ) 必要不充分条件︳(C)充要条件 ( D )既不充分也不必要条件3、四个条件b>0>a,0>a>b,a>0>b,a>b>0中,能使ba 11<成立的充分条件的个数是( ) (A )1 (B )2 (C)3 (D )44、已知真命题“a c b ⇒≥>d ”和“a<b f e ≤⇔”,那么“d c ≤”是“f e ≤”的( )(A )充分条件 (B ) 必要条件(C)充要条件 (D )既不充分也不必要条件5、下列四个命题:(1) “若xy=1,则x,y 互为倒数”的逆命题,(2) “相似三角形的周长相等”的否命题,(3) “若a 1≤,则方程0222=++-a a ax x 有实根”的逆命题,(4) “若,B B A =⋃则B A ⊇”的逆否命题其中真命题的是 ( )A (1)(2) B(2)(3) C (1)(3) D (3)(4)6、已知=a,=b,=c,则a+b+c=0是A,B,C 三点构成三角形的是( )(A )充分不必要条件 (B ) 必要不充分条件(C)充要条件 (D )既不充分也不必要条件7、 已知222111,,,,,c b a c b a 均为非零实数,不等式0022221121>++>++c x b x a c x b x a 和的解集分别为集合M 和N,那么“212121c c b b a a ==”是 “M=N ”的( )(A )充分不必要条件 (B ) 必要不充分条件(C)充要条件 (D )既不充分也不必要条件8、 设有如下三个命题:甲:相交的直线l,m 都在平面α内,并且都不在平面β内;乙:直线l,m 中至少有一条与平面β相交;丙:平面α与平面β相交。

第一章第三节充分条件、必要条件与命题的四种形式

第一章第三节充分条件、必要条件与命题的四种形式
返回
5.(教材习题改编)设集合M={1,2},N={a2},则 “a=1”是“N⊆M”的________条件.
解析:若N⊆M,则需满足a2=1或a2=2,解得a=±1或 a=± 2.故“a=1”是“N⊆M”的充分不必要条件.
答案:充分不必要
返回
返回
1.充分条件与必要条件的两个特征. (1)对称性:若p是q的充分条件,则q是p的必要条件,即
D.既不充分又不必要条件
解析:|x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1x>1, ∴|x|>1是x>1的必要不充分条件.
答案:B
返回
2.(2019·福建高考)若向量a=(x,3)(x∈R),则“x=4”是
“|a|=5”的
()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
返回
怎么考 1. 本部分主要考查四种命题的概念及其相互关系,考查
充分条件、必要条件、充要条件的概念及应用. 2. 题型主要以选择题、填空题的形式出现,常与集合、
不等式、几何等知识相结合命题.
返回
返回
一、充分条件、必要条件与充要条件 1.“若p,则q”形式的命题为真时,记作p⇒q,称p是q
的充分条件,q是p的 必要 条件. 2.如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的 充
返回
返回
[精析考题]
[例1] (2019·山东高考)已知a,b,c∈R,命题“若a+b+c=
3,则a2+b2+c2≥3”的否命题是
()
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3

1.3充分条件、必要条件与命题的四种形式

1.3充分条件、必要条件与命题的四种形式

1.充分条件、必要条件与充要条件(1)“若p ,则q ”形式的命题为真时,记作p ⇒q ,称p 是q 的充分条件,q 是p 的必要条件. (2)如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充要条件,q 也是p 的充要条件.p 是q 的充要条件又常说成q 当且仅当p ,或p 与q 等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ )(3)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × ) (4)若一个命题是真命题,则其逆否命题是真命题.( √ )(5)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )1.(2015·重庆)“x >1”是“12log (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 B解析 x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”成立的充分不必要条件.因此选B.2.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 a =3时A ={1,3},显然A ⊆B .但A ⊆B 时,a =2或3.所以A 正确.3.(教材改编)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x ≤y ,则x 2≤y 2”C .“若x >y ,则x 2>y 2”D .“若x ≥y ,则x 2≥y 2”答案 B解析 根据原命题和其逆否命题的条件和结论的关系,得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.4.已知命题p :若x =-1,则向量a =(1,x ),与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .4答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.5.(教材改编)下列命题:①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab ≠0是a ≠0的充分不必要条件.其中为真命题的是________(填序号).答案 ②④题型一 充分条件、必要条件的判定例1 (1)(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( ) A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0答案 (1)B (2)B解析 (1)根据指数函数的单调性得出a ,b 的大小关系,然后进行判断.∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件. (2)∵y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.思维升华 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.(1)(2015·陕西)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (2)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 (1)A (2)A解析 (1)∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin α⇒/ sin α=cos α,故选A.(2)当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A. 题型二 充分必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究1.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈(綈P )是x ∈(綈S )的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10},∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S ⇒/ P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.(1)ax 2+2x +1=0至少有一个负实根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)方法一 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根.当a ≠0时,原方程为一元二次方程,有实根的充要条件是Δ=4-4a ≥0,即a ≤1.设此时方程的两根分别为x 1,x 2,则x 1+x 2=-2a ,x 1x 2=1a, 当只有一个负实根时,⎩⎪⎨⎪⎧a ≤1,1a <0⇒a <0; 当有两个负实根时,⎩⎪⎨⎪⎧ a ≤1,-2a<0,⇒0<a ≤1.1a >0综上所述,a ≤1. 方法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.(2)命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A ={x |x >1或x <12}, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12, ∴0≤a ≤12. 题型三 命题的四种形式例3 (1)命题“若x ,y 都是偶数,则x +y 也是偶数“的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数(2)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 答案 (1)C (2)B解析 (1)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”.(2)先证原命题为真:当z 1,z 2互为共轭复数时,设z 1=a +b i(a ,b ∈R ),则z 2=a -b i ,则|z 1|=|z 2|=a 2+b 2, ∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z 1=1,z 2=i ,满足|z 1|=|z 2|,但是z 1,z 2不互为共轭复数,∴其逆命题为假,故其否命题也为假,故选B.思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q “形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若α=π3,则cos α=12”的逆命题是( ) A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)(2016·承德月考)已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③答案 (1)C (2)A解析 (1)命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”. (2)命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A.1.等价转化思想在充要条件中的应用典例 (1)已知p :(a -1)2≤1,q :∀x ∈R ,ax 2-ax +1≥0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析 (1)由(a -1)2≤1解得0≤a ≤2,∴p :0≤a ≤2.当a =0时,ax 2-ax +1≥0对∀x ∈R 恒成立;当a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4, ∴q :0≤a ≤4.∴p 是q 成立的充分不必要条件.(2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.∴{x |x >a }{x |x <-3或x >1},∴a ≥1.答案 (1)A (2)A温馨提醒 (1)本题用到的等价转化①将綈p ,綈q 之间的关系转化成p ,q 之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对一些复杂、生疏的问题,利用等价转化思想转化成简单、熟悉的问题,在解题中经常用到.[方法与技巧]1.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.2.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.[失误与防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.2.当一个命题有大前提而要写出命题的其他两种形式时,必须保留大前提.3.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.A 组 专项基础训练(时间:30分钟)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B解析 依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.(2015·天津)设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2,故选A.3.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.5.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为菱形的对角线互相垂直,所以“四边形ABCD 为菱形”⇒“AC ⊥BD ”,所以“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件;又因为对角线垂直的四边形不一定是菱形,所以“AC ⊥BD ”⇒“四边形ABCD 为菱形”,所以“四边形ABCD 为菱形”不是“AC ⊥BD ”的必要条件.综上,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.6.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要的条件B .必要不充分的条件C .充要条件D .既不充分也不必要的条件答案 C解析 由维恩图易知充分性成立.反之,A ∩B =∅时,由维恩图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.(2015·北京)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 m ⊂α,m ∥β⇒/ α∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故答案选A.9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________. 答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3}, ∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2. 11.给定两个命题p 、q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的________条件.答案 充分不必要解析 若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒/ q ,其逆否命题为p ⇒綈q 但綈q ⇒p ,所以p 是綈q 的充分不必要条件. 12.下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,所以a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③正确;④显然正确.B 组 专项能力提升(时间:15分钟)13.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 C解析先证“a>b”⇒“a|a|>b|b|”.若a>b≥0,则a2>b2,即a|a|>b|b|;若a≥0>b,则a|a|≥0>b|b|;若0>a>b,则a2<b2,即-a|a|<-b|b|,从而a|a|>b|b|.再证“a|a|>b|b|”⇒“a>b”.若a,b≥0,则由a|a|>b|b|,得a2>b2,故a>b;若a,b≤0,则由a|a|>b|b|,得-a2>-b2,即a2<b2,故a>b;若a≥0,b<0,则a>b.综上,“a>b”是“a|a|>b|b|”的充要条件.14.(2015·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)(a22+a23+…+a2n)=(a1a2+a2a3+…+a n-1a n)2,则()A.p是q的必要条件,但不是q的充分条件B.p是q的充分条件,但不是q的必要条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 B解析若p成立,设a1,a2,…,a n的公比为q,则(a21+a22+…+a2n-1)(a22+a23+…+a2n)=a21(1+q2+…+q2n -4)·a22(1+q2+…+q2n-4)=a21a22(1+q2+…+q2n-4)2,(a1a2+a2a3+…+a na n)2=(a1a2)2(1+q2+…+q2n-4)2,-1故q成立,故p是q的充分条件.取a1=a2=…=a n=0,则q成立,而p不成立,故p不是q的必要条件,故选B.15.(2015·浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A 中元素的个数,命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C),()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立答案 A解析命题①成立,若A≠B,则card(A∪B)>card(A∩B),所以d(A,B)=card(A∪B)-card(A∩B)>0.反之可以把上述过程逆推,故“A≠B”是“d(A,B)>0”的充分必要条件;命题②成立,由维恩图,知card(A∪B)=card(A)+card(B)-card(A∩B),d(A,C)=card(A)+card(C)-2card(A∩C),d(B,C)=card(B)+card(C)-2card(B∩C),∴d(A,B)+d(B,C)-d(A,C)=card(A)+card(B)-2card(A∩B)+card(B)+card(C)-2card(B∩C)-[card(A)+card(C)-2card(A∩C)]=2card(B)-2card(A∩B)-2card(B∩C)+2card(A∩C)=2card(B)+2card(A∩C)-2[card(A∩B)+card(B∩C)]≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )]=[2card(B )-2(card(A ∪C )∩B )]+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,∴d (A ,C )≤d (A ,B )+d (B ,C )得证.16.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.17.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立,反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”充分不必要条件.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确.由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确.由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,③不正确,④正确.。

高考数学 复习《充分条件、必要条件与命题的四种形式》

高考数学 复习《充分条件、必要条件与命题的四种形式》
(2) 若 AB ,则 A B A
若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:C
2.命题“若m>-2,则m>-3”以及它的逆命题、
否命题、逆否命题中,正确命题的个数为
()
A.1
B.2
C.3
D.3
答案:B
3 . (2010 年 高 考 陕 西 卷 )“a>0” 是 “|a|>0” 的
() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:A
(3)∵ff-xx=1,
∴f(-x)=f(x),
∴y=f(x)是偶函数.
∴p⇒q.
取 f(x)=x2 为 R 上的偶函数,
但f-x在 fx
x=0
时没有意义,
∴.
∴p 是 q 的充分不必要条件.
【名师点评】 (1)要分清充分性和必要性;
(2)注意两种说法“p是q的必要不充分条件” 与“q的必要不充分条件是p”是等价的;
充分条件、必要条件与命题的四种形式
双基研习•面对高考
基础梳理
1.充分条件、必要条件与充要条件
(1)“ 若 p , 则 q” 为 真 命 题 , 记 作 : p ⇒ q , 则 _p_是__q___的充分条件,__q_是__p__的必要条件. (2) 如 果 既 有 p ⇒ q , 又 有 q ⇒ p , 记 作 : p ⇔ q , 则 __p_是__q__的充要条件,q也是p的___充__要__条__件____.
4.“a=1”是“直线y=ax+1与y=(a-2)x+
3垂直”的________条件. 答案:充要
5.与命题“若a∈M,则b∉M”等价的一个命题
是______Βιβλιοθήκη _________________________.
答案:若b∈M,则a∉M
考点探究•挑战高考
考点突破
考点一 四种命题及其关系
在判断四种命题之间的关系时,首先要分清命题的 条件与结论,再比较每个命题的条件与结论之间的 关系,要注意四种命题关系的相对性,一旦一个命 题定为原命题,也就相应地有了它的“逆命题”、 “否命题”和“逆否命题”.
三种情况.
考点二 充分条件与必要条件的判定
判断一个命题是另一个命题的什么条件,关键是利
用定义.如果p⇒q,则p叫做q的充分条件,原命题
(或逆否命题)成立,命题中的条件是充分的,也可
称q是p的必要条件;如果q⇒p,则p叫做q的必要条
件,逆命题(或否命题)成立,命题中的条件为必要
的,也可称q是p的充分条件;如果既有p⇒q,又有 q⇒p,记作p⇔q,则p叫做q的充分必要条件,简称
【思路分析】 先判断p⇒q是否成立,再判断
q⇒p是否成立.
【解】 (1)若∠A=∠B,则sinA=sinB,即p⇒q. 又若sinA=sinB,则2RsinA=2RsinB,即a=b. ∴∠A=∠B,即q⇒p. 所以p是q的充要条件. (2)其逆否命题为: 对于实数x、y,若x=2且y=6,则x+y=8, 显然当x=2,y=6时,x+y=8成立; 但当x+y=8时,x=2且y=6不一定成立, 故p⇒q, , ∴p是q的充分不必要条件.
2.命题的四种形式 (1)四种命题
若 原 命 题 为 “ 若 p , 则 q” , 则 其 逆 命 题 是 __若__q_,__则__p_____ ; 否 命 题 是 _若__非__p_,__则__非__q__ ; 逆 否命题是__若__非__q_,__则__非__p___.
(2)四种命题间的关系
【解】 (1)逆命题:全等三角形的面积相等,真 命题. 否命题:面积不相等的两个三角形不是全等三角 形,真命题. 逆否命题:两个不全等的三角形的面积不相等, 假命题.
(2)逆命题:若方程x2+2x+q=0有实根,则q≤1,
真命题.
否命题:若q>1,则方程x2+2x+q=0无实根,真
命题.
逆否命题:若方程x2+2x+q=0无实根,则q>1,
真命题.
(3)逆命题:若实数x、y全为零,则x2+y2=0,
真命题.
否命题:若x2+y2≠0,则实数x、y不全为零,
真命题.
逆否命题:若实数x、y不全为零,则x2+y2≠0,
真命题.
(4)逆命题:若x+y是偶数,则x、y都是奇数,
假命题.
否命题:若x、y不都是奇数,则x+y不是偶数,
假命题.
逆否命题:若x+y不是偶数,则x、y不都是奇数,
充要条件,原命题和逆命题(或逆否命题和否命题) 都成立,命题中的条件是充要的.
例2 下列各命题中,p 是 q 的什么条件? (1)在△ABC 中,p:∠A=∠B,q:sinA=sinB; (2)对于实数 x、y,p:x+y≠8,q:x≠2 或 y≠6; (3)p:ff-xx =1,q:y=f(x)是偶函数.
(3)从集合的角度理解,小范围可以推出大范 围,大范围不能推出小范围.
考点三 充分条件与必要条件的应用
涉及求参数的取值范围又与充分、必要条件有 关的问题,常常借助集合的观点来考虑.若涉 及参数问题解决起来较为困难时,注意运用等 价转化.
例3
真命题.
【名师点评】 (1)“都是”的否定是“不都是
”,而不是“都不是”,因为“x、y不都是奇数 ”包含“x是奇数y不是奇数”、“x不是奇数y是 奇数”、“x、y都不是奇数”三种情况;(2)“x =0或y=0”的否定是“x≠0且y≠0”,而不是 “x≠0或y≠0”,因为“x=0或y=0”包含“x =0且y≠0”、“x≠0且y=0”、“x=0且y=0”
例1
分别写出下列命题的逆命题、否
命题、逆否命题,并判断它们的真假.
(1)面积相等的两个三角形是全等三角形;
(2)若q≤1,则方程x2+2x+q=0有实根;
(3)若x2+y2=0,则实数x、y全为零;
(4)若x、y都是奇数,则x+y是偶数.
【思路分析】 写成“若p,则q”的形式→写
出逆命题、否命题、逆否命题→判断真假.
思考感悟 “否命题”与“命题的否定”有何不同? 提示: “否命题”与“命题的否定”是两个不
同的概念,如果原命题是“若p,则q”,那么这 个原命题的否定是“若p,则非q”,即只否定结 论,而原命题的否命题是“若非p,则非q”,即
既否定命题的条件,又否定命题的结论.
课前热身
1.命题“若a>0,则a2>0”的否命题是( ) A.若a2>0,则a>0 B.若a<0,则a2<0 C.若a≤0,则a2≤0 D.若a≤0,则a2≥0
相关文档
最新文档