简单曲线的极坐标方程教案

合集下载

简单曲线的极坐标方程教案

简单曲线的极坐标方程教案

简单曲线的极坐标方程教案高二年级数学集体备课材料说课人:李德辉说课时间:2013-5-27构建高效课堂教学设计案(正页)高二年级数学学科课题简单曲线的极坐标系方程预讲授时间 2013年 5月 30 日第 1 课时授课类型新授课知识目标:进一步领会求简单曲线的极坐标方程的基本方法,掌握极坐标方程的意义教和掌握一些特殊位置下的圆和直线(如过极点或垂直于极轴的直线)的极坐标方程.能力目标: 学结合数学实例培养学生归纳类比推理的能力,培养学生逻辑推理能力.目情感目标:标通过观察、探索、发现的创造性过程,培养创新意识,辨析能力以及良好的思维品质。

教学重点求简单曲线的极坐标方程的基本方法教学难点求简单曲线的极坐标方程的基本方法教学方法学生自主探究为主,教师引导为辅三、简单曲线的极坐标系方程板一.圆的极坐标方程: 例1 例2 书设计二.直线的极坐标方程:学在教师的引导下,学生能积极应对互化的原因、方法,也能较好地模仿操作,但情让学生独立自主完成新的问题的解答,明显有困难,需要教师的点拨引导。

这点可采分取的措施是:小组讨论,共同寻找解决问题的方法,很有效。

析构建高效课堂教学设计案(副页)教学环教师活动学生活动节及时(教学内容的呈现及教学方法) (学习活动的设计) 间分配问题1、引例(如图,在极坐标系下半径为a的圆的圆心坐标为引领 ,0)(>0),你能用一个等式表示圆上任意一点, (aa的极坐标(,,,)满足的条件, 4分钟学生观察、思考,教师引导,从而引出本节的课题,并给出概念2、提问:曲线上的点的坐标都满足这个方程吗,自主曲线的极坐标方程与极坐标方程的曲线定义教师板书,强调含义构建 3分钟1.求以点为圆心,为半径的圆C的极aC(a,0)(a,0)学生依据所学知识进行小组合作合作解决相应问题,实现教学内容的探究坐标方程. 获得. 7分钟2.已知圆心的极坐标为,圆的半径为,M(,,,)r 00求圆的极坐标方程.点拨例1(求圆心在点(3,0),且过极点的圆的极坐标学生独立思考回答,教师进提升方程.行纠错,并指导. ,7分钟 (4,)练习:1(求以为圆心,4为半径的圆的极坐 2 标方程. 2.已知一个圆的极坐标方程是 ,,53cos,,5sin,,求圆心的极坐标与半径., l【问题1】:求经过极点,从极轴到直线的夹角是 4合作 l探究的直线的极坐标方程.13分钟【问题2】:求过点A(a,0)(a>0)且垂直与极轴的学生在学习小组内部展开讨直线的极坐标方程. 论,教师指导,然后进行交l【问题3】:设点P的极坐标为(,,,),直线过点P流展示. 教师板书,强调符号11 互相转换的方法 l, 且与极轴所成的角为,求直线的极坐标方程.【问题4】:在问题3中,如果以极点为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,那么直线l 的直角坐标方程是什么?比较直线l的极坐标方程与直角坐标方程,你对不同坐标系下的直线方程有什么认识?, 例2(求经过极点,且倾斜角是的直线的极坐标方自主学生观察、独立思考回答,6构建程. 教师教师规范步骤.学生整理9分钟记忆.,3 练习:求直线的直角坐标方程. ,,(,,R) 4总结本节课你有哪些收获, 评价知识层面:思想层面: 学生总结归纳,教师提示补充.方法层面: 2分钟布置红对勾 A层 P9: 1-4 6-12P11: 1—3,6—13作业 B层 P9 :5,13,14 P11: 4,5,14总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。

《极坐标系 简单曲线的极坐标方程》教案

《极坐标系 简单曲线的极坐标方程》教案

三、简单曲线的极坐标方程 【基础知识导学】1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程。

1. 直线与圆的极坐标方程① 过极点,与极轴成α角的直线极坐标议程为αθραθtan tan )(=∈=或R②以极点为圆心半径等于r 的圆的极坐标方程为 r =ρ【知识迷航指南】 例1求(1)过点)4,2(πA 平行于极轴的直线。

(2)过点)3,3(πA 且和极轴成43π角的直线。

解(1)如图,在直线l 上任取一点),(θρM ,因为)4,2(πA ,所以|MH|=224sin=⋅π在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4,2(πA 平行于极轴的直线为2sin =θρ。

(2)如图 ,设M ),(θρ为直线l 上一点。

)3,3(πA , OA =3,3π=∠AOB xO由已知43π=∠MBx ,所以125343πππ=-=∠OAB ,所以127125πππ=-=∠OAM 又θπθ-=-∠=∠43MBx OMA 在∆MOA 中,根据正弦定理得 127sin)43sin(3πρθπ=- 又426)34sin(127sin+=+=πππ 将)43sin(θπ-展开化简可得23233)cos (sin +=+θθρ 所以过)3,3(πA 且和极轴成43π角的直线为:23233)cos (sin +=+θθρ〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。

将它用坐标表示。

再通过代数变换进行化简。

例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。

(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。

解:(1)设),(θρp 为圆C 上任意一点。

圆C 交极轴于另一点A 。

由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。

简单曲线的极坐标方程(教案)

简单曲线的极坐标方程(教案)

简单曲线的极坐标方程教案内容:一、教学目标:1. 让学生掌握极坐标系的基本概念。

2. 让学生了解极坐标与直角坐标之间的关系。

3. 让学生学会求解简单曲线的极坐标方程。

二、教学内容:1. 极坐标系的基本概念。

2. 极坐标与直角坐标之间的关系。

3. 圆的极坐标方程。

4. 直线的极坐标方程。

5. 椭圆的极坐标方程。

三、教学重点与难点:1. 教学重点:圆、直线、椭圆的极坐标方程的求解。

2. 教学难点:椭圆的极坐标方程的求解。

四、教学方法:1. 采用讲解法,讲解极坐标系的基本概念,极坐标与直角坐标之间的关系。

2. 采用案例分析法,分析圆、直线、椭圆的极坐标方程的求解过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

五、教学过程:1. 引入极坐标系的基本概念,讲解极坐标与直角坐标之间的关系。

2. 讲解圆的极坐标方程,举例说明求解过程。

3. 讲解直线的极坐标方程,举例说明求解过程。

4. 讲解椭圆的极坐标方程,举例说明求解过程。

5. 布置练习题,让学生巩固所学知识。

教学评价:通过课堂讲解、案例分析和练习,评价学生对极坐标系的理解和掌握程度,以及对简单曲线极坐标方程的求解能力。

六、教学准备:1. 教学PPT或黑板。

2. 极坐标系的图示或模型。

3. 圆、直线、椭圆的图示或模型。

4. 练习题。

七、教学步骤:1. 回顾极坐标系的基本概念,通过PPT或黑板展示极坐标系的图示,让学生回顾极坐标与直角坐标之间的关系。

2. 讲解圆的极坐标方程。

以一个具体的圆为例,说明圆的极坐标方程的求解过程。

将圆的直角坐标方程(x-a)²+ (y-b)²= r²转换为极坐标方程。

利用极坐标与直角坐标之间的关系,即x=ρcosθ,y=ρsinθ,将直角坐标方程中的x和y替换为极坐标方程中的ρcosθ和ρsinθ,得到圆的极坐标方程ρ=2a·cosθ。

3. 讲解直线的极坐标方程。

以一个具体的直线为例,说明直线的极坐标方程的求解过程。

简单曲线的极坐标方程

简单曲线的极坐标方程

第周第课时教案时间:简单曲线的极坐标方程教学主题一、教学目标1、掌握极坐标方程的意义,掌握直线的极坐标方程2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化3、过观察、探索、发现的创造性过程,培养创新意识。

二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程的互化教学难点:极坐标方程的意义,直线的极坐标方程的掌握<三、教学方法讲练结合四、教学工具无五、教学流程设计教学教师活动学生活动环节圆的极坐标方程一、复习引入:、问题情境1、直角坐标系建立可以描述点的位置极坐标也有同样作用2、直角坐标系的建立可以求曲线的方程极坐标系的建立是否可以求曲线方程学生回顾1、直角坐标系和极坐标系中怎样描述点的位置2、曲线的方程和方程的曲线(直角坐标系中)定义3、求曲线方程的步骤4、极坐标与直角坐标的互化关系式:二、讲解新课:/1、引例.如图,在极坐标系下半径为a的圆的圆心坐标为,(a,0)(a>0),你能用一个等式表示圆上任意一点,的极坐标(,)满足的条件解:设M (,)是圆上O、A以外的任意一点,连接AM,则有:OM=OAcosθ,即:ρ=2acosθ①,2、提问:曲线上的点的坐标都满足这个方程吗可以验证点O(0,π/2)、A(2a,0)满足①式.等式①就是圆上任意一点的极坐标满足的条件.反之,适合等式①的点都在这个圆上.3、定义:一般地,如果一条曲线上任意一点都有一个极坐标适合方程0),(=θρf 的点在曲线上,那么这个方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。

例1、已知圆O 的半径为r ,建立怎样的坐标系,可以使圆的极坐标方程更简单 ①建系;②设点;M (ρ,θ)③列式;OM =r , 即:ρ=r ④证明或说明.变式练习:求下列圆的极坐标方程:(1)中心在C(a ,0),半径为a ; (2)中心在(a,/2),半径为a ; (3)中心在C(a ,0),半径为a答案:(1)=2acos(2)=2asin(3)0cos()a ρθθ-=2例2.(1)化在直角坐标方程0822=-+y y x 为极坐标方程,(2)化极坐标方程)3cos(6πθρ-= 为直角坐标方程。

2022年 《简单曲线的极坐标方程》优秀教案

2022年 《简单曲线的极坐标方程》优秀教案

简单曲线的极坐标方程谷杨华一、教学目标〔一〕核心素养通过这节课学习,了解极坐标方程的意义、能在极坐标系中给出简单曲线的方程,体会极坐标下方程与直角坐标系下曲线方程的互化,培养学生归纳类比推理、逻辑推理能力.〔二〕学习目标1.通过实例,了解极坐标方程的意义,了解曲线的极坐标方程的求法.2.掌握特殊情形的直线与圆的极坐标方程.3.能进行曲线的极坐标方程与直角坐标方程的互化,体会在用方程刻画平面图形时选择适当坐标系的意义.〔三〕学习重点1.掌握特殊情形的直线与圆的极坐标方程.2.进行曲线的极坐标方程与直角坐标方程的互化.〔四〕学习难点1.求曲线的极坐标方程.2.对不同位置的直线和圆的极坐标方程的理解.二、教学设计〔一〕课前设计1.预习任务〔1〕读一读:阅读教材第12页至第15页,填空:一般地,在极坐标系中,如果平面曲线上任意一点的极坐标中至少有一个满足方程,并且坐标适合方程的点都在曲线上,那么方程叫做曲线的极坐标方程.2.预习自测〔1〕以下点不在曲线上的是A BC D【知识点】极坐标方程【解题过程】将选项中点一一代入验证可得选项D不满足方程【思路点拨】由极坐标方程定义可得【答案】D.〔2〕极坐标系中,圆心在极点,半径为2的圆的极坐标方程为A BC D【知识点】极坐标方程【解题过程】任取圆上一点的极坐标为,依题意,所以选A【思路点拨】根据题意寻找的等量关系式【答案】A.〔3〕将以下曲线的直角坐标方程化为极坐标方程:①射线;②圆.【知识点】直角坐标方程与极坐标方程互化【解题过程】①因为,代入可得又因为,所以射线在第三象限,故取θ=错误!ρ≥0②将,代入,整理得【思路点拨】利用极坐标与直角坐标互化可得【答案】①θ=错误!ρ≥0 ②.〔4〕极坐标系下,直线与圆ρ=错误!的公共点个数是【知识点】极坐标方程、直线与圆的位置关系【解题过程】直线方程ρco=错误!,即=错误!,所以直角坐标方程为+-2=0圆的方程ρ=错误!,即ρ2=2,所以直角坐标方程为2+2=2因为圆心到直线的距离为d=错误!=错误!=r,所以直线与圆相切,即公共点个数是1【思路点拨】将问题转化为平面直角坐标系中的问题处理【答案】 1二课堂设计1.知识回忆〔1〕极坐标系的建立:在平面内取一个定点,叫做极点;自极点引一条射线,叫做极轴;再选定一个长度单位、一个角度单位通常取弧度及其正方向通常取逆时针方向,这样就建立了一个极坐标系.〔2〕极坐标系内一点的极坐标的规定:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的角叫做点的极角,记为有序数对叫做点的极坐标,记为.一般地,不作特殊说明时,我们认为,可取任意实数.〔3〕把直角坐标系的原点作为极点,轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度设是平面内任意一点,它的直角坐标是,极坐标是,那么:,,2.问题探究探究一结合实例,类比认识极坐标方程★●活动①类比推理概念在平面直角坐标系中,平面曲线可以用方程表示.曲线与方程满足如下关系:1曲线上点的坐标都是方程的解;2以方程的解为坐标的点都在曲线上.那么,在极坐标系中,平面曲线是否可以用方程表示呢?我们先看一个例子半径为的圆的圆心坐标为,你能用一个等式表示圆上任意一点的极坐标满足的条件吗?类比直角坐标方程的求解过程,我们先建立极坐标系,如为圆上除以外的任意一点,那么,所以在中,,即经验证,点的坐标满足上式于是上述等式为圆上任意一点的极坐标满足的条件,反之,坐标适合上述等式的点都在这个圆上所以我们类比直角坐标方程可以得到极坐标方程的定义,即:一般地,在极坐标系中,如果平面曲线上任意一点的极坐标中至少有一个满足方程,并且坐标适合方程的点都在曲线上,那么方程叫做曲线的极坐标方程.由于平面上点的极坐标的表示形式不惟一,即一条曲线上点的极坐标有多组表示形式,所以我们这里要求至少有一组能满足极坐标方程.那么这个点在曲线上【设计意图】利用类比的思想,从熟悉的概念得到新的数学概念,体会概念的提炼、抽象过程.●活动②归纳梳理、理解提升分析上述实例,你能得出求解极坐标方程的一般步骤吗?求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将条件用曲线上的点的极坐标的关系式表示出来,就得到曲线的极坐标方程,具体如下:1建立适当的极坐标系,设是曲线上任意一点.2连接,根据几何条件建立关于极径和极角之间的关系式.3将列出的关系式进行整理,化简,得出曲线的极坐标方程.4检验并确认所得方程即为所求.假设方程的推导过程正确,化简过程都是同解变形,证明可以省略.【设计意图】通过实例类比总结方法,培养学生数学抽象、归类整理意识.探究二探究直线的极坐标方程●活动互动交流、初步实践组织课堂讨论:结合极坐标方程的定义及求解极坐标方程的直线的极坐标方程如右图,以极点为分界点,直线上的点的极坐标分成射线射线两个局部,射线上任意一点的极角都为,所以射线的极坐标方程为:;而射线上任意一点的极角都是,所以射线的极坐标方程为:综上:直线的极坐标方程可以用和表示现在产生一个问题:能否用一个方程来表示呢?我们定义:假设,那么,我们规定点与关于极点对称这样就可以将的取值范围推广到全体实数于是在允许,那么上述直线的极坐标方程就可以写为:或【设计意图】得到特殊直线的极坐标方程,加深对极坐标方程内涵与外延的理解,突破重点.探究三探究极坐标方程与直角坐标方程的联系★▲●活动①稳固理解,加深认识在学习了极坐标方程及求解步骤后,动手做一做:在极坐标系中,圆心为,半径为1的圆的极坐标方程是多少呢?如右图所示,设为圆上任一点,当三点不共线是,在中利用余弦定理可得即当三点共线时,点的坐标为或,这两点的坐标满足上式,所以上式为所求的圆的极坐标方程在找平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形正弦定理,余弦定理的知识以及利用三角形的面积相等来建立ρ、θ之间的关系【设计意图】稳固极坐标方程的求解,同时为极坐标方程与直角坐标方程的转化作准备.●活动②强化提升、灵活应用还有没有其它方法来求解极坐标方程呢?根据上节的直角坐标与极坐标的互化,先把直角坐标系的原点作为极点,轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度,然后先求直角坐标系下的圆的方程;即由于圆心在极坐标系下为,那么在直角坐标系下圆心,半径,所以圆的直角坐标方程为:,整理得:,因为,,代入直角坐标方程得化简得:【设计意图】掌握极坐标方程与直角坐标方程的转化,进一步认识极坐标系.活动③稳固根底,检查反应例1 极坐标方程表示A.直线B.射线C.圆D.椭圆【知识点】曲线与极坐标方程.【解题过程】,所以曲线表示的是圆.【思路点拨】通过转化为直角坐标方程来判断.【答案】C同类训练极坐标方程表示的曲线是A.两条相交直线B.两条射线C.一条直线D.一条射线【知识点】曲线与极坐标方程.【解题过程】∵in=,∴或,又∵,∴表示两条相交直线.【思路点拨】通过极坐标方程来判断.【答案】A例2 把以下直角坐标方程化成极坐标方程.〔1〕〔2〕〔3〕【知识点】直角坐标方程化成极坐标方程.【解题过程】〔1〕由,,代入直角坐标方程得,,即〔2〕由上同理可得:〔3〕【思路点拨】利用直角坐标与极坐标互化公式求解.【答案】〔1〕;〔2〕;〔3〕同类训练把以下极坐标方程化为直角坐标方程.〔1〕〔2〕【知识点】直角坐标方程与极坐标方程互化.【解题过程】〔1〕由,,代入极坐标方程得,,即〔2〕由,等式两边同乘以得,所以,即:【思路点拨】极坐标方程化为直角坐标方程要通过变形,构造形如,,的形式,进行整体代换.【答案】〔1〕;〔2〕【设计意图】稳固极坐标方程的求解、判断以及直角坐标方程与极坐标方程的互化.●活动4 强化提升、灵活应用例3 直线的极坐标方程为,求点到这条直线的距离.【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为轴正半轴建立平面直角坐标系,直线的极坐标方程化为直角坐标方程,得:把点的极坐标化为直角坐标,得:在平面直角坐标系下,由点到直线的距离公式,得点到直线的距离,所以点到直线的距离为.【思路点拨】把极坐标问题转化为直角坐标系中问题.【答案】.同类训练求极点到直线的距离.【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为轴正半轴建立平面直角坐标系,直线的极坐标方程化为直角坐标方程,得:把极点的极坐标化为直角坐标,得:在平面直角坐标系下,由点到直线的距离公式,得点到直线的距离,所以极点到直线的距离为.【思路点拨】把极坐标问题转化为直角坐标系中问题.【答案】.3课堂总结知识梳理〔1〕一般地,在极坐标系中,如果平面曲线上任意一点的极坐标中至少有一个满足方程,并且坐标适合方程的点都在曲线上,那么方程叫做曲线的极坐标方程.〔2〕求曲线的极坐标方程的一般步骤:①建立适当的极坐标系,设是曲线上任意一点.②连接,根据几何条件建立关于极径和极角之间的关系式.③将列出的关系式进行整理,化简,得出曲线的极坐标方程.④检验并确认所得方程即为所求.假设方程的推导过程正确,化简过程都是同解变形,证明可以省略.〔3〕假设,那么,我们规定点与关于极点对称.重难点归纳〔1〕求解平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形正弦定理,余弦定理的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.〔2〕极坐标方程化为直角坐标方程要通过变形,构造形如ρco θ,ρin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以或同除以ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.〔三〕课后作业根底型自主突破1.经过极点,从极轴到直线的夹角是的直线的极坐标方程是〔〕A.B.C.D.【知识点】极坐标方程.【解题过程】将直线画在极坐标系中,易得选项D正确【思路点拨】根据根据图像进行判断.【答案】D.2.直线错误!-=0的极坐标方程限定ρ≥0是A.θ=错误!B.θ=错误!πC.θ=错误!和θ=错误!πD.θ=错误!π【知识点】极坐标方程与直角坐标方程互化.【解题过程】由错误!-=0,得错误!ρco θ-ρin θ=0,即tan θ=错误!,∴θ=错误!和θ=错误!π.又ρ≥0,因此直线的方程可以用θ=错误!和θ=错误!π表示【思路点拨】极坐标方程与直角坐标方程互化.【答案】C3.极坐标方程co θ=ρ≥0表示的曲线是.A.余弦曲线B.两条相交直线C.两条射线D.一条射线【知识点】极坐标方程的求解.【解题过程】∵co θ=,∴θ=+2π∈Z.又∵ρ≥0,∴co θ=表示两条射线.【思路点拨】利用三角函数图像可得.【答案】C.4.圆的极坐标方程ρ=coθ-2inθ对应的直角坐标方程为A BC D【知识点】极坐标方程与直角坐标方程互化.【解题过程】,所以即,所以选B【思路点拨】利用极坐标与直角坐标互化公式求解.【答案】B.5.极坐标系内,点到直线ρco θ=2的距离是________.【知识点】极坐标与直角坐标的转化.【解题过程】点的直角坐标为0,1,直线ρco θ=2的直角坐标方程为=2,故点0,1到直线=2的距离是d=2【思路点拨】极坐标问题转化为直角坐标问题来求解.【答案】2.6.在极坐标系中,A,B分别是直线3ρco θ-4ρin θ+5=0和圆ρ=2co θ上的动点,那么A,B两点之间距离的最小值是________.【知识点】直线与圆的极坐标方程、点到直线的距离.【数学思想】分类讨论思想.【解题过程】:由题意,得直线的平面直角坐标方程为3-4+5=0,圆的普通方程为-12+2=1,那么圆心1,0到直线的距离d=错误!=错误!,所以A,B两点之间距离的最小值为d-r=错误!-1=错误!.【思路点拨】极坐标问题转化为直角坐标问题来求解.【答案】错误!.能力型师生共研7.在极坐标系中,圆ρ=-2in θ的圆心的极坐标是A BC.D.【知识点】极坐标与直角坐标互化、圆的标准方程.【解题过程】由ρ=-2in θ得ρ2=-2ρin θ,化成直角坐标方程为2+2=-2,化成标准方程为2++12=1,圆心坐标为0,-1,其对应的极坐标为【思路点拨】极坐标问题转化为直角坐标问题来求解.【答案】B.8.在直角坐标系O中,以O为极点,正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M,N分别为C与轴,轴的交点.1写出C的直角坐标方程,并求M,N的极坐标;2设MN的中点为2,0.当θ=错误!时,ρ=错误!错误!,∴点N2由1知,M点的坐标2,0,点N的坐标又N的中点,∴点2,0,N;2 θ=错误!ρ∈R探究型多维突破9.在平面直角坐标系中,以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为,曲线的极坐标方程为,求直线与曲线的交点的极坐标.【知识点】极坐标方程的应用.【数学思想】分类讨论的思想.【解题过程】由得:,即:〔1〕当时,即时,〔2〕当时,即时,此时,即,所以不成立交点极坐标为【思路点拨】类比直角坐标系,联立方程组求解.【答案】.10.椭圆的中心在坐标原点,椭圆的方程为:,分别为椭圆上的两点,且〔1〕求证:为定值;〔2〕求面积的最大值和最小值.【知识点】极坐标方程的应用.【解题过程】将椭圆的直角坐标方程化为极坐标方程得错误!+错误!=1,即ρ2=错误!,由于OA⊥OB,可设Aρ1,θ1,B错误!,那么ρ错误!=错误!,ρ错误!=错误!于是错误!+错误!=错误!+错误!=错误!=错误!所以错误!+错误!为定值.2解析:依题意得到S△AOB=错误!|OA||OB|=错误!ρ1ρ2=错误!·错误!=错误!·错误!,当且仅当in22θ1=1,S△AOB有最小值为错误!;当in22θ1=0,S△AOB有最大值为错误!【思路点拨】由于涉及到长度,所以将椭圆直角坐标方程转化为极坐标方程求解.有最小值为错误!,S△AOB有最大值为错误!【答案】〔1〕错误!+错误!=错误!;〔2〕S△AOB自助餐1.过点且平行于极轴的直线的极坐标方程是〔〕A.B.C.D.【知识点】极坐标方程的求解.【解题过程】如下图,在直线上任意取点,过作轴于,,所以,选B【思路点拨】利用根据所给的几何条件,寻找的关系式.【答案】B.2.极坐标方程分别是ρ=coθ和ρ=inθ的两个圆的圆心距是A D【知识点】极坐标与直角坐标互化、两圆的关系.【解题过程】:将方程化为直角坐标方程因为ρ不恒为零,可以用ρ分别乘方程两边,得ρ2=ρcoθ和ρ2=ρinθ∴22=和22=它们的圆心分别是,0、0,,圆心距是【思路点拨】先化为直角坐标方程,在按直角坐标求解.【答案】A.3.在极坐标系中,曲线C:ρ=2in θ上的两点A,B对应的极角分别为错误!,错误!,那么弦长|AB|=________.【知识点】极坐标与直角坐标互化、两点间的距离.【解题过程】A,B两点的极坐标分别为,化为直角坐标为故【思路点拨】先化为直角坐标方程,在按直角坐标求解.【答案】.4.曲线θ=0,θ=错误!ρ≥0和ρ=4所围成图形的面积是__________.【知识点】极坐标与直角坐标的互化、扇形的面积.【数学思想】数形结合的思想【解题过程】将极坐标方程化为直角坐标系下的方程,分别为射线,圆,他们围成的是一个圆心角为,半径为的扇形,所以.【思路点拨】先化为直角坐标方程,再在直角坐标系中画出相应的图形可得.【答案】.5.把以下直角坐标方程与极坐标方程进行互化:12+-22=4;2ρ=9in θ+co θ;3ρ=4;【知识点】极坐标与直角坐标互化.【解题过程】1∵2+-22=4,∴2+2=4,代入=ρco θ,=ρin θ得ρ2-4ρin θ=0,即ρ=4in θ2∵ρ=9in θ+co θ,∴ρ2=9ρin θ+co θ,∴2+2=9+9,即3∵ρ=4,∴ρ2=42,∴2+2=16【思路点拨】用公式=ρco θ,=ρin θ,ρ2=2+2进行直角坐标方程与极坐标方程的互化即可.【答案】〔1〕ρ=4in θ;〔2〕;〔3〕2+2=16.6.在直角坐标系O中,直线C1:=-2,圆C2:-12+-22=1,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.1求C1,C2的极坐标方程;2假设直线C3的极坐标为θ=错误!ρ∈R,设C2与C3的交点为M,N,求△C2MN的面积【知识点】极坐标与直角坐标互化、三角形的面积.【解题过程】:1因为=ρco θ,=ρin θ,所以C1的极坐标方程为ρcoθ=-2,C2的极坐标方程为ρ2-2ρco θ-4ρin θ+4=02将θ=错误!代入ρ2-2ρco θ-4ρin θ+4=0,得ρ2-3错误!ρ+4=0,解得ρ1=2错误!,ρ2=错误!故ρ1-ρ2=错误!,即|MN|=错误!由于C2的半径为1,所以△C2MN的面积为错误!【思路点拨】根据极坐标与直角坐标互化公式求解,且把两圆画在极坐标系中,利用的几何意义求三角形的面积.【答案】〔1〕C1 ρcoθ=-2,C2ρ2-2ρco θ-4ρin θ+4=0;〔2〕错误!。

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程【教学目标】知识目标:进一步学习在极坐标系求曲线方程能力目标:求出并掌握圆锥曲线的极坐标方程德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

【教学重点】圆锥曲线极坐标方程的统一形式【教学难点】方程中字母的几何意义【教学方法】启发、诱导发现教学。

【教学过程】一、复习引入:1.问题情境情境1:直线与圆在极坐标系下都有确定的方程,我们熟悉的圆锥曲线呢?情境2:按通常情况化直角坐标方程为极坐标方程会得到让人满意的结果吗?2.学生回顾(1)求曲线方程的步骤(2)两种坐标互化前提和公式(3)圆锥曲线统一定义二、讲解新课:1.由必修课的学习我们已经知道:与一个定点的距离和一条定直线(定点不在定直线上)的距离的比等于常数e的点的轨迹,当e=1时,是抛物线。

那么当0<e<1及e>1时,点的轨迹是什么曲线呢?可以借助极坐标系进行讨论。

2.圆锥曲线的统一方程设定点的距离为P,求到定点到定点和定直线的距离之比为常数e的点的轨迹的极坐标方程。

分析:①建系②设点③列出等式④用极坐标ρ、θ表示上述等式,并化简得极坐标方程说明:(1)为便于表示距离,取F 为极点,垂直于定直线l 的方向为极轴的正方向。

(2)e 表示离心率,P 表示焦点到准线距离。

学生根据分析求出圆锥曲线的统一方程,1cos ep e -θρ= 3.圆锥曲线的统一方程,1cos ep e -θρ=化为直角坐标方程为222222(1)2px y p e x e e -+-=,由此可由e 与0和1的大小关系确定曲线形状。

4.思考交流:学生讨论交流课本P18页的问题:当0<e<1时,方程(1)表示了什么曲线?角θ在什么范围内变化即可得到曲线上所有的点?当e>1时,方程(1)表示了什么曲线?角θ在什么范围内变化即可得到曲线上所有的点?2.例题讲解例题:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。

简单曲线的极坐标方程 说课稿 教案 教学设计

简单曲线的极坐标方程   说课稿  教案 教学设计

常见曲线的极坐标方程教学目标:1.掌握各种圆的极坐标方程;2.能根据圆的极坐标方程画出其对应的图形.教学重点:极坐标系中根据条件求出圆的极坐标方程.教学难点:圆的极坐标方程及其应用.教学过程:一、问题情境:1.阅读课本12-13页回答下面问题⑴直角坐标系和极坐标系中怎样描述点的位置?⑵曲线的方程和方程的曲线(直角坐标系中)定义⑶求曲线方程的步骤2.(1)如图,在极坐标系下半径为a 的圆的圆心坐标为(a ,0)(a >0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?(2)曲线上的点的坐标都满足这个方程吗?二、新知探究:思路分析:1.先和学生一齐在黑板上画出圆与极坐标轴2.把所设圆上任意一点的极坐标在所画图形上明确标出来ρ、θ 即明确长度ρ与角度θ是哪一边, 哪一个角3.找边与角能共存的三角形,最好是直角三角形4.利用三角形的边角关系的公式与定理列等式5.列式时要充分利用所给的圆心与半径的条件6.引出指明极坐标方程的条件 三、建构数学 若圆心的坐标为M (ρ0,θ0),圆的半径为r ,求圆的方程. 022********P()MOP MP =OM +OP -2OM OP cos . -2cos()0POM r ≠∆⋅∠-+-=ρρθρρρθθρ解:当时,设圆上任意一点为,,在中,由余弦定理知 可得 022200000=0=r ()-2cos()0r r -+-=ρρρθρρρθθρ当时,圆心位于极点,圆的极坐标方程是,亦满足上面的方程.故圆心为,,半径为的圆的极坐标方程是显然点P 的坐标也是它的解.运用此结果可以推出一些特殊位置的圆的极坐标方程.M(,0)2M(r,)==22r ρθπρθ1.当圆心位于时,由上式可得圆的极坐标方程是 ;.当圆心位于时,由上式可得圆的极坐标2rcos rsi 程是 n 方 .四、数学应用:O MPρρr θ0θx(1)A(3,0) (2)B(8)2 (3)O C(-4,0) (4))6ππ例1 按下列条件写出圆的极坐标方程:以为圆心,且过极点的圆;以,为圆心,且过极点的圆;以极点与点连接的线段为直径的圆;圆心在极轴上,且过极点与点,的圆.(详细解答过程见教材P23)例2 求以点)0)(0,(>a a C 为圆心,a 为半径的圆C 的极坐标方程.变式练习:1.求圆心在点(3,0),且过极点的圆的极坐标方程.2.求以)2,4(π为圆心,4为半径的圆的极坐标方程.例3 已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半径.五、课堂练习:1.在极坐标系中,求适合下列条件的圆的极坐标方程:(1)圆心在)4,1(πA ,半径为1的圆;(2)圆心在)23,(πa ,半径为a 的圆.2.把下列极坐标方程化为直角坐标方程:(1)2=ρ;(2)θρcos 5=.3.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=.4.求圆05)sin 3(cos 22=-+-θθρρ的圆心的极坐标与半径.六、回顾小结:如何求圆的极坐标方程。

简单曲线的极坐标方程精品教案

简单曲线的极坐标方程精品教案
任意一点极径为 5,反过来, 极径为 5 的点都 在这个圆 上。因此,以极点为圆心,5 为半径的 圆可以用方程
5 来表示。
提问:曲线上的点的坐标都满足这个方 程吗? 小结:“极坐标方程的曲线与曲线的极 坐标方程的定义”,非一一对应关系的 理解,因为极坐标系中点的表示法不唯 一,所以不需要曲线上的任意一点的坐 标都适合方程,只要求曲线上任意一点 都至少有一个极坐标适合方程即可,从 而曲线的极坐标方程也不唯一,还可以 思考,为了达到一一对应需要添加的条 件。 三、思考归纳,生成概念 定义:一般地,在极坐标系中,如果平
教学过程
教学步骤 一、情景引入 多媒体播放百岁山矿泉水广告(素材启 发自笛卡尔的爱情故事),引出极坐标 方程表示的笛卡尔心形线 二、探究问题,引出概念 问题 1、直角坐标系建立可以描述点的 位置在极坐标系是否也有同样作用? 问题 2、直角坐标系的建立可以求曲线 的方程,极坐标系的建立是否可以求曲 线方程? 思考:以极点 O 为圆心 5 为半径的圆上
3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多 角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿 基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受 数学与生活的联系 ,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法
预习作业较容 易,学生通过 阅读课本能较 好完成
结合问题尝试 归纳,生成概 念
类比平面直角 坐标系中曲线 与方程的概 念,应能较好 给出极坐标系 中相应概念, 学生可能对定 义中“任意一 点的极坐标中 至少有一个满
设计意图 激发兴趣,引出极 坐标方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单曲线的极坐标方程
【教学目标】
1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力.
2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法.
3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力.
【教学重难点】
简单曲线的极坐标方程的求法
【教学过程】
一、复习、预习自学:
2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 θρcos =x , θρsin =y (2)直角坐标化为极坐标 222y x +=ρ, )0(tan ≠=
x x
y
θ 3.曲线和方程(平面直角坐标系中(P12)) 曲线C 上的点的坐标都是方程0),(=y x f 的解;
以方程0),(=y x f 的解为坐标的点都在曲线C 上.
(3)极坐标系中如何用方程表示曲线
【复习、预习自测】
1.极坐标化为直角坐标:→)4
,3(π________,→)3
2,2(π________
2. 直角坐标化为极坐标:→)3,3( ________,→-)3
5,0(________
二、合作探究
探究点一:圆的极坐标方程(P12-13)
如图,半径为a 的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上
任意一点的极坐标),(θρ满足的条件吗
探究点1图 拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程
0),(=θρf 叫做曲线C 的极坐标方程:
(1) (2)
拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的
极坐标方程更简单并将所得结果与直角坐标方程进行比较.
探究点二:直线的极坐标方程(P13)
如图,直线l 经过极点,从极轴到直线l 的角是4
π
,求直线l 的极坐标方
程.
探究点2图 拓展2图 拓展3图
拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程. 拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程.
【课堂小结】 1.




_____________________________________________________________________ 2.






_______________________________________________________________
__
探究点三:圆锥曲线的极坐标方程
已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0<e<1),建立合理的极坐标系,求椭圆C的极坐标方程.。

相关文档
最新文档