51单片机IO口应用详解

合集下载

51单片机IO口工作原理

51单片机IO口工作原理

51单片机IO口工作原理一、概述51单片机是一种广泛应用于嵌入式系统的微控制器,其IO口是其最基本和重要的功能之一。

IO口可以用于输入和输出信号,实现与外部设备的数据交互。

本文将详细介绍51单片机IO口的工作原理。

二、IO口的结构51单片机的IO口由多个引脚组成,每个引脚都有特定的功能和工作模式。

通常,一个IO口引脚可以配置为输入模式或输出模式,具体的配置由相应的寄存器控制。

三、IO口的输入模式当一个IO口引脚配置为输入模式时,它可以接收外部设备发送的信号。

在输入模式下,引脚的电平可以是高电平(1)或低电平(0),这取决于外部设备发送的信号。

在51单片机中,可以通过P1口和P3口来配置引脚为输入模式。

当一个引脚配置为输入模式时,相应的寄存器会设置为1,表示该引脚为输入状态。

此时,我们可以通过读取相应的寄存器值来获取引脚的电平状态。

四、IO口的输出模式当一个IO口引脚配置为输出模式时,它可以向外部设备发送信号。

在输出模式下,引脚的电平可以是高电平(1)或低电平(0),这取决于我们设置的值。

在51单片机中,可以通过P0口、P1口、P2口和P3口来配置引脚为输出模式。

当一个引脚配置为输出模式时,相应的寄存器会设置为0,表示该引脚为输出状态。

此时,我们可以通过写入相应的寄存器值来控制引脚的电平状态。

五、IO口的工作原理在51单片机中,IO口的工作原理是通过寄存器的读写操作来实现的。

通过读取或写入相应的寄存器值,我们可以配置引脚的工作模式和控制引脚的电平状态。

对于输入模式,我们可以通过读取相应的寄存器值来获取引脚的电平状态。

通过读取P1口和P3口的寄存器值,我们可以判断引脚的电平是高电平还是低电平。

对于输出模式,我们可以通过写入相应的寄存器值来控制引脚的电平状态。

通过写入P0口、P1口、P2口和P3口的寄存器值,我们可以将引脚的电平设置为高电平或低电平。

六、IO口的应用场景51单片机的IO口广泛应用于各种嵌入式系统中,如电子设备、家用电器、工业控制等。

51单片机I0解析

51单片机I0解析

IO口解析MCS-51单片机通常有4个8位I/O端口, 向各端口的写数据均写入到对应端口的锁存器中, 但对各端口的读操作却有两个方式:读锁存器和读引脚1 读-修改-写操作Pn(指P0,P1,P2,P3)在51汇编语言中是特殊的标识符,既代表Pn端口引脚,又代表Pn锁存器(Pn SFR)。

在MCS-51指令系统中有些指令读锁存器的值, 有些指令则读引脚上的值。

读锁存器指令是从锁存器中读取一个值并进行处理, 把处理后的值(原值或已修改后的值)重新写入锁存器中。

这类指令称为读-修改-写指令, 表1列举了有该功能的指令当目的操作数是Pn端口或Pn端口的某一位时. 该指令读取锁存器的值.这些指令的一个共同特点, 就是要先并行读入Pn锁存器(非Pn端口引脚)中的值,作一定的修改,然后再写入谚端口的锁存器。

表1中晶后三条指令读-修改-写关系不够明显。

实际上它们的执行过程序是:先将Pn 的8位锁存器内容一起读人,再对指定位进行修改, 然后又8位一起写入锁存器。

对于读-修改-写指令。

直接读锁存器而不是读端口引脚, 是因为从引脚上读出的数据不一定能真正反映锁存器的状态例如:若用Pn的某一位引脚直接驱动一个NPN三极管的基极,当向此端口写“1” 时, 三极管导通并把端口引脚的电平钳位约0.7 V (对于硅管) 这时,CPU若从此引脚读取数据. 会把该数据(应为1)错读为0;若直接从锁存器读取, 则读出正确的数据。

理解了Pn的特殊性及读-修改-写指令后, 就不难理解指令PUSH Pn的含义了。

它的执行过程是:读Pn 引脚(非读Pn 嫫?的值, 然后将此数值压入堆栈以下是一段测试程序:ORG 1000H1000 75A07F MOV P2,#7FH1003 7900 MOV R1,#00H1005 74FF MOV A,#0FFH1007 COA0 PUSH P21009 D0A0 POP P2100B F3 MOVX @R1,A100C 22 RET这段程序原意是将FFH立即数存人外部RAM地址为7F00的单元中, 但具体的运行结果与这段程序是在片内或片外被执行有密切关系。

51单片机的IO口

51单片机的IO口

51单片机的I O口.2P0口作为普通I/O口:①输出时,CPU发出控制电平"0"封锁"与"门,将输出上拉场效应管T1截止,同时使多路开关MUX把锁存器与输出驱动场效应管T2栅极接通。

故内部总线与P0口同相。

由于输出驱动级是漏极开路电路,若驱动NMOS或其它拉流负载时,需要外接上拉电阻。

P0的输出级可驱动8个LSTTL负载。

②输入时--分读引脚或读锁存器读引脚:由传送指令(MOV)实现;下面一个缓冲器用于读端口引脚数据,当执行一条由端口输入的指令时,读脉冲把该三态缓冲器打开,这样端口引脚上的数据经过缓冲器读入到内部总线。

读锁存器:有些指令如:ANLP0,A称为"读-改-写"指令,需要读锁存器。

上面一个缓冲器用于读端口锁存器数据。

*原因:如果此时该端口的负载恰是一个晶体管基极,且原端口输出值为1,那么导通了的PN结会把端口引脚高电平拉低;若此时直接读端口引脚信号,将会把原输出的"1"电平误读为"0"电平。

现采用读输出锁存器代替读引脚,图中,上面的三态缓冲器就为读锁存器Q端信号而设,读输出锁存器可避免上述可能发生的错误。

*说明:nP0口必须接上拉电阻;n在读信号之前数据之前,先要向相应的锁存器做写1操作的I/O口称为准双向口;n三态输入缓冲器的作用:n(ANLP0,A)准双向口:从图中可以看出,在读入端口数据时,由于输出驱动FET并接在引脚上,如果T2导通,就会将输入的高电平拉成低电平,产生误读。

所以在端口进行输入操作前,应先向端口锁存器写"1",使T2截止,引脚处于悬浮状态,变为高阻抗输入。

这就是所谓的准双向口。

2、P0作为地址/数据总线在系统扩展时,P0端口作为地址/数据总线使用时,分为:(1)P0引脚输出地址/数据信息:CPU发出控制电平"1",打开"与"门,又使多路开关MUX把CPU的地址/数据总线与T2栅极反相接通,输出地址或数据。

51单片机IO引脚IO口工作原理

51单片机IO引脚IO口工作原理

51单片机IO引脚IO口工作原理一、IO引脚的基本特性1.输入与输出:IO引脚可以配置为输入(接收外部信号)或输出(发送信号到外部设备)。

2. 高低电平:IO引脚可以输出高电平(通常为Vcc电压)或低电平(通常为接地GND电压)。

3.上拉与下拉:IO引脚可以通过上拉电阻或下拉电阻实现电平的稳定。

4. 悬空状态:未配置输入的IO引脚可能处于悬空状态(floating),容易受到噪声的干扰。

二、IO口的工作原理1.寄存器配置:通过对相应的寄存器进行配置,可以选择IO引脚的工作模式(输入或输出)、电平(高或低)、上拉或下拉等。

2.IO端口的控制:通过对控制寄存器进行设置,可以使IO引脚产生相应的电平信号,控制外部设备的操作。

3.输入输出驱动能力:IO引脚的输出能力决定了其能够驱动的外部设备的负载能力。

对于较重的负载,需要考虑使用缓冲电路或者外部驱动芯片。

三、IO口的配置与操作1.选择IO引脚功能:通过寄存器配置,将IO引脚配置为输入模式(将输入电平传递给芯片内部)或输出模式(将芯片内部的电平输出到外部设备)。

2.设置电平状态:对于输出模式的引脚,可以通过寄存器来设置输出电平的状态,使其输出高电平或低电平。

3.上拉与下拉电阻:通过配置相关寄存器,可以启用上拉电阻(使引脚在悬空状态时拉高到高电平)或下拉电阻(使引脚在悬空状态时拉低到低电平)。

四、IO端口的应用1.输入:将外部设备的信号输入到IO引脚,通过编程来实现对信号的判断和处理。

例如,读取按键的状态、读取传感器的数据等。

2.输出:将芯片内部产生的信号输出到外部设备,用于控制和驱动外部设备的操作。

例如,控制LED灯的亮灭、控制继电器的开关等。

3.通信:通过IO引脚与其他设备(例如外围设备、传感器、通信模块等)进行通信。

4.扩展IO口:通过外部的IO扩展芯片或者接口芯片,可以扩展更多的IO口。

总结:51单片机的IO口是其与外部设备通信的接口,通过配置相关寄存器来选择引脚的工作模式、电平和电阻状态。

51单片机IO端口的四种输入输出模式知识讲解

51单片机IO端口的四种输入输出模式知识讲解

51单片机IO端口的四种输入输出模式知识讲解51单片机I O端口的四种输入输出模式51单片机IO端口的四种输入输出模式 (by wuleisly)单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O口吗?你真的能按你的需要配置I O口吗?一、准双向口输出准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。

这是因为当口线输出为1时驱动能力很弱,允许外部装置将其拉低。

当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。

(准双向口有3个上拉晶体管适应不同的需要)准双向口读外部状态前,要先锁存为‘1’,才可读到外部正确的状态.二、强推挽输出推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时提供持续的强上拉。

推挽模式一般用于需要更大驱动电流的情况。

三、仅为输入(高阻)输入口带有一个施密特触发输入以及一个干扰抑制电路。

四、开漏输出配置(若外加上拉电阻,也可读)当口线锁存器为0时,开漏输出关闭所有上拉晶体管。

当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V cc。

如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。

这种方式的下拉与准双向口相同。

开漏端口带有一个施密特触发输入以及一个干扰抑制电路。

关于I/O口应用注意事项:1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。

因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.有些实际没有损坏,加上拉电阻就O K了有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强推挽输出.2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MO S电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上拉口在由0变为1时,会有2 时钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在软件处理上,不要出现按键两端的I/O口同时为低.一种典型三极管控制电路:如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3.3K~10 K),建议R2的值在15K以上,或用强推挽输出。

51单片机并行io口工作原理

51单片机并行io口工作原理

51单片机并行io口工作原理51单片机是一种常用的嵌入式系统开发平台,具有强大的并行IO 口功能。

本文将介绍并行IO口的工作原理及其在51单片机中的应用。

我们来了解一下什么是并行IO口。

并行IO口是指可以同时进行多个输入输出操作的接口。

在51单片机中,通过并行IO口可以实现与外部设备的数据交互,如控制LED灯、读取按键状态等。

在51单片机中,有两种类型的IO口:通用IO口和特殊功能IO口。

通用IO口可以进行输入输出操作,而特殊功能IO口则有特定的功能,如串口通信、定时器等。

并行IO口的工作原理是通过对寄存器的写入和读取来控制IO口的状态。

在51单片机中,有4个8位寄存器,分别是P0、P1、P2、P3。

P0口的每一位对应一个IO口,P1、P2、P3口则是通过外部扩展芯片来实现更多的IO口。

通过向寄存器中写入数据,可以控制IO口的输出状态。

例如,向P0寄存器写入0x55,即二进制01010101,可以控制P0口的1、3、5、7位输出高电平,2、4、6、8位输出低电平。

通过读取寄存器中的数据,可以获取IO口当前的输入状态。

例如,读取P1寄存器的值,可以获取P1口每一位的输入状态。

在51单片机中,可以通过对寄存器的位操作来实现对单个IO口的控制。

例如,通过设置P2口的某一位为1,可以将对应的IO口设置为输出模式;通过设置P2口的某一位为0,可以将对应的IO口设置为输入模式。

通过对寄存器的位操作,可以实现对多个IO口的同时控制。

除了通过编程对寄存器进行操作外,51单片机还提供了一些特殊功能IO口,可以直接使用这些IO口来实现一些常见的功能。

例如,P3.0和P3.1口可以作为外部中断输入口,P3.3和P3.4口可以作为定时器输入口,P3.5和P3.6口可以作为串口通信口。

在实际应用中,我们可以根据需要将不同的外部设备连接到51单片机的IO口上,通过对寄存器的编程,控制外部设备的状态。

例如,我们可以将LED灯连接到P0口的某一位上,通过对P0寄存器的位操作,控制LED灯的亮灭;我们也可以将按键连接到P1口的某一位上,通过读取P1寄存器的值,获取按键的状态。

很全的51单片机IO端口详解(带图)

很全的51单片机IO端口详解(带图)

80C51的I/O端口结构及应用特性一,I/O端口的结构1,锁存器加引脚的典型结构80C51的I/O端口都有内部总线实现操作控制。

P0-P3四个I/O 口都可以做普通I/O口,因此,要求具有输出锁存功能。

内部总线有事分时操作,因此每个I/O端口都有相应的锁存器。

然而I/O端口又是外部的输入/输出通道,必须有相应的引脚,故形成了I/O端口的锁存器加引脚的典型结构。

2,I/O口的复用功能(1)I/O口的总线复用。

80C51在使用并行总线扩展时,P0口可作为数据总线口和低8位地址总线口,这是,P0为三态双向口。

P0口输出总线的地址数据信号,P2口输出高8位地址信号。

(2)I/O口的功能复用。

I/O口的P3为功能复用的I/O端口。

端口有复用输出的控制端;引脚也有复用输入的控制端。

3,准双向结构P0,P1,P2,P3口做普通I/O口使用时,都是准双向口结构。

准双向口的典型结构见P1口位结构图。

准双向口的输入操作和输出操作本质不同,输入操作时读引脚状态;输出操作时对口锁存器的写入操作。

有口锁存器和引脚电路可知:当有内部总线对只1或只0时,锁存器的0、1状态立即反应到引脚上。

但是输入操作(读引脚)时,如果口锁存器的状态为0,引脚被嵌位在0状态,导致无法读出引脚的高电平输入。

二,I/O端口的应用特性1,引脚的自动识别。

无论P0,P2口的总线复用,还是P3口的功能复用,内部资源会自动选择,不需要通过指令的状态选择。

2,口锁存器的读、该、写操作。

许多涉及到I/O端口的操作,只是涉及口锁存器的读出、修改、写入的操作。

这些指令都是一些逻辑运算指令、置位/清除指令、条件转移指令以及将I/O口作为目的地址的操作指令。

3,读引脚的操作指令。

如果某个I/O口被指定为源操作数,则为读引脚的操作指令。

例如,执行MOV A,P1时,P1口的引脚状态传送到累加器中,执行MOV P1,A是,指令则将累加器的内容传送到P1口锁存器中。

4,准双向口的使用。

MCS-51单片机IO口详解

MCS-51单片机IO口详解

单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。

一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。

由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。

这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。

它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。

图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。

外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。

二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。

图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。

需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。

2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机IO口应用详解MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照单片机引脚图:这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。

P0口有三个功能:1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

P1口只做I/O口使用:其内部有上拉电阻。

P2口有两个功能:1、扩展外部存储器时,当作地址总线使用2、做一般I/O口使用,其内部有上拉电阻;P3口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,即:编程脉冲:30脚(ALE/PROG)编程电压(25V):31脚(EA/Vpp)在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。

ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。

参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。

由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。

1、内部ROM读取时,PSEN不动作;2、外部ROM读取时,在每个机器周期会动作两次;3、外部RAM读取时,两个PSEN脉冲被跳过不会输出;4、外接ROM时,与ROM的OE脚相接。

参见图2—(8051扩展2KB EEPROM电路,在图中PSEN与扩展ROM的OE脚相接)EA/VPP 访问和序存储器控制信号1、接高电平时:CPU读取内部程序存储器(ROM)扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。

2、接低电平时:CPU读取外部程序存储器(ROM)。

3、8751烧写内部EPROM时,利用此脚输入21V的烧写电压。

RST 复位信号:当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作。

XTAL1和XTAL2 外接晶振引脚。

当使用芯片内部时钟时,此二引脚用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。

VCC:电源+5V输入VSS:GND接地。

8031各端口工作原理讲解并行端口P0端口总线I/O端口,双向,三态,数据地址分时复用,该端口除用于数据的输入/输出外,在8031单片机外接程序存储器时,还分时地输出/输入地址/指令。

由Po端口输出的信号无锁存,输入的信息有读端口引脚和读端口锁存器之分。

P0端口8位中的一位结构图见下图:由上图可见,P0端口由锁存器、输入缓冲器、切换开关与相应控制电路、场效应管驱动电路构成。

在输出状态下,当切换开关MUX向下时,从内部总线来的数据经锁存器反相和场效应管T2反相,输出到端口引脚线上。

此时,场效应管T1关断,因而这种输出方式应为外接上拉电阻的漏极开路式。

当切换开关MUX向上时,一位地址/数据信号分时地输出到端口线上。

此外,由T1、T2的通断组合,形成高电平、低电平与高阻浮动三态的输出。

在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。

例如,当从内部总线输出低电平后,锁存器Q=0,Q=1,场效应管T2开通,端口线呈低电平状态。

此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。

又如,当从内部总线输出高电平后,锁存器Q=1,Q=0,场效应管T2截止。

如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。

为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。

读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。

下面是几条读--修改-写指令的例子。

这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。

P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。

P0端口是使用最广泛的I/O端口。

P1端口:通用I/0端口,准双向静态口。

输出的信息有锁存,输入有读引脚和读锁存器之分。

P1端口的一位结构见下图. 由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。

由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。

由下图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。

为此,在作引脚读入前,必须先对该端口写入l。

具有这种操作特点的输入/输出端口,称为准双向I/O口。

8031单片机的P1、P2、P3都是准双向口。

P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入1后再作读操作。

单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。

如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。

此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。

Pl端口是51单片机中唯一仅有的单功能I/O端口,并且没有特定的专用功能,输出信号锁存在引脚上。

P2端口:P2端口的一位结构见下图:由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。

这主要表现在输出功能上,当切换开关MUX向左时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当MUX向右时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。

由于8031单片机必须外接程序存储器才能构成应用电路,而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的切换开关MUX总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。

因此P2端口是动态的I/O端口。

输出数据虽被锁存,但不是稳定地出现在端口线上。

其实,这里输出的数据往往也是一种地址,只不过是外部RAM 的高8位地址。

在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。

可见,P2端口的主要特点包括:①不能输出静态的数据;②自身输出外部程序存储器的高8位地址;②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。

(这是针对8031说的,P2端口的描述与8051的不同。

8051有内部的ROM,无需外加ROM,所以8051的P2可以输出静态的数据。

也可以作为外部存储器的地址总线。

)P3端口:双功能静态I/O口P3端口的一位结构见下图。

由上图可见,P3端口和P1端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。

当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。

当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。

由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。

P3口的特殊功能(即第二功能):使P3端品各线处于第二功能的条件是:1\串行I/O处于运行状态(RXD,TXD);2\打开了处部中断(INT0,INT1);3\定时器/计数器处于外部计数状态(T0,T1)4\执行读写外部RAM的指令(RD,WR)在应用中,如不设定P3端口各位的第二功能(WR,RD信号的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。

在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。

在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。

端口的负载能力和输入/输出操作:P0端口能驱动8个LSTTL负载。

如需增加负载能力,可在P0总线上增加总线驱动器。

P1,P2,P3端口各能驱动4个LSTTL负载。

前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。

例如:MOV A, P1 ;把Pl端口线上的信息输入到AMoV P1, A ;把A的内容由P1端口输出MOV P3, #0FFH ;使P3端口线各位置l串行端口:MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD(P3.0)和TXD(P3.1)可与外设电路进行全双工的串行异步通信。

1.串行端口的基本特点8031单片机的串行端口有4种基本工作方式,通过编程设置,可以使其工作在任一方式,以满足不同应用场合的需要。

其中,方式0主要用于外接移位寄存器,以扩展单片机的I/O电路;方式1多用于双机之间或与外设电路的通信;方式2,3除有方式1的功能外,还可用作多机通信,以构成分布式多微机系统。

串行端口有两个控制寄存器,用来设置工作方式、发送或接收的状态、特征位、数据传送的波特率(每秒传送的位数)以及作为中断标志等。

串行端口有一个数据寄存器SBUF(在特殊功能寄存器中的字节地址为99H),该寄存器为发送和接收所共同。

发送时,只写不读;接收时,只读不写。

在一定条件下,向阳UF写入数据就启动了发送过程;读SBUf就启动了接收过程。

相关文档
最新文档