第五章电极过程扩散动力学(1)
合集下载
第五章电荷转移步骤动力学与电化学极化PPT课件

第五章 电荷转移步骤动力学 与电化学极化
5.1 电化学极化概述 5.2 电化学步骤的基本动力学方程 5.3 电化学步骤的基本动力学参数 5.4 稳态电化学极化动力学方程 5.5 电化学极化与浓差极化的比较
1
5.1 电化学极化概述
液相传质过程发生于“电极/溶液”表面附近 的液层中,即扩散层中。
电化学步骤(电荷转移步骤)则发生于“电极 /溶液”界面上。
但必须注意: (1)上述关系只使用于简单的电极反应; (2)注意浓度的单位换算,浓度单位一般用 “mol / cm3”。当生成不溶的独立相时,其浓度取 110-3 mol/cm3
35
5.4 稳态电化学极化动力学方程
当一定大小的电流流过电极时,电极电位偏离其 平衡电极电位。当达到稳态时,即电极过程各个步 骤的进行速度不再随时间而改变,电极电位与外电
22
电化学平衡
当电极体系处在平衡态时,电极上没有净反应发
生,阳极反应速率( ia0 )与阴极反应速率( ic0 )
相等。
zacRexp(W10
RnTF平)zccoexp(W20
nF平)
RT
写成对数形式并整理后得:
平(W10nF W20
2.3RTlgzc)2.3RTlgco nF za nF cR
平 0' 2.n3RFTlgccR o
ia0 = ic0= i0
交换电流密 度
19
对于阳极反应 = - 平=a
所以有: a2 .3 n RF lT g i02 .3 n RF lT g ia2 .3 n RF lT g iia 0
对于阴极反应 = - 平=-c
所以有: c 2 .3 n RlF T g i0 2 .3 n RlF T g ic 2 .3 n RlF T g iic 0
5.1 电化学极化概述 5.2 电化学步骤的基本动力学方程 5.3 电化学步骤的基本动力学参数 5.4 稳态电化学极化动力学方程 5.5 电化学极化与浓差极化的比较
1
5.1 电化学极化概述
液相传质过程发生于“电极/溶液”表面附近 的液层中,即扩散层中。
电化学步骤(电荷转移步骤)则发生于“电极 /溶液”界面上。
但必须注意: (1)上述关系只使用于简单的电极反应; (2)注意浓度的单位换算,浓度单位一般用 “mol / cm3”。当生成不溶的独立相时,其浓度取 110-3 mol/cm3
35
5.4 稳态电化学极化动力学方程
当一定大小的电流流过电极时,电极电位偏离其 平衡电极电位。当达到稳态时,即电极过程各个步 骤的进行速度不再随时间而改变,电极电位与外电
22
电化学平衡
当电极体系处在平衡态时,电极上没有净反应发
生,阳极反应速率( ia0 )与阴极反应速率( ic0 )
相等。
zacRexp(W10
RnTF平)zccoexp(W20
nF平)
RT
写成对数形式并整理后得:
平(W10nF W20
2.3RTlgzc)2.3RTlgco nF za nF cR
平 0' 2.n3RFTlgccR o
ia0 = ic0= i0
交换电流密 度
19
对于阳极反应 = - 平=a
所以有: a2 .3 n RF lT g i02 .3 n RF lT g ia2 .3 n RF lT g iia 0
对于阴极反应 = - 平=-c
所以有: c 2 .3 n RlF T g i0 2 .3 n RlF T g ic 2 .3 n RlF T g iic 0
第五章 电化学步骤的动力学

改变电极电势———就可以直接改变电化学步骤和整个电极反应 的进行速度。
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:
W W1 F
' 1
'
(5.1a)
W2 W2 F
(5.1b)
和 分别表示改变电极电势对阴极和阳极
k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=
nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0
根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4
电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:
W W1 F
' 1
'
(5.1a)
W2 W2 F
(5.1b)
和 分别表示改变电极电势对阴极和阳极
k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=
nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0
根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4
电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0
电极过程动力学 ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);
电化学理论与方法 第五章 电极过程概述

整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR
令
(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。
理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。
电极过程动力学导论-1

微分电容法
理想极化电极“溶液/电极”界 面
电容性元件
界面双电层 的微分电容
Cd
dq
d
对
Cd
dq
d
积分,得
q Cd d 常数
由于零电荷电位下q=0,则有
q 0 Cd d
电毛细曲线法与微分电容法的区别 电毛细曲线法----利用曲线的斜率求q,
实际测量的是q的积分函数 微分电容法----利用曲线的下方面积求q,
1924年Stern综合了上述两种模型中的合理部分,建立 了Gouy-Chapman-Stern模型(GCS模型)
GCS模型虽承认紧密双层的存在与作用,但并未认真分析 紧密双层的结构与性质,故常被称为GCS分散层模型
GCS模型主要处理分散层中剩余电荷的分布与电势分布, 其基本出发点有二:
1、Boltzmann分布公式 只考虑静电场的作用时,对于1-1型电解质溶液
1992
国内外主要期刊
电化学 厦门大学主办,1995年创刊 电池 全国干电池工业科技情报站、湖南轻工研究所主办,1971年创刊 电源技术 中国电子科技集团公司第十八研究所主办, 1977年创刊 物理化学学报 中国化学会主办 Electrochimica Acta 《电化学学报》 ,英国,1959年创刊,ISE会刊 Electrochemistry Communications 《电化学通讯》,瑞士,由Electrochimica Acta 分出
当1=0时,cosh(0)=1,此时C分散具有最小值。当q和1增 大时C分散迅速增大。
GCS模型的缺点
1、由于只处理了界面的一部分(分散层)而不是 全部界面区域,因此难以用实验进行验证。
2、推导公式过程中的不足。如:将分散层的介电常数 当作恒定值、离子所占体积和活度系数的变化等。
现代电化学-第5章电极反应动力学

1.描述平衡状态下的动力学特征
i i i0
F K c O e x p n RF 平 T F K c R e xF R p平 T
∴ 平=RFTlnK KRFTlnccO R
平=0,
RTlncO nF cR
22
2. 用 i 0 表示电化学反应速度
i i0 exp F
设:电化学反应步骤为控制步骤,此时
cis ci0
传质处于准平衡态
由 根化 据F学ra动rd力a学y定知律:得: vkcexpRGT
i nFkcOexpRGT i nFkcRexpRGT 15
将 GG0nF 代入,得:
GG0nF
inkc F O e x p G 0R nT F nK F cO e x p R nF T
• i0 ic id:
只出现电化学极化 ,此时:
c
RT
F
ln
ic i0
46
• ic id i0:
接近于完全浓差极化的情况 ,动力学规 律无法由混合公式得出,需按浓差极化 公式分析。
• ic id i0: 既接近于完全浓差极化又存在电化学极 化,混合公式任何一项均不可忽略。
47
混合控制下的极化曲线
改变1 V 改变 G 50 KJ mol-1,
对于1
nm的电化学界面,109
Vm-1 40
(4) i0与电极动力学性质的关系
极化 性能
i00 i0 小 i0 大 i0 理想 容易 难 不能
可逆 完成全
程度 不行
小
大
完全 可以
2 .3R 03 T 2 .3R 03 T
c zFlg i0 zFl41g ic
Tafel曲线
c2.3 zR 0 Fl3 Tg i02.3 zR 0 Fl3 Tg ic 42
i i i0
F K c O e x p n RF 平 T F K c R e xF R p平 T
∴ 平=RFTlnK KRFTlnccO R
平=0,
RTlncO nF cR
22
2. 用 i 0 表示电化学反应速度
i i0 exp F
设:电化学反应步骤为控制步骤,此时
cis ci0
传质处于准平衡态
由 根化 据F学ra动rd力a学y定知律:得: vkcexpRGT
i nFkcOexpRGT i nFkcRexpRGT 15
将 GG0nF 代入,得:
GG0nF
inkc F O e x p G 0R nT F nK F cO e x p R nF T
• i0 ic id:
只出现电化学极化 ,此时:
c
RT
F
ln
ic i0
46
• ic id i0:
接近于完全浓差极化的情况 ,动力学规 律无法由混合公式得出,需按浓差极化 公式分析。
• ic id i0: 既接近于完全浓差极化又存在电化学极 化,混合公式任何一项均不可忽略。
47
混合控制下的极化曲线
改变1 V 改变 G 50 KJ mol-1,
对于1
nm的电化学界面,109
Vm-1 40
(4) i0与电极动力学性质的关系
极化 性能
i00 i0 小 i0 大 i0 理想 容易 难 不能
可逆 完成全
程度 不行
小
大
完全 可以
2 .3R 03 T 2 .3R 03 T
c zFlg i0 zFl41g ic
Tafel曲线
c2.3 zR 0 Fl3 Tg i02.3 zR 0 Fl3 Tg ic 42
第五章电极过程扩散动力学

s c0 c Ag Ag
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区
电化学原理-第五章-液相传质步骤动力学-2015修订

y u 1/ 6 1/ 2 1/ 2 0
n0 知
y1/2
u 1/ 0
2
而旋转圆盘电极上各点的切向速度:
u0 2n0 y
所以:
u01/ 2 y1/ 2 (2n0)1/ 2 常数
y 有:
Di1/3 1/6 常数
即:旋转圆盘电极上各点的扩散层
厚度与y值无关。
1、电极表面附近的液流现象及传质作用 2、扩散层的有效厚度 3、对流扩散的动力学规律
摩擦力
y0
边界层:存在流速梯 度的区域。
电极表面上各点,边 界层厚度不同。
动力粘滞
层流
y0
边界层
根据流体力学理论 可知:
边界层厚度:
B y / u0 (5.10)
动力粘滞系数:
粘度系数 密度
当 j 很小时,由于 j jd
则 (5.40) 简化为:
RT(1 j )
nF
jd (5.41)
对数 直线 关系 关系
由
0
RT nF
ln OcO0
RT nF
ln(1
j jd
)
作极化曲线。
0 2.由3RT
nF
log
O cO0
2.3RT nF
log(1
液相传质步骤动力学
液相传质常是电极反应的限制步骤。 1mol / L 时电极反应最大速度可达 105 A / cm2
实际电化学反应装置的最高电流密度极少 超过几 A / cm2 表明电化学反应的潜力未发挥出来。
通过减缓或增加液相传质来控制电极反应速度。 采用多孔膜和选择透过性薄膜减少干扰组分对 电极反应的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
13
四.电极过程的特征
异相催化反应 电极可视为催化剂 ,可以人为控制 复杂的多步骤的串连过程,其动力学规律
取决于速度控制步骤
14
五、电极过程动力学研究的目的和方法
目的:使电极反应按照人们所需要的方向和 速度进行。
方法: 弄清电极反应的历程;找出电极过程的速度控
制步骤; 测定控制步骤的动力学参数;测定 非控制步骤的热力学平衡常数或其他有关的 热力学数据。
15
§5-2 液相传质的三种方式
一、液相传质的三种方式
阳极极 化
极化度:极化曲线上某一点 的斜率
从极化曲线上求得任一电流 密度下的过电位或极化值; 了解整个电极过程中电极电 位变化的趋势和比较不同电 极过程的极化规律
阴极极 化
不锈钢在硫酸中的极化曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤 电子转移步骤 随后的表面转化步骤 新相生成步骤和反应后的液相传质步骤
2
§5-1电极过程概述
一、概述
1、电池反应
电池反应包括三个部分 :阳极反应过程、阴极 反应过程和反应物质在溶液中的传递过程(液 相传质过程)
2、研究一个电化学体系的方法
研究一个电化学体系中的电化学反应时,应把 整个电池反应分解成单个的过程加以研究
3
电极过程:在电化学中,把发生在电极/溶液 界面上的电极反应、化学转化和电极附近液层 中的传质作用等一系列变化的总和
电极过程动力学:有关电极过程的历程、速度 及其影响因素的研究内容的统称,
电极过程动力学研究的范围:包括在电极表面 进行的电化学过程和电极表面附近薄层电解质 中的传质过程及化学过程。
4
二、电极的极化现象
1、几个概念
极化:有电流通过时,电极电位偏离平衡电位 的现象
过电位:在一定电流密度下,电极电位与平衡 电位的差值 平
1、电迁移
电迁移:电解质溶液中的带电粒子在电场作用下 沿着一定的方向移动。 动画
电迁移流量: Ji cii ciUi E (5-1) 电迁移流量与i离子的淌度成正比,与电场强度
成正比,与i离子的浓度成正比,即与i离子的 迁移数有关。
16
2、对流:
对流:一部分溶液与另一部分溶液之间的相 对流动。 动画
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
10
(1)液相传质
Ag (CN )32 (溶液深处) → Ag (CN )32 (电极表面附近)
(2)前置转化
Ag (CN )32
→
Ag
(CN
)
2
CN
(3)电子转移(电化学反应)
Ag(CN )2 +e→ Ag(吸附态) 2CN (4)生成新相或液相传质
Ag(吸附态) →Ag(结晶态) 2CN- (电极表面附近) →2CN-→(溶液深处)
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。
常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的
电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过
二、液相传质的三种方式的比较
1、三种传质方式区别
传质运动的推动力: 电迁移——电场力 对流:自然对流——密度差或温度差,均为重力差
强制对流——搅拌外力 扩散——浓度梯度,实质是化学位梯度 传输的物质粒子: 电迁移——带电粒子:阴、阳离子 扩散和对流——离子、分子等形式的物质微粒
19
传质作用的区域:
极化值:有电流通过时的电极电位(极化电位)
与静止电位的差值 静
5
2、极化产生的原因
电流流过电极时,产生一对矛盾作用: 动画 极化作用—电子的流动在电极表面积累电荷,
使电极电位偏离平衡状态的作用 ; 去极化作用—电极反应吸收电子运动传递的电
荷,使电极电位恢复平衡状态的作用 。 极化是由上述两种作用联合作用的结果。
6
实质:电极反应速度跟不上电子运动速度而造 成电子在界面的积累,即内在原因正是电子运 动速度 和电极反应速度的矛盾。 两种特殊现象: V反 0 理想极化电极
如: Pt电极,滴汞电极(DME) V反很大 理想不极化电极
如:甘汞电极(SCE)
7
3、极化曲线
极化曲线:过电位(过电极 电位)随电流密度变化的关 系曲线。
22
稳态扩散与非稳态扩散的区别和联系 :
反应粒子的浓度分布是否为时间的函数 :
对流两大类 : 自然对流:密度差或温度差而引起的对流 强制对流:用外力搅拌溶液引起的对流
对流流量: J i ci x (5-2)
17
3、扩散
扩散:溶液中某一组分自发地从高浓度区域向 低浓度区域移动。 动画
扩散分为稳Байду номын сангаас扩散和非稳态扩散,
稳态扩散引起的扩散流量:
Ji
Di
(
dci dx
)
(5-3)
18
没有大量的局外电解质存在时,电迁移将对扩 散作用产生影响,电迁移和扩散之间可能是相 互叠加作用,也可能是相互抵消的作用。
21
§5-3 稳态扩散传质过程
一、稳态扩散概念
非稳态扩散:反应粒子浓度随时间和距离不断变 化的扩散过程。 稳态扩散:扩散速度与电极反应速度相平衡,反 应粒子在扩散层中各点的浓度分布不再随时间变 化,而仅仅是距离的函数的扩散过程
电极表面及
s’ c
其附近的液
c c0 c0 cs
层区域划分: 双电层区、 扩散层区、 对流区。 如图5.2所示。
cs
c
双电层区
扩散区
对流区
xs0
x1
d
x2 x
图5.2阴极极化时扩散厚度示意图
20
2、三种传质方式的相互影响
只有当对流与扩散同时存在时才能实现稳态扩 散过程,把一定强度的对流作用的存在,作为 实现稳态扩散过程的必要条件。
第五章 电极过程扩散动力学
➢主要内容:
电极反应中的传质方式,扩散电流和电迁移电流, 对流扩散理论,旋转圆盘电极,理想条件下和 真实条件下的稳态扩散过程。
➢教学要求:
1.了解扩散电流和电迁移电流, 2.理解对流扩散理论,旋转圆盘电极,理想条
件下和真实条件下的稳态扩散过程。 3.掌握电极反应中的传质方式。
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
13
四.电极过程的特征
异相催化反应 电极可视为催化剂 ,可以人为控制 复杂的多步骤的串连过程,其动力学规律
取决于速度控制步骤
14
五、电极过程动力学研究的目的和方法
目的:使电极反应按照人们所需要的方向和 速度进行。
方法: 弄清电极反应的历程;找出电极过程的速度控
制步骤; 测定控制步骤的动力学参数;测定 非控制步骤的热力学平衡常数或其他有关的 热力学数据。
15
§5-2 液相传质的三种方式
一、液相传质的三种方式
阳极极 化
极化度:极化曲线上某一点 的斜率
从极化曲线上求得任一电流 密度下的过电位或极化值; 了解整个电极过程中电极电 位变化的趋势和比较不同电 极过程的极化规律
阴极极 化
不锈钢在硫酸中的极化曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤 电子转移步骤 随后的表面转化步骤 新相生成步骤和反应后的液相传质步骤
2
§5-1电极过程概述
一、概述
1、电池反应
电池反应包括三个部分 :阳极反应过程、阴极 反应过程和反应物质在溶液中的传递过程(液 相传质过程)
2、研究一个电化学体系的方法
研究一个电化学体系中的电化学反应时,应把 整个电池反应分解成单个的过程加以研究
3
电极过程:在电化学中,把发生在电极/溶液 界面上的电极反应、化学转化和电极附近液层 中的传质作用等一系列变化的总和
电极过程动力学:有关电极过程的历程、速度 及其影响因素的研究内容的统称,
电极过程动力学研究的范围:包括在电极表面 进行的电化学过程和电极表面附近薄层电解质 中的传质过程及化学过程。
4
二、电极的极化现象
1、几个概念
极化:有电流通过时,电极电位偏离平衡电位 的现象
过电位:在一定电流密度下,电极电位与平衡 电位的差值 平
1、电迁移
电迁移:电解质溶液中的带电粒子在电场作用下 沿着一定的方向移动。 动画
电迁移流量: Ji cii ciUi E (5-1) 电迁移流量与i离子的淌度成正比,与电场强度
成正比,与i离子的浓度成正比,即与i离子的 迁移数有关。
16
2、对流:
对流:一部分溶液与另一部分溶液之间的相 对流动。 动画
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
10
(1)液相传质
Ag (CN )32 (溶液深处) → Ag (CN )32 (电极表面附近)
(2)前置转化
Ag (CN )32
→
Ag
(CN
)
2
CN
(3)电子转移(电化学反应)
Ag(CN )2 +e→ Ag(吸附态) 2CN (4)生成新相或液相传质
Ag(吸附态) →Ag(结晶态) 2CN- (电极表面附近) →2CN-→(溶液深处)
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。
常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的
电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过
二、液相传质的三种方式的比较
1、三种传质方式区别
传质运动的推动力: 电迁移——电场力 对流:自然对流——密度差或温度差,均为重力差
强制对流——搅拌外力 扩散——浓度梯度,实质是化学位梯度 传输的物质粒子: 电迁移——带电粒子:阴、阳离子 扩散和对流——离子、分子等形式的物质微粒
19
传质作用的区域:
极化值:有电流通过时的电极电位(极化电位)
与静止电位的差值 静
5
2、极化产生的原因
电流流过电极时,产生一对矛盾作用: 动画 极化作用—电子的流动在电极表面积累电荷,
使电极电位偏离平衡状态的作用 ; 去极化作用—电极反应吸收电子运动传递的电
荷,使电极电位恢复平衡状态的作用 。 极化是由上述两种作用联合作用的结果。
6
实质:电极反应速度跟不上电子运动速度而造 成电子在界面的积累,即内在原因正是电子运 动速度 和电极反应速度的矛盾。 两种特殊现象: V反 0 理想极化电极
如: Pt电极,滴汞电极(DME) V反很大 理想不极化电极
如:甘汞电极(SCE)
7
3、极化曲线
极化曲线:过电位(过电极 电位)随电流密度变化的关 系曲线。
22
稳态扩散与非稳态扩散的区别和联系 :
反应粒子的浓度分布是否为时间的函数 :
对流两大类 : 自然对流:密度差或温度差而引起的对流 强制对流:用外力搅拌溶液引起的对流
对流流量: J i ci x (5-2)
17
3、扩散
扩散:溶液中某一组分自发地从高浓度区域向 低浓度区域移动。 动画
扩散分为稳Байду номын сангаас扩散和非稳态扩散,
稳态扩散引起的扩散流量:
Ji
Di
(
dci dx
)
(5-3)
18
没有大量的局外电解质存在时,电迁移将对扩 散作用产生影响,电迁移和扩散之间可能是相 互叠加作用,也可能是相互抵消的作用。
21
§5-3 稳态扩散传质过程
一、稳态扩散概念
非稳态扩散:反应粒子浓度随时间和距离不断变 化的扩散过程。 稳态扩散:扩散速度与电极反应速度相平衡,反 应粒子在扩散层中各点的浓度分布不再随时间变 化,而仅仅是距离的函数的扩散过程
电极表面及
s’ c
其附近的液
c c0 c0 cs
层区域划分: 双电层区、 扩散层区、 对流区。 如图5.2所示。
cs
c
双电层区
扩散区
对流区
xs0
x1
d
x2 x
图5.2阴极极化时扩散厚度示意图
20
2、三种传质方式的相互影响
只有当对流与扩散同时存在时才能实现稳态扩 散过程,把一定强度的对流作用的存在,作为 实现稳态扩散过程的必要条件。
第五章 电极过程扩散动力学
➢主要内容:
电极反应中的传质方式,扩散电流和电迁移电流, 对流扩散理论,旋转圆盘电极,理想条件下和 真实条件下的稳态扩散过程。
➢教学要求:
1.了解扩散电流和电迁移电流, 2.理解对流扩散理论,旋转圆盘电极,理想条
件下和真实条件下的稳态扩散过程。 3.掌握电极反应中的传质方式。