一、光栅衍射基本原理分解
谈谈光栅衍射的原理和应用

谈谈光栅衍射的原理和应用1. 光栅衍射的基本原理光栅衍射是指当光波通过一个具有规则结构的光栅时,光波会在光栅上发生衍射现象。
光栅是一种具有一定周期性的结构,由相互平行、等间距的透明区域和不透明区域交替构成。
在光栅中,透明区域的宽度称为缝宽,不透明区域的宽度称为缝隙。
光栅常见的类型有刻线光栅和石印光栅。
当光波通过一个光栅时,光波会相互干涉,产生明暗相间的光斑模式。
这是因为光栅对光波的传播方向产生了改变,在不同的方向上产生了不同的光程差,导致干涉现象。
根据洛特吕格公式,光栅衍射的主要特点包括衍射角和衍射级数。
1.1 衍射角光栅衍射的主要特点之一是在不同的观测角度下,光栅上的衍射光斑呈现出不同的位置和形状。
观察到的光斑位置和形状由衍射角决定。
衍射角是入射波与相应衍射方向的法线之间的夹角。
1.2 衍射级数衍射级数是指在光栅上观察到的衍射光斑的数量。
光栅会产生一系列的明暗相间的光斑,其中第一级衍射光斑是最亮的,其他级别的光斑随衍射级数的增加逐渐减弱。
衍射级数的数量取决于光栅的周期和光波的波长。
2. 光栅衍射的应用光栅衍射广泛应用于许多领域,如光学仪器、光学通信、光学传感器和光谱分析等。
以下列举几个常见的应用:2.1 光学光谱仪光学光谱仪是利用光栅衍射原理来分析和测量光的频谱特性的仪器。
光谱仪通过光栅衍射将复杂的光波分解成不同频率的光波,从而得到光的频谱信息。
光谱仪广泛用于物质组成分析、光谱测量和光学传感等领域。
2.2 光学通信光栅衍射在光学通信中起到重要的作用。
光栅衍射可用于光的调制和解调,将数据信号转化为光波信号进行传输。
光栅衍射还可用于光纤光栅传感器,通过对光波传播过程的监测和分析,实现对光纤中物理、化学或生物参数的测量。
2.3 衍射成像光栅衍射在成像领域也有广泛应用。
通过光栅衍射,可以改变光波的传播方向和相位分布,实现对光波的操控和控制,进而实现对图像的转换、放大和成像等功能。
衍射成像在光学显微镜、干涉望远镜和光学信息处理等领域得到了广泛的应用。
11大学物理实验光栅衍射

三、数据处理
计算绿光、黄1和黄2三种波长成分的衍射角 及不确定度,正确表示结果。 (分光计测量角度时,B类不确定度取1分) 以绿光的衍射角计算光栅常数d及其不确定度, 正确表示结果(绿光波长为546.1nm) 。
cos d 2 sin
使用上一步计算出的光栅常数和两条黄线的 衍射角计算黄光的波长,并与已知值(p369) 比较,计算定值误差。
光栅衍射
衍射光栅是利用多缝衍射原理使光发生色散的 光学元件,由大量相互平行、等宽、等间距的 狭缝或刻痕所组成。由于光栅具有较大的色散 率和较高的分辨本领,它已被广泛地装配在各 种光谱仪器中。
光栅按不同分类方法可分为透射型和反射型光 栅或振幅型和位相型光栅,本实验使用的是透 射型振幅光栅。
一、实验原理
注意,测量之前务必把望远镜与外刻度盘固 定在一起。
测量衍射角 以绿光为例,转动望远镜,使-1级与分划板 垂线重合,读角位置θ1和θ′1,再测+1级角位 置θ2和θ′2,则1级绿光的衍射角θ为:
1 1 2 1 2 4
测量时,从最右端的黄2光开始,依次测黄2、 黄1,绿光,· · · · · · 直到最左端的黄2光,重复 测量三次。
1、光栅分光原理 光栅透光部分宽为a, 不透光部分宽为b, d=a+b称为光栅常数。
a
d
b
波长为λ的单色平行光垂直照射光栅时,出射角 θ满足如下光栅方程时,得到衍射主极大。
d sin k
(k 0,1,2)
光栅常数d,波长λ以及衍射角θ三个量,已知其 中两个,则第三个可由光栅方程求得。
Leabharlann 黄123 1
黄2
2 3
本实验用分光计的准直管获得平行光,垂直照 射光栅后的衍射图样通过望远镜的物镜聚焦到 分划板上,进行观察和读数。
衍射光栅实验原理

衍射光栅实验原理衍射光栅实验是一种常见的光学实验,通过衍射现象来观察光的波动性质。
衍射光栅实验原理涉及到光的衍射现象、光栅的特性以及实验装置的搭建和调整。
在这篇文档中,我们将详细介绍衍射光栅实验的原理和相关知识。
首先,让我们来了解一下衍射现象。
衍射是光线遇到障碍物或通过狭缝后发生的偏折现象,它是光的波动性质的重要表现。
当光线通过一个狭缝或透镜时,会在狭缝或透镜的周围产生一系列明暗相间的条纹,这种现象就是衍射。
衍射现象的产生是由于光波的波动特性,它使得光线在通过障碍物或狭缝后会发生弯曲和扩散,从而形成衍射图样。
在衍射光栅实验中,光栅起着关键的作用。
光栅是一种具有周期性结构的光学元件,它由许多平行的透明条纹组成,条纹之间的间距非常小。
当平行光线照射到光栅上时,光线会在光栅的结构中发生衍射,形成一系列的衍射条纹。
这些衍射条纹的位置和形状与光栅的结构有关,通过观察和测量这些条纹,可以得到关于光波长和光栅参数的信息。
在进行衍射光栅实验时,需要使用一定的实验装置来搭建和调整。
常见的实验装置包括光源、准直器、光栅、透镜、屏幕等。
首先,需要将光源经过准直器后照射到光栅上,然后在适当的位置放置屏幕来观察衍射条纹。
通过调整光源、光栅和屏幕的位置,可以得到清晰的衍射条纹图样。
衍射光栅实验原理的理解和掌握对于理解光的波动性质和光学原理具有重要意义。
通过实际操作和观察,可以直观地感受到光的波动特性,并且通过实验数据的分析和处理,可以得到更深入的认识和理解。
因此,衍射光栅实验是光学教学中的重要实验之一,也是物理学和工程学专业的学生必备的实验技能。
总之,衍射光栅实验原理涉及到光的衍射现象、光栅的特性以及实验装置的搭建和调整。
通过对衍射现象和光栅特性的理解,以及实验装置的操作和观察,可以深入地认识光的波动性质和光学原理。
衍射光栅实验在光学教学和科研中具有重要的应用和意义,是一项不可或缺的实验内容。
光栅衍射的原理及应用

光栅衍射的原理及应用原理光栅衍射是一种光的波动现象,当光通过具有周期性结构的光栅时,会产生衍射现象。
光栅是由一系列平行且等间距的透明或不透明线条构成的光学元件。
根据光波的干涉理论,当光通过光栅时,每个光栅的线条都会成为光波的次级波源,这些次级波源将会发生干涉。
根据光波的相位差,光栅衍射可以分为两类:振幅衍射和相位衍射。
振幅衍射是指光栅上的线条会使到达观察点的光波的振幅发生变化,从而产生明暗条纹。
相位衍射是指光栅上的线条会改变到达观察点的光波的相位,从而产生干涉条纹。
光栅衍射的强度分布可以通过衍射方程来描述。
衍射方程是根据透射或反射光栅产生的光强分布与入射光波的波长、入射角度、光栅常数及条纹次序之间的关系。
应用1. 光谱分析光栅衍射广泛应用于光谱仪中。
光通过光栅后,会被分解成不同波长的成分,从而形成光谱。
光栅衍射的特点是可以同时处理多个波长的光信号,并且可以提供高分辨率的光谱。
2. 显微镜中的分辨率提升在显微镜中,光栅衍射可以用来提高图像的分辨率。
通过在物镜前面添加一个光栅,可以在样品的背景中生成干涉条纹,从而提高图像的清晰度和细节。
3. 光学编码器光栅衍射在光学编码器中起着重要作用。
光学编码器是一种用于测量位置、速度和角度的设备,利用光栅衍射原理来实现高精度的测量。
通过检测光栅上的干涉条纹,可以确定位置或移动方式。
4. 光栅显示技术光栅显示技术被广泛应用于现代平板显示器和投影仪中。
光栅衍射器件通过控制不同光栅的亮度,可以产生高分辨率的图像。
光栅显示技术具有显示效果好、图像清晰且节约能源的特点。
5. 光栅光谱仪光栅光谱仪是一种用于精确测量光波波长的设备。
通过利用光栅的衍射效应,可以将不同波长的光分散成不同的角度,从而测量出光谱中各个成分的波长。
6. 光纤通信在光纤通信中,光栅衍射可以用于光纤光栅的制造和测量。
光纤光栅是一种用于调制和控制光纤传输特性的器件,通过对光栅的精确控制,可以实现光信号的调制和解调。
光栅衍射原理

光栅衍射原理光栅衍射是一种重要的光学现象,它是光波通过光栅时发生的一种衍射现象。
光栅是一种具有周期性透明和不透明条纹的光学元件,当光波通过光栅时,会发生衍射现象,产生一系列亮暗相间的衍射条纹。
光栅衍射原理是基于赫姆霍兹衍射定律和夫琅禾费衍射原理的基础上,通过光栅的周期性结构和光波的相互干涉作用来解释光栅衍射现象。
在光栅衍射中,光波通过光栅时会受到光栅周期性结构的影响,使得光波在不同方向上发生相位差,进而产生衍射现象。
光栅衍射的主要特点包括衍射角度与波长、光栅间距和衍射级数之间的关系、衍射条纹的亮暗分布规律等。
通过对光栅衍射的研究,可以深入理解光的波动性质和光学干涉、衍射的规律,对于光学领域的研究和应用具有重要意义。
光栅衍射原理的基本思想是,光栅的周期性结构能够使入射光波发生相位差,进而产生衍射现象。
光栅的周期性结构可以被描述为光栅常数d,它是光栅上相邻两个透明或不透明条纹之间的距离。
当入射光波通过光栅时,不同波长的光波会在不同的角度上产生衍射,而不同级数的衍射条纹则对应着不同的衍射角度。
这些衍射条纹的亮暗分布规律可以通过光栅衍射方程和衍射级数公式来描述和计算。
光栅衍射原理的研究对于光学领域具有广泛的应用价值。
例如,在光谱分析领域,可以利用光栅衍射的特性来分析物质的光谱特征,实现光谱的分辨和测量。
在激光技术中,光栅衍射可以用来调制和分析激光的空间和频率特性,实现激光的调制和控制。
在光学成像领域,光栅衍射可以应用于光学显微镜、光学望远镜等光学成像设备中,提高成像的分辨率和清晰度。
总之,光栅衍射原理是光学领域中的重要理论基础,它通过对光波的衍射现象进行深入研究,揭示了光的波动性质和光学干涉、衍射的规律。
光栅衍射的研究不仅对于光学理论的发展具有重要意义,而且在光学技术和应用中具有广泛的应用前景。
通过对光栅衍射原理的深入理解和应用,可以推动光学领域的发展,促进光学技术的创新和进步。
光的衍射与光栅原理

光的衍射与光栅原理光的衍射是指光通过一个或多个缝隙或障碍物时,光波会发生偏折和扩散的现象。
这种现象是由光的波动性质所决定的。
光栅则是一种具有规则排列的平行缝隙或波纹,通常用于分光和光谱测量中,通过光栅的衍射可实现光的分离与分光。
本文将详细介绍光的衍射与光栅原理。
一、光的衍射原理光的衍射是由于光波在通过缝隙或障碍物时会发生打扰和干涉而产生的现象。
当光波通过一个缝隙时,光波会以波前为基准,向前方不同方向传播。
在缝隙边缘,光波相遇会出现干涉现象,使得光线在空间中发生弯曲。
根据衍射的几何学理论,光波经过一个狭缝或圆孔时,会辐射成一系列同心的圆环状光斑,称为衍射花样。
衍射花样的大小和形状取决于入射光的波长和缝隙的宽度。
宽度越小,衍射现象越明显。
而波长越长,则衍射角度越大。
光的衍射是光学中重要的现象之一,它使得我们能够观察到物体周围的光线,例如在夜晚看到星星的闪烁。
同时,光的衍射也被广泛应用于光学仪器和技术,如显微镜、望远镜、干涉仪等。
二、光栅原理光栅是由一系列平行排列的平行缝隙或波纹构成的光学元件。
光栅的主要作用是对光波进行衍射,实现光的分离和分光。
光栅通常用于分析光的波长、频率和色散等光学特性。
光栅的原理基于光波通过光栅时会发生衍射现象。
当光波通过光栅时,光波将在光栅的缝隙或波纹间发生干涉和衍射,从而产生一系列光斑。
这些光斑的位置和强度与光栅的参数以及入射光的波长有关。
根据光栅的构造,可以分为透射光栅和反射光栅。
透射光栅是通过在介质中制作一系列平行的缝隙或波纹,使得光波透射并发生衍射。
反射光栅则是将光栅构建在反射介质表面,使得光波反射后再发生衍射。
光栅具有多个缝隙或波纹,并且缝隙或波纹之间的间距严格保持一定规律。
这种规律性使得光栅能够根据光的波长进行分离,产生不同波长的光斑。
通过对这些光斑的测量和分析,可以得到光的波长和频率等信息。
三、光的衍射与光栅应用光的衍射和光栅原理在光学领域有着广泛的应用。
下面介绍几个光学中常见的应用:1. 分光仪:分光仪是利用光栅原理实现光的分光的仪器。
新版光栅衍射基本原理

得
k红 (k 1)
ab
ab
或 k红 (k 1)紫
7.6 107 k 4 10(7 k 1)
所以只有 k才满1 足上式,所以只能产生一种完
整旳可见光谱,而第二级和第三级光谱即有重叠
出现。
光栅光谱
设第二级光谱中波长为 旳 光与第三级中紫光开始重
叠,这么
(k 1) k紫
k 2,代入得
3 2
紫
3 2
N
暗纹间距= 主极大间距 N
相邻主极大间有N-1个暗纹和N-2个次极大。
光栅衍射
例: N = 4,有三个极小:
d sin m
N
sin 1 , 2 , 3
4d 4d 4d
k 1 , k 2 , k 3
d sin 2
, , 3
2
4
光栅衍射
d sin 2
一样,k旳可能最大值相应于 sin 1
在O点上方观察到旳最大级次为 k1,取 9得0
k 1.70取 k 1 (ab)(sin90 sin 30 ) 2106 (10.5)
1
589.3109
1
光栅光谱
而在O点下方观察到旳最大级次为 k2,取 得90
k (ab)(sin(90 )sin 30 )
d (sin sin ) k (k = 0,1,2,3…)
---光栅方程
6.掠入射x射线谱仪
• 当光谱进入x射线波段时,因为材料对x射 线光旳透射率太低,即吸收太大。所以, 透射式光栅已不合用于x射线波段光谱旳测 量;
• 而对于反射式光栅,因为材料对x射线光旳 吸收较大,即反射率较低。所以,为了适 应x射线波段光谱旳测量旳要求,采用了能 够提升反射效率旳掠入射方式;
大学物理光栅衍射

大学物理光栅衍射光栅衍射是大学物理中的一项重要内容,它涉及到光的波动性和干涉原理。
本文将从光栅衍射的原理、实验装置、实验方法和结论等方面进行介绍。
一、光栅衍射原理光栅是一种具有周期性结构的衍射器件,它由许多平行且等距的狭缝构成。
当光通过光栅时,会产生一系列明暗相间的衍射条纹,这种现象被称为光栅衍射。
光栅衍射的原理是基于光的波动性和干涉原理。
根据波动理论,光在通过光栅时会产生衍射现象,即光波偏离了直线传播路径。
同时,由于光波的干涉作用,不同狭缝产生的光波相互叠加,形成了明暗相间的衍射条纹。
二、实验装置实验装置主要包括光源、光栅、屏幕和测量工具等。
光源通常采用激光器或汞灯等高亮度光源,以便产生足够的光强度。
光栅是一块具有许多狭缝的透明板,狭缝的数目和间距可以根据实验需要进行选择。
屏幕用于接收衍射条纹,测量工具用于测量衍射条纹的间距和亮度。
三、实验方法实验时,首先将光源、光栅和屏幕按照一定距离放置,确保光束能够照射到光栅上并产生衍射条纹。
然后,通过调整光源的角度和位置,观察衍射条纹的变化。
同时,使用测量工具对衍射条纹的间距和亮度进行测量和记录。
为了获得准确的实验结果,需要进行多次测量并取平均值。
四、结论通过实验,我们可以得出以下1、光栅衍射现象是光的波动性和干涉原理的表现。
2、衍射条纹的间距和亮度受到光源角度和位置的影响。
3、通过测量衍射条纹的间距和亮度,可以推断出光源的角度和位置。
4、光栅衍射现象在光学测量和光学通信等领域具有广泛的应用价值。
大学物理光栅衍射是一个非常重要的实验内容,它不仅有助于我们理解光的波动性和干涉原理,还可以应用于实际生产和科学研究领域。
光,这一神奇的物理现象,是我们日常生活中无处不在的存在。
当我们看到五彩斑斓的世界,欣赏着阳光下波光粼粼的湖面,或是夜空中闪烁的星光,这一切都离不开光的衍射。
在大学物理中,光的衍射是理解波动光学和深入探究光本质的关键。
我们需要理解什么是光的衍射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b2tan)
• 其中,r为入射狭缝到光栅中心O的距离;R为光栅
做适当的调整,如图所示。在衍射角的方向上,光 程差为
P
A
O
B
斜入射时光栅光程差的计算
A
C
D B
光栅光谱
BD AC (a b)sin (a b) sin (a b)(sin sin )
由此可得斜入射时的光栅方程为
(a b)(sin sin ) k k 0, 1, 2
一、光栅衍射基本原理
1. 光栅衍射
1.1 基本概念
• 光栅—大量等宽等间距的平行狭缝(或反射面) 构成的光学元件。
• 种类:
透射光栅 d
反射光栅 d
• 光栅常数
a是透光(或反光)部分的宽度
b是不透光(或不反光)部分的宽度
d=a+b
光栅常量
光栅衍射
1.2 光栅的衍射图样
光栅衍射演示
• 光栅衍射实验装置图:
1 I / I0 相对光强曲线
0.017 0.047
0.047 0.017
-2( /a) -( /a) 0 /a 2( /a) sin
光栅衍射
透镜
θ
λ
a d
θ
θ
f
衍射光相干叠加
I
衍射的影响: 多缝干涉条纹各级主极大的强度不再相等,而
是受到了衍射的调制。主极大的位置没有变化。
光栅衍射
N 4 , 衍射光强曲线
, , 3
2
4
3
4
2
1
/2
4 1
1
4
2
3
3 /2
d sin m
N
sin 1 , 2 , 3
4d 4d 4d
k 1 , k 2 , k 3
光强曲线
I I0
N=4
-2(/d)
-(/d)
0
/d
-(/4d) /4d
sin
2/d
光栅衍射
光栅衍射的谱线特点:
(1)主级大明纹的位置与缝数N无关,它们对称 地分布在中央明纹的两侧,中央明纹光强最大; (2)在相邻的两个主级大之间,有 N1个极小 (暗纹)和N2=2个光强很小的次极大,当N 很大 时,实际上在相邻的主极大之间形成一片暗区,即 能获得又细又亮暗区很宽的光栅衍射条纹。
• 这里,Cij是与传统等栅距直线刻线相关的 项;
• 而Mij是与变栅距曲线刻线相关的相差修正 项;
• 0是光栅的刻线标称栅距,由于实际的光 栅间距是变化的,为与等栅距光栅的光栅
常数d区别,在此采用0来表示。
Cij和Mij的直接表达式为:
C10 sin - sin
M10 1
C20
1 2
cos2
位置
为
3
3
sin1
(
k
ab
)
sin ( ) 1 3589.3109 2106
627
所以
d3
210
6
3 cos
62
7
(589.3
589.0) 109 rad
1.93109 rad
钠双线分开的线距离
d3 fd3 2 1.93103 m 3.86mm
3. 光栅的分辨本领
光栅的分辨本领是指把波长靠得很 近的两条谱线分辨的清楚的本领。
解(1) 按光栅的分辨本领
R
kN
得
N 491条
5.893107
k 20.006107
即必须有 N 491条
(2) 根据 (a b)sin k
ab
k sin
25.893107 sin 30
m
2.36103 mm
光栅的分辨本领
由于 3,0所 以
a b 2.36103 mm
(3)缺级条件 取 k 1
ab k
a
k
a
ab 3
2.36103 3
m
0.79103 mm
b 2.36103 0.79103 m 1.57 103 mm
这样光栅的 N 、 a 、b 均被确定。
4.干涉和衍射的区别和联系
单缝衍射
双缝衍射中的干涉条纹 I
a=14 d = 56
-8
-4
0
4
8 / (º)
双缝衍射中干涉条纹的强度为单缝衍射图样所影响
---光栅方程
6.掠入射x射线谱仪
• 当光谱进入x射线波段时,由于材料对x射 线光的透射率太低,即吸收太大。因此, 透射式光栅已不适用于x射线波段光谱的测 量;
• 而对于反射式光栅,由于材料对x射线光的 吸收较大,即反射率较低。因此,为了适 应x射线波段光谱的测量的要求,采用了能 够提高反射效率的掠入射方式;
N
暗纹间距= 主极大间距 N
相邻主极大间有N-1个暗纹和N-2个次极大。
光栅衍射
例: N = 4,有三个极小:
d sin m
N sin 1 , 2 , 3
4d 4d 4d
k 1 , k 2 , k 3
d sin 2
, , 3
2
4
光栅衍射
d sin 2
6 107
m
600nm
光栅光谱
例题2 用每毫米刻有500条栅纹的光栅,观察钠 光谱线(= 589.3 nm),问
(1)平行光线垂直入射时; (2)平行光线以入射角30入射时,最多能看见第几级 条纹?总共有多少条条纹? (3)由于钠光谱线实际上是 1=589.0nm 及 =589.6nm 两条谱线的平均波长,求在正入射时最高级条纹此双线 分开的角距离及在屏上分开的线距离。设光栅后透镜的 焦距为2m.
wl 2 F12 w2l 2 F22 w4 F40 l 4 F04 0(w5 )
式中,F10与光栅的色散 有关,F20与光谱方向聚 焦条件有关,F02与象散 性有关,F30与慧型象差 有关,而其它Fij项与高阶 象差有关, 0(w5)是比 w5更高阶的项。
Fij的表示式
Fij Cij [(m) / 0 ] Mij
R
波长为+的第k级主极大的角位置为:
(a b)sin k( )
波长为 的第kN+1级极小的角位置为:
N(a b)sin (kN 1)
R
kN
光栅的分辨本领
例题3 设计一光栅,要求(1)能分辨钠光谱的 5.890×10-7m和5.896×10-7m的第二级谱线;
(2)第二级谱线衍射角 30 ; (3)第三级谱线缺级。
光栅光谱
解 (1)根据光栅方程 (a b) si得n k
k
ab
sin
按题意知,光栅常数为
a
b
1 500
mm
2
106
mHale Waihona Puke 可见 k的可能最大值相应于 sin 1
代入数值得
k
2106 589.3109
3.4
k只能取整数 ,故取k=3,即垂直入射时能看到第 三级条纹。
光栅光谱
(2)如平行光以 角入射时,光程差的计算公式应
解: 设
紫 400nm 4 107 m 红 760nm 7.6 107 m
根据光栅方程 (a b)sin k
对第k级光谱,角位置从 到k紫
光谱,即要求 的第(k+紫1)级纹在
,亦即
k紫 k红
,要k红产生完整的 的第k级红条纹之后
光栅光谱
由
(a b)sink红 k红
(a b)sink1 (k 1)紫
I0单 I单
d 4a
-2
-1
0
1
多光束干涉光强曲线
sin2N/sin2
N2
2 sin (/a)
-8
-4
光栅衍射 光强曲线
-8
-4
0
4
I N2I0单
单缝衍射 轮廓线
0
4
8 sin (/d) 8 sin (/d)
强度公式
I
I
0
sin
2
sin N sin
2
a sin , d sin
一
观察屏
系
光栅 透镜L
列
d
P
又
细
又
亮
N
f
的 明
条
:衍射角
纹
光栅衍射
1.2 光栅的衍射图样
不考虑衍射时, 多缝干涉的光强分布图:
多光束干涉光强曲线
sin2N/sin2
N2
-8
-4
0
4
8 sin (/d)
设光栅的每个缝宽均为a,在夫琅禾费衍射下,每 个缝的衍射图样位置是相重叠的。
单缝夫琅禾费衍射的光路图
• 掠入射方式可以提高反射效率的原理?
平焦场x射线谱仪
• 在传统的掠入射摄谱仪中,由于采用了等 栅距、平行刻线的Rowland凹面光栅,谱 线被聚焦在具有较大象散特性的Rowland 圆的某一部分上。
• 摄谱仪或探测器平面必须被圆形地配置以 便得到较好的成象,这加大了摄谱仪器(如 条纹像机、微通道板等)平面定位和精确调 整的难度。
a= d = 50
-8
-4
0
4
8 /(º)
双缝干涉中干涉条纹的强度受单缝衍射的影响小
5.反射式光栅公式
反射光栅
透射式光栅明纹条件:
d
d sin k (k = 0,1,2,3…)
反射式光栅的明纹条件?
以入射角入射的反射式光栅的明纹条件:
d (sin sin ) k (k = 0,1,2,3…)
光栅衍射
1.3 多光束干涉 明纹条件:
d sin k
缝平面G 透 镜
d
L
观察屏 P