最新河南中考数学公式与知识点总结

合集下载

河南中考数学知识点梳理

河南中考数学知识点梳理

考点四、分式
( 8~10 分)
1、分式的概念
A
一般地,用 A、 B 表示两个整式, A÷ B 就可以表示成
的形式,如果 B 中含有字母,式子
B
式。其中, A 叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。
A
就叫做分
B
2、分式的性质
( 1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
4 二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
x a 是 b 的平方根,当 b 0 时,
xa
b , x a b ,当 b<0 时,方程没有实数根。
2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广
泛的应用。配方法的理论根据是完全平方公式
a 2 2ab b 2 (a b) 2 ,把公式中的 a 看做未知数 x,并用
a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a 0)
a0
2
aa
;注意 a 的双重非负性:
- a ( a <0)
a0
3、立方根
如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 a
考点七、二元一次方程组
( 8~10 分)
1、二元一次方程
含有两个未知数,并且未知项的最高次数是
1 的整式方程叫做二元一次方程,它的一般形式是(
2、二元一次方程的解

(完整版)河南(郑州)中考数学知识点梳理,推荐文档

(完整版)河南(郑州)中考数学知识点梳理,推荐文档
(ab)n anbn (n都是正整数)
(a b)(a b) a 2 b 2
(a b)2 a2 2ab b2
(a b)2 a2 2ab b2
整式的除法: am an amn (m, n都是正整数, a 0)
注意:(1)单项式乘单项式的结果仍然是单项式。 2 单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 3 计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 4 多项式与多项式相乘的展开式中,有同类项的要合并同类项。 5 公式中的字母可以表示数,也可以表示单项式或多项式。
考点五、实数大小的比较 (3 分) 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法 1 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 2 求差比较:设 a、b 是实数,
(6) a 0 1(a 0); a p 1 (a 0, p为正整数) ap
(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多 项式是不能这么计算的。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若
|a|=a,则 a≥0;若|a|=-a,则 a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而
小。
3、倒数
如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。
错误的,应写成 13 a 2b 。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如 5a3b 2c 是 6 次 分) 1、多项式 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项

2023河南数学中考考点归纳

2023河南数学中考考点归纳

2023河南数学中考考点归纳现今的符号使得数学对于人们而言更便于操作,少量的符号包含著大量的讯息,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。

今天小编在这给大家整理了一些河南数学中考考点归纳,我们一起来看看吧!河南数学中考考点归纳一、代数式1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数的项的次数,就是这个多项式的次数。

3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

三、整式的运算1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

数学中考考点归纳一、考点分析考点一、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r点P在⊙O上;d>r点P在⊙O外。

2023河南中考数学考点归纳

2023河南中考数学考点归纳

2023河南中考数学考点归纳即使在专业人士中,对数学的定义也没有达成共识。

数学是否是艺术或科学,甚至没有一致意见。

许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。

今天小编在这给大家整理了一些河南中考数学考点归纳,我们一起来看看吧!河南中考数学考点归纳一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

6.圆锥侧面展开图是一个扇形。

这个扇形的半径称为圆锥的母线。

7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO 是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O 内,PO8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

2024中考数学知识点总结

2024中考数学知识点总结

2024中考数学知识点总结一、数与代数1.完全平方公式和差平方公式完全平方公式:(a+b)² = a² + 2ab + b²差平方公式:(a-b)² = a² - 2ab + b²2.因式分解因式分解是将一个代数式按照一定规律拆分成可以相乘的因子的过程,常见的拆分方式有提公因式、求和差、分组等。

3.分式分式是指一个数除以另一个数,分子和分母分别表示被除数和除数。

常见的分数运算有加减乘除、约分与换分、比较大小等。

4.一元一次方程一元一次方程是形如ax+b=0(a≠0)的方程,常见的解法有等式消元、系数关系法等。

5.一元一次不等式一元一次不等式是形如ax+b>0(a≠0)、ax+b<0(a≠0)的不等式,求解方法和一元一次方程类似。

6.二次根式二次根式就是一个根号里含有二次方程,求解方法有配方法、公式法等。

二、图形与计量1.平面图形的性质平面图形包括:点、线、角、三角形、四边形、圆等。

其性质包括平行线、垂直线、相交线的性质、多边形的性质、圆的性质等。

2.同位角、对顶角和同旁内角同位角:是指两条平行线被一条直线所截所得的两对相邻的内角,它们的度数相等。

对顶角:是指两条直线的交角的内角,它们的度数相等。

同旁内角:是指两条平行线被一条直线所截所得的两对相外侧的内角,它们的度数之和为180°。

3.三角形的性质三角形包括等边三角形、等腰三角形、直角三角形等。

其性质有角平分线的性质、中线的性质等。

4.圆的性质圆的性质包括弧长和圆心角的关系、圆周角的性质等。

5.计量单位的换算包括长度、面积、体积、质量、时间、速度、温度等不同计量单位之间的换算。

三、概率与统计1.事件与概率事件是指在次试验中可能发生也可能不发生的结果,概率是指事件发生的可能性大小。

概率的计算方法有频率法、古典概率法等。

2.排列与组合排列是指从一组事物中选出若干进行安排,组合是指从一组事物中选出若干进行组合。

(完整word版)河南中考数学知识点梳理(良心出品必属精品)

(完整word版)河南中考数学知识点梳理(良心出品必属精品)

河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2023河南中考数学重要考点

2023河南中考数学重要考点

2023河南中考数学重要考点河南中考数学重要考点一.知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

互为相似形的三角形叫做相似三角形2.相似三角形的判定方法:根据相似图形的特征来判断。

(对应边成比例,对应角相等)1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:1.斜边与一条直角边对应成比例的两直角三角形相似。

2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

4.相似三角形的性质:1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方。

本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力。

中考数学重要考点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。

二次函数可以表示为f(x)=ax^2 bxc(a不为0)。

其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2; bx c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x m)∧2 k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下。

河南中考知识点归纳数学

河南中考知识点归纳数学

河南中考知识点归纳数学河南中考数学知识点归纳主要包括以下几个方面:1. 数与代数:- 有理数:包括正数、负数、零的概念,有理数的四则运算。

- 代数式:包括代数式的基本运算,如加、减、乘、除、乘方和开方。

- 整式:包括多项式、单项式的概念,以及它们的加减、乘除法则。

- 分式:分式的基本性质,通分、约分,分式的加减乘除。

- 根式:平方根、立方根的概念,以及根式的化简。

2. 几何:- 平面图形:包括线段、角、三角形、四边形、圆等平面图形的性质和计算。

- 立体图形:立方体、长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。

- 坐标几何:坐标系中点的坐标表示,线段的中点坐标公式,图形的平移和旋转。

3. 统计与概率:- 数据收集与处理:数据的收集方法,数据的整理和描述。

- 统计图表:条形图、折线图、饼图的绘制和解读。

- 概率:事件的概率计算,包括古典概型和几何概型。

4. 函数与方程:- 一次函数:一次函数的表达式、图象和性质。

- 二次函数:二次函数的表达式、图象、顶点、对称轴以及性质。

- 方程与不等式:一元一次方程、一元二次方程的解法,不等式的解法。

5. 空间几何:- 空间图形:空间直线、平面的位置关系,空间多面体和旋转体的性质。

6. 解析几何:- 坐标系:直角坐标系、极坐标系的基本概念。

- 直线方程:直线的斜率、截距,直线的一般式和两点式。

- 圆的方程:圆的标准方程和一般方程。

7. 数学思维与方法:- 归纳推理:从特殊到一般的推理方法。

- 类比推理:通过比较相似性质进行推理。

- 反证法:通过假设结论的否定来证明结论的正确性。

结束语:河南中考数学知识点的归纳不仅要求学生掌握数学的基本概念和运算规则,还要求学生能够运用数学思维解决问题。

通过系统地学习和复习这些知识点,学生可以更好地准备中考,提高解题能力和数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016河南中考数学公式与知识点总结一、数与代数1.数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a 1(a ≠0);②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b ab a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a(2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n 为正整数,m>n ); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0); ⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:c b a c b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±;2.方程与不等式①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =a c ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

正比例函数的性质:设)0(≠=k kx y ,则:①当k>0时,y 随x 的增大而增大;②当k<0时,y 随x 的增大而减小; 反比例函数的图象:函数x k y =(k ≠0)是双曲线; 反比例函数性质:设xk y =(k ≠0),如果k>0,则当x>0时或x<0时,y 分别随x 的增大而减小;如果k<0,则当x>0时或x<0时,y 分别随x 的增大而增大;二次函数的图象:函数)0(2≠++=a c bx ax y 的图象是对称轴平行于y 轴的抛物线;①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下; ②对称轴:直线ab x 2-=; ③顶点坐标()44,22ab ac a b --; ④增减性:当a>0时,如果a b x 2-≤,则y 随x 的增大而减小,如果ab x 2->,则y 随x 的增大而增大;当a<0时,如果ab x 2-≤,则y 随x 的增大而增大,如果a b x 2->,则y 随x 的增大而减小; 二、空间与图形1.图形的认识(1)角角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

(2)相交线与平行线同角或等角的补角相等,同角或等角的余角相等;对顶角的性质:对顶角相等垂线的性质:①过一点有且只有一条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;平行线的定义:在同一平面内不相交的两条直线叫做平行线;平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;平行线的特征:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;平行公理:经过直线外一点有且只有一条直线平行于已知直线。

(3)三角形三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和定理:三角形的三个内角的和等于180;三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);三角形的三边的垂直平分线交于一点(外心);三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;全等三角形的判定:①边角边公理(SAS)②角边角公理(ASA)③角角边定理(AAS)④边边边公理(SSS)⑤斜边、直角边公理(HL)等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)等腰三角形的判定:有两个角相等的三角形是等腰三角形;直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中︒30角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a 、b 、c 有下面关系222c b a =+,那么这个三角形是直角三角形(勾股定理的逆定理)。

(4)四边形多边形的内角和定理:n 边形的内角和等于︒⋅-180)2(n (n ≥3,n 是正整数); 平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

矩形的性质:(除具有平行四边形所有性质外)①矩形的四个角都是直角;②矩形的对角线相等;矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;菱形的特征:(除具有平行四边形所有性质外①菱形的四边相等;②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;菱形的判定:四边相等的四边形是菱形;正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

等腰梯形的特征:①等腰梯形同一底边上的两个内角相等②等腰梯形的两条对角线相等。

等腰梯形的判定:①同一底边上的两个内角相等的梯形是等腰梯形;②两条对角线相等的梯形是等腰梯形。

平面图形的镶嵌:任意一个三角形、四边形或正六边形可以镶嵌平面;(5)圆点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d):①点P在圆上,则d=r,反之也成立;②点P在圆内,则d<r,反之也成立;③点P在圆外,则d>r,反之也成立;圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;圆的确定:不在一直线上的三个点确定一个圆;垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;平行弦夹等弧:圆的两条平行弦所夹的弧相等;圆心角定理:圆心角的度数等于它所对弧的度数;圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;圆周角定理:圆周角的度数等于它所对的弧的度数的一半;90的圆周角所对的弦圆周角定理的推论:直径所对的圆周角是直角,反过来,是直径;切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线; 切线的性质定理:圆的切线垂直于过切点的半径;切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角; 弧长计算公式:180R n l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) 扇形面积:2360R n S π=扇形或lR S 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长)弓形面积∆±=S S S 扇形弓形(6)尺规作图(基本作图、利用基本图形作三角形和圆)作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线的垂线;(7)视图与投影画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图); 基本几何体的展开图(除球外)、根据展开图判断和设别立体模型;2.图形与变换图形的轴对称轴对称的基本性质:对应点所连的线段被对称轴平分;等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;图形的平移图形平移的基本性质:对应点的连线平行且相等;图形的旋转图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形; 图形的相似 比例的基本性质:如果d c b a =,则bc ad =,如果bc ad =,则)0,0(≠≠=d b dc b a 相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方; 相似多边形的性质:①相似多边形的对应角相等;②相似多边形的对应边成比例;③相似多边形的面积之比等于相似比的平方;图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;Rt △ABC 中,∠C=︒90,SinA=斜边的对边A ∠,cosA=斜边的邻边A ∠, tanA=的邻边的对边A A ∠∠, CotA=的对边的邻边A A ∠∠ 特殊角的三角函数值:三、概率与统计1.统计数据收集方法、数据的表示方法(统计表和扇形统计图、折线统计图、条形统计图)(1)总体与样本所要考察对象的全体叫做总体,其中每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体数目叫做样本的容量。

相关文档
最新文档