PAN基碳纤维综述

合集下载

聚丙烯腈基碳纤维

聚丙烯腈基碳纤维
Page 6
聚丙烯腈(PAN)基碳纤维的性能
PAN基碳纤维的炭化收率 比粘胶纤维高,可达45% 以上,而且因为生产流程, 溶剂回收,三废处理等方 面都比粘胶纤维简单,成 本低,原料来源丰富,加 上聚丙烯腈基碳纤维的力 学性能,尤其是抗拉强度, 抗拉模量等为三种碳纤维 之首。
Page 7
聚丙烯腈(PAN)基碳纤维制ห้องสมุดไป่ตู้工艺
Page 5
聚丙烯腈(PAN)基碳纤维的发展历程
1959年 美国UCC公司生产低模量黏胶基碳纤维 “T hornel—25”,日本大阪工业试验所的进藤昭男 发明了PAN基碳纤维 1971年 日本东丽公司工业规模生产PAN基碳纤维 (1吨/月),碳纤维的牌号为T300,石墨纤维为M40 1973年 日本东邦人造丝公司开始生产PAN基碳纤 维(0.5吨 /月) 日本东丽公司扩产5吨/月 1981年 台湾台塑设立碳纤研究中心,日本三菱人 造丝公司与美国Hitco公司进行技术合作 1984年 台湾台塑与美国Hitco公司进行技术合作, 日本东丽公司研制成功高强中模碳纤维T800 1986年 日本东丽公司研制成功高强中模碳纤维 T1000
聚丙烯腈基碳纤维
碳纤维简介
聚丙烯腈(PAN)基碳纤维的发展历程
聚丙烯腈(PAN)基碳纤维的性能 聚丙烯腈(PAN)基碳纤维的制备工艺
Page 2
碳纤维简介
碳纤维(Carbon Fibre)是 纤维状的碳材料,及其化 学组成中碳元素占总质量 的90%以上。 人造纤维,如粘胶丝,人 造棉,木质素纤维等 合成纤维,是从石油等自 然资源中提纯出来的原料, 再经过处理后纺成丝的, 沥青纤维,聚丙烯腈(PAN) 纤维等。
Page 8
预氧化和炭化过程生产线示意图

碳纤维综述

碳纤维综述

PAN基碳纤维摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

本文简要介绍了其结构,制备方法,性能,应用领域及其前景。

关键词:PAN基碳纤维碳纤维结构 PAN基碳纤维制备 PAN基碳纤维性能PAN基碳纤维应用前景航天军事体育用品1.碳纤维结构碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。

碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。

碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。

2.PAN基碳纤维的制备从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN的聚合,原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。

2.1 PAN的聚合由于PAN分子结构的特性,纯聚体PAN不适宜作为碳纤维前驱体。

工业生产中,往往采用共聚PAN来制备PAN原丝。

引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。

但也可能带来一些负作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。

2.2 原丝的制备PAN在熔点(317°C)以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。

干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内部的缺陷减少、致密性提高。

干湿法纺丝还具有高倍的喷丝头拉伸(3~10mm的空气层是有效拉伸区),纺丝速度高(为湿法纺丝的5~10倍),容易得到高强度、高取向度的纤维等特点,从而保证了碳纤维有足够的强度,是当前碳纤维原丝生产的发展方向。

碳纤维综述

碳纤维综述

碳纤维综述碳纤维指在化学组成中碳元素质量分数在 90%以上的纤维材料,是20世纪60年代开发成功的一种耐高温、耐腐蚀、热膨胀系数小、尺寸稳定性好、高强度、高模量新型碳材料。

碳纤维可采用聚丙烯腈纤维(PAN 纤维)、沥青纤维、粘胶纤维或木质素纤维等经过氧化、低温碳化、高温碳化而制成。

广泛应用于航空航天、体育休闲用品和一般工业领域。

碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用。

碳纤维是上世纪 60 年代兴起的一种新型高性能材料,它具有很多优点,是一种理想的功能材料和结构材料。

起初是为宇航工业和军用飞机的需要发展起来的,但是如今己经广泛应用于商业、民用航空、文体、工业以及运输等领域,具有广阔的应用前景。

高性能碳纤维复合材料的开发应用,进一步促进了碳纤维工业的发展[1]。

[2]二:碳纤维的分类碳纤维一般按原料不同、性能、用途来进行分类。

具体分类如下:(1)碳纤维纸根据其原料不同分为:聚丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维三种。

(2)碳纤维按性能可分为:高性能碳纤维和低性能碳纤维。

其中高性能碳纤维有分为高强度碳纤维、高模量碳纤维、中模量碳纤维等类型。

低性能碳纤维分为耐火碳纤维、石墨碳纤维等类型。

(3)按用途不同分为五个等级:高模量(模量>500GPa)、高强度(强度>3GPa)、中模量(模量100~500GPa)、低模量(模量100~200GPa)、普通用途(模量<100GPa ,强度<1 GPa)[3]。

三:碳纤维的性能碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料。

碳纤维具有一些非常优异的特性:抗拉强度高,可高达3000~4000MPa,比钢高4倍,比铝高6一7倍;弹性模量高,可高达600GPa;密度小、比强度高,碳纤维的密度是钢的1/4,是铝的1/2,比强度比钢大16倍,比铝合金大12倍。

此外,还有耐高低温性能好,当温度高于400℃时,才出现明显的氧化,生成Co和Co2 ; 在非氧化气氛中,可在2000℃使用,即使在3000℃也不熔、不软;在-180℃下,钢铁都变得比玻璃脆,而碳纤维依旧很柔软; 耐腐蚀性强,能耐浓盐酸、硫酸、磷酸、苯、丙酮等,将碳纤维放在浓度为50%的盐酸、硫酸和磷酸中,200天后其弹性模量、强度和直径基本没有变化,其耐腐蚀性比黄金还好;热膨胀系数小、摩擦系数小和导热系数大,可以耐急冷急热,即使从3000℃降到室温也不会炸裂;导电性能好,电阻率为10-2 ~ 10-4Ω.cm;与其它材料相容性高、与生物的相容性好;又兼备纺织纤维的柔软,可加工性,设计自由度大,可进行多种设计,以满足不同产品的性能与要求。

PAN基高模量碳纤维

PAN基高模量碳纤维
0 7 和MJ 列 ( .%) 系 以MJ 列 产 品AN基高 P N A 基高模量 碳纤维制备 惰性 更高 , 模量 碳 纤维 生产 中必 不可 少 的工序 ,
而且, 其处 理难 度要 高于 高强 度碳 纤
工艺与设备
1P N . A 基高模量碳纤维制备 工艺
PAN基 高模 量碳 纤 维 的制备 工 艺 包 括 丙烯 腈 ( AN) 合 、 丝 、 聚 纺 氧 化 、 化 、 墨 化 、 面 处 理 与上 胶 。 碳 石 表
与高 强度碳 纤 维制备 工艺 流程 相 比 ,
代表 , 如M6 J 0 的抗拉模量 为 5 8 8 GPa 、 抗拉 强度为 3 9 GP 、 .2 a 断裂伸 长率 为
维 , I 0 MJ 列。 于 高 模 量 碳  ̄ M4 、 系 I 关
始 规模 生 产M4 碳 纤 维 , 0 至今 已近 4 年 , 产 品一直 以来 占据 着我 国应 0 其
用市 场 , 这表 明国产PAN基 高模量碳 纤维 的潜 在应 用市 场很 大 。 这对 于 刚
的可 设计 性 范 围 变 窄。 从AN聚 合 而 开 始 的 工 艺 路线 , 工 艺 流程 长 、 其 可
基 和 中 间相 沥 青 ( MPP 基 。 ) PAN基
而 增 NPAN基高 模量 碳 纤维 结 构与
性 能的 可设计 性 。
纤维 长足 发展 的关键所在 。
需要说 明的是 , 由于PAN基 高模
量碳 纤 维 的热处 理温 度高 , 维表 面 纤
高 模量 碳 纤 维 又 分 为M系 列 ( 以M4 0 产 品为代表 , 抗拉模 量为 3 2 其 9 GPa 、 抗拉 强度为 2 7 GPa 断裂伸 长率 为 .4 、

聚丙烯腈(PAN)基碳纤维复合材料

聚丙烯腈(PAN)基碳纤维复合材料
聚丙烯腈基(PAN)碳纤维复合材料
班级:1013241 姓名:董鸿文
学号:101324108
材料化学课程论文
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等 人造纤维戒合成纤维为原料,经预氧化、碳化、石墨化等过 程制得含碳量达90%以上的无机纤维材料。
1 2
3
沥青基
粘胶基
聚丙烯腈基(PAN)
PAN链的无规则螺旋结构
PAN纤维→预氧化→碳化→石墨化→PAN基碳纤维
PAN碳纤维原丝微观图
【1】PAN碳纤维原丝截面图
【2】PAN纤维截面SEM照
【3】PAN碳纤维表面结构
PAN碳纤维复合材料的应用
1.航空航天:航天飞机、运载 火箭、导弹卫星、民用商业飞 机
2.体育休闲:球杆球拍、箭弓、 鱼竿、自行车
参考文献
[1]徐樑华:高性能PNA基碳纤维国产化进展及发展趋势[J].中国材料进展, 2012,31(10):7-13 [2]陈利,孙颖,马明:高性能纤维域成形体的研究[J].中国材料进展,2012, 31(10):21-29 [3]韩克清,严斌,余木火:碳纤维及其复合材料高效低成本制备技术进展[J].中 国材料进展,2012,31(10):30-35 [4]郭敏怡:我国高性能碳纤维产业发展现状不展望[M].军民两用技术不产品, 2012,2:53-58 [5]郑宁来:中国航天公司研制成功碳纤维新产品[J].合成纤维,2011,40 (7):14-15 [6]贺福:研制高性能碳纤维已是当务之急[J].高科技纤维不应用,2010,35(1): 14-18 [7]钱伯章:国内外碳纤维应用领域、市场需求以及碳纤维产能的进展[J].高科技 纤维不应用,2010,35(2):29-33 [8]赵稼祥:世界PAN基碳纤维的生产不需求以及对发展我国碳纤维的启示[J].新 材料产业,2010,9:25-31

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维1.引言1.1 概述在概述部分,我们将介绍沥青基碳纤维和PAN碳纤维的基本概念和背景信息。

沥青基碳纤维和PAN碳纤维都是目前广泛应用于不同领域的高性能纤维材料。

沥青基碳纤维是以改性沥青为基材,在高温条件下碳化得到的连续纤维。

它具有较高的热稳定性、力学性能和疲劳性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。

沥青基碳纤维的制备方法主要包括沥青改性、纺丝、碳化等工艺步骤。

PAN碳纤维是以聚丙烯腈(PAN)为主要原料制备得到的连续纤维。

它具有高强度、高模量和优异的特性,被广泛应用于航空航天、船舶、运动器材等领域。

PAN碳纤维的制备方法主要包括聚合纺丝、胶纺丝、气相重聚和高温碳化等工艺步骤。

本文将重点介绍沥青基碳纤维和PAN碳纤维的特性和制备方法,并探讨它们在不同领域的应用。

通过对比分析两种碳纤维的特点,我们可以更好地理解它们的适用范围和优势。

此外,我们也将展望沥青基碳纤维和PAN碳纤维在未来的发展方向,以期为相关领域的研究和应用提供参考和指导。

在接下来的章节中,我们将详细介绍沥青基碳纤维和PAN碳纤维的特性、制备方法和应用领域。

通过全面的研究和讨论,我们可以为碳纤维材料的发展和应用提供更深入的了解和见解。

1.2文章结构文章结构部分的内容可以写成以下形式:1.2 文章结构本文将以两个主要部分来探讨沥青基碳纤维和PAN碳纤维。

首先,我们将详细介绍沥青基碳纤维,包括其特性和制备方法。

接着,我们将探讨沥青基碳纤维在不同领域的应用。

其次,我们将转向PAN碳纤维,同样介绍其特性和制备方法,并讨论其应用领域。

最后,我们将通过对沥青基碳纤维和PAN碳纤维进行比较,总结两者的差异和优势。

此外,我们还将展望未来发展方向,探讨这两种碳纤维在新兴领域中的应用前景。

通过本文的阅读,读者将可以深入了解沥青基碳纤维和PAN碳纤维的特性、制备方法及其在不同领域的应用,为碳纤维领域的研究和开发提供有价值的参考。

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。

生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。

本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。

关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。

碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。

碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。

一、碳纤维及其发展史1.1碳纤维的先驱——斯旺和爱迪生碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。

十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。

爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。

1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。

指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。

聚丙烯腈(PAN)基碳纤维复合材料

聚丙烯腈(PAN)基碳纤维复合材料
生产工艺改进
针对PAN基碳纤维复合材料生产过程中存在的能耗高、污染重等问题 ,研究者们不断改进生产工艺,提高生产效率和环保性。
未来发展趋势预测与挑战分析
高性能化
未来PAN基碳纤维复合材料将继续向高性能化方向发展, 以满足高端应用领域对材料性能的更高要求。
绿色环保
随着环保意识的提高,PAN基碳纤维复合材料的绿色生产 将成为未来发展的重要趋势,包括采用环保原料、优化生 产工艺等。
耐疲劳性
碳纤维复合材料具有良好 的耐疲劳性能,能够承受 长期的交变载荷作用。
热稳定性及耐候性评估
热稳定性
PAN基碳纤维在高温下能 够保持较好的稳定性,不 易发生热分解或氧化反应 。
耐候性
碳纤维复合材料具有良好 的耐候性能,能够抵抗紫 外线、酸雨等自然环境的 侵蚀。
耐腐蚀性
由于碳纤维的化学稳定性 较高,因此它对于多种化 学物质都具有良好的耐腐 蚀性。
汽车工业领域应用
轻量化
碳纤维复合材料具有密度小、比 强度高、比模量高等优点,是实 现汽车轻量化的理想材料,可用
于车身、底盘等结构件。
安全性
碳纤维复合材料在碰撞时能够吸收 大量能量,提高汽车的安全性。
舒适性
碳纤维复合材料具有良好的阻尼性 能,能够降低汽车行驶过程中的振 动和噪音,提高乘坐舒适性。
体育器材领域应用
聚丙烯腈(PAN)基碳纤维复合 材料的制备工艺主要包括原丝 制备、预氧化、碳化、石墨化 等步骤,通过控制工艺参数可 以得到不同性能的复合材料。
聚丙烯腈(PAN)基碳纤维复合 材料在航空航天、汽车、体育 器材、建筑等领域具有广泛的 应用前景,如飞机结构件、汽 车轻量化部件、高性能运动器 材等。
02
CATALOGUE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PAN基碳纤维综述
专业纺织工程学号 0843093070
学生林华萍指导老师傅师申
摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

本综述简要介绍了其结构,制备方法,性能,应用领域及前景。

关键词:PAN基碳纤维,制备,结构,性能,应用,前景
1碳纤维结构
碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。

碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98-99%,杂质少。

碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。

2PAN基碳纤维的制备
图1
从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN
的聚合,原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。

2.1 PAN的聚合
由于PAN分子结构的特性,纯聚体PAN不适宜作为碳纤维前驱体。

工业生产中,往往采用
共聚PAN来制备PAN原丝。

引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。

但也可能带来一些副作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。

2.2 原丝的制备
PAN在熔点(317°C)以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。

干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内部的缺陷减少、致密性提高。

干湿法纺丝还具有高倍的喷丝头拉伸(3-10mm的空气层是有效拉伸区),纺丝速度高(为湿法纺丝的5-10倍),容易得到高强度、高取向度的纤维等特点,从而保证了碳纤维有足够的强度,是当前碳纤维原丝生产的发展方向。

2.3 原丝的预氧化
预氧化过程中原丝的颜色由白色向黄、棕、黑过渡,主要发生的反应为脱氢、环化及氧化反应,其中环化反应是预氧化过程中最关键的一步。

环化反应:PAN热处理时,分子间相邻氰基的加成反应,形成稳定性较高的梯形结构。

脱氢反应:为环化的聚合物或环化的杂环均可由于氧的作用发生脱氢反应,产生大量的水。

脱氢反应是预氧化过程中主要反应之一,其结果导致主链上双键的形成,赋予主链更高的稳定性,使预氧化丝具有耐燃性。

氧化反应:预氧化开始时,氧化脱氢为氧化反应的主要部分。

除此之外,氧同时还直接与预氧化丝结合,主要生成羟基、羰基、羧基等。

若PAN原纤被充分预氧化,在预氧化丝中的含氧量甚至课高达16-23%。

影响PAN原丝预氧化的因素只要有:纤维的张力,热处理温度和介质的影响。

2.4 预氧化丝的碳化及石墨化
为避免高温下碳的氧化,碳化必须在惰性气氛的保护下进行。

通常采用N
2、Ar
2
或其他非氧
化性介质如HCl等气体。

碳化是纤维仍会发生物理收缩和化学收缩,因此要对纤维施加张力进行拉伸以得到优质碳纤维。

碳化阶段以多段式的升温速率进行。

低于600°C的温区,需低升温速率,升温速率需严格控制在小于5℃/min的范围内。

因为这一温区包含大部分的化学反应及挥发性物质的逸出,提高升温速率的话,纤维表面会形成气孔或不规则的形态。

600℃以上的温区,可以以较快的升温速率进行,此加热段仍有挥发性产物的逸出,同时形成分子链聚合物之间的交联。

经600℃左右的低温碳化处理后,碳纤维的强度为1.5-2.0GPa,模量约120GPa。

从900℃升温到1350℃,可制取强度为3-4GPa,模量约220GPa的碳纤维;升温到1500℃,可制取强度为4-5GPa,模量约
240GPa的碳纤维;升温到1800℃,可制取强度为4GPa,模量约280GPa的碳纤维。

为了得到更高模量的碳纤维,将碳纤维放入2500-3000℃的高温下进行石墨化处理,可以得到碳含量在99%以上的碳纤维。

由此可见,通过不同的热处理工艺,可以获得高强型、高模型或强度与模量相匹配的碳纤维。

3性能
碳纤维的化学性能与碳十分相似,在空气中当温度高于400℃时即发生明显的氧化,氧化产、CO在纤维表面三十,所以其在空气的中的使用温度不能太高,一般在360℃以下,但在物CO
2
隔绝氧的情况下,使用温度可大大提高到1500-2000℃,而且温度越高,纤维强度越大。

碳纤维的径向强度不如轴向强度,因而碳纤维忌径向强力(即不能打结)。

碳纤维有通用型(GP)、高强型(HT)、高模型(HM)、高强高模(HP)等多种规格。

碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软;④耐磨、耐疲劳、减震吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性强、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热,高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波隐蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低;⑨生物相容性好,生理适应性强。

4应用前景
碳纤维复合材料是为满足航空、航天等军事部门的需要而发展起来的新型材料,但因一般工业部门对产品的质量和可靠性要求不及上述部门严格,故开发应用的周期较短,推广应用得很快,被广泛应用于各种民用工业领域。

碳纤维除用于高温绝热材料及除电刷子之外,一般并不单独使用,常加入到树脂(以环氧、酚醛为主)、金属或陶瓷、碳、水泥等基体中,构成碳纤维增强复合材料,是一种极为有用的结构材料。

它不仅质轻、耐高温,而且有很高的抗拉强度和弹性模量。

(1)航空航天
碳纤维复合材料具有高比强度、高比刚度(比模量)、耐高温、可设计性强等一系列独特优点,是导弹、运载火箭、人造卫星、宇宙飞船、雷达等结构上不可或缺的战略材料。

航空则以客机、直升机、军用机为主要应用对象。

(2)文体和医疗用品
文体休闲用品是碳纤维复合材料应用的重要领域,高尔夫球杆、网球拍和钓鱼竿是三大支柱产品,其次是自行车、赛车、赛艇、弓箭、滑雪板、撑杆和乐器外壳等。

医疗领域包括医学上用的移植物、缝合线、假肢、人造骨骼、韧带、关节以及X光透视机等。

(3)一般工业
碳纤维复合材料在汽车工业用于汽车骨架、活塞、传动轴、刹车装置等;在能源领域应用于风力发电叶片、新型储能电池、压缩天然气贮罐、采油平台等;碳纤维因其质轻高强和极好的导电性及非磁性而在电子工业中用于制备电子仪器仪表、卫星天线、雷达等;碳纤维增强材料(CFRC)与钢筋混凝土相比,抗张强度与抗弯强度高5到10倍,弯曲韧度和伸长应变能力高20-30倍,重量却只有1/2,已被广泛应用于房屋、桥梁、隧道等基础设施的混凝土结构增强工程中。

参考文献
[1]Singleton M. Allometric and metameric shape variation in Pan mandibular molars: a digital morphometric analysis,Anatomical Record (Hoboken, N.J.: 2007) 294(2):322-34, 2011 Feb
294(2):322-34, 2011 Feb.
[2]百度文库. 碳纤维结构.
[3]陈蓉蓉,王莘蔚.聚丙烯晴基(PAN)碳纤维的性能、应用及相关标准.中国纤检2010,6(75)
[4]顾迎春.高性能纤维课件
2011-5-31。

相关文档
最新文档