碳纤维和碳纳米管的一篇综述

合集下载

碳纳米管的特性及其高性能的复合材料综述

碳纳米管的特性及其高性能的复合材料综述

碳纳米管的特性及其高性能的复合材料综述摘要作为一种具有较强力学性能的材料,碳纳米管自诞生以来就受到了广泛关注,并且从以往的实践经验上来看,碳纳米管是非常理想的制备符合材料的形式。

在本文的研究当中,主要立足于这一领域进行分析,提出了碳纳米管本身所具备的特性,以及这种材料在实践过程当中的优越性,进而提出应用策略,希望能够在一定程度上起到借鉴作用。

关键词碳纳米管;复合材料;复合镀迄今为止,碳纳米管材料已经在诸多领域当中得以运用,并且取得了比较显著的成果,其中包括电极材料、符合材料、催化剂载体等诸多方面。

在应用过程当中,碳纳米管的优异性能能够使其在符合材料当中起到较强的作用。

本文研究的侧重点在于碳纳米管的制备和复合材料的应用方面,提出了碳纳米管的特性及其高性能的复合材料。

1 碳纳米管的结构及其性能从结构上来看,碳纳米管具有石墨层状的结构,其中包括单壁碳纳米管和多壁碳纳米管。

组成纳米碳管的C-C共价键是自然界当中具有稳定特征的化学键,无论在理论计算还是实践当中,都能够看出来,碳纳米管具有非常强的韧性。

在制备过程当中,碳纳米管主要涉及的电弧放电、催化热解和激光蒸发等。

具体来讲,在电弧放电当中,主要制备单壁碳纳米管,但是其中具有一定的弊端,比如产率非常低,但是成本却很高;而催化热解法当中所表现出来的是设备简单和生长速度较快等特点,一般在现代工程的批量化生产过程当中,会用到这种方法。

在当前应用领域,高强度的微米级碳纤维复合材料有着非常广阔的应用前景和较好的应用效果。

但是当前我国在这一领域所取得的进展依旧比较滞后,要想在强度上取得新的突破,必须要有效减少碳纤维的直径,提高纵横比。

碳纳米管是比较典型的纳米材料,纵横比非常可观。

更为重要的是,从长度上来讲,纳米管对于复合材料的加工性能并没有非常明显的不良影响,使用这一材料能够有效聚合复合材料,改变传统加工当中的一些问题,增强复合材料的导电性能。

再加上纳米管当中所具备的结构优势,使得聚合物电导率提升的同时也不容易被改变性能[1]。

碳纳米管及碳纤维增强环氧树脂复合材料研究进展_邱军

碳纳米管及碳纤维增强环氧树脂复合材料研究进展_邱军

收稿:2011-04-25;修回:2011-07-18;基金项目:国家高技术研究发展计划(863计划)项目(2009A A03Z528);作者简介:邱军,男,工学博士,教授,博士研究生导师,研究方向为高性能聚合物基复合材料;E -mail :qiujun @tong ji .edu .cn .碳纳米管及碳纤维增强环氧树脂复合材料研究进展邱 军,陈典兵(同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804) 摘要:碳纳米管与碳纤维具有优异的力学、电学等性能,广泛用做复合材料增强体,但目前碳纳米管/碳纤维/环氧树脂复合材料的研究具有一定的局限性,只考虑了两相材料间的作用,即仅对单一相进行处理而忽略了另一相的改性。

本文从碳纳米管/碳纤维协同增强环氧树脂基体复合材料的思路入手,结合自己的研究成果,综述了国内外相关研究进展。

从研究结果可以看出,将三相材料之间完全有效地联系起来,发挥三者间的协同效应,复合材料的性能可以发生质的飞跃。

关键词:碳纳米管;碳纤维;环氧树脂;三相复合材料引言日本科学家Iijim a [1]在1991年首次发现碳纳米管(CN Ts )。

碳纳米管具有着优异的力学、电性能和热性能,抗拉强度达到200GPa ,弹性模量可达1TPa ,并且具有低密度、高长径比等结构特点,因此成为聚合物复合材料的理想增强材料。

碳纤维(CF )具有十分优异的力学性能,同时耐高温、耐腐蚀、耐摩擦、抗疲劳、低热膨胀系数、导电导性、电磁屏蔽性优良等。

碳纤维复合材料同样具有其它复合材料无法比拟的优良性能,广泛应用于航空航天、汽车、电子电气等领域[2]。

环氧树脂(EP )是一种高性能复合材料基体,具有优良的机械性能、绝缘性能、耐腐蚀性能、黏接性能和低收缩性能。

当前以环氧树脂为基体的高性能复合材料应用广泛,碳纳米管/环氧树脂复合材料和碳纤维/环氧树脂复合材料凸显了优异的力学和综合性能,那么如何再进一步提高这两类复合材料的性能呢?本文在简要综述碳纳米管和碳纤维对环氧树脂复合材料性能改善的前提下,进一步综述了碳纳米管/碳纤维/环氧树脂三相复合材料的研究进展,并对其可能的发展进行了预测。

碳纤维表面生长碳纳米管技术研究进展

碳纤维表面生长碳纳米管技术研究进展

热性能和力学性能 引起 了人们 的广泛关 注。C NT s 具有高达
2 0 0 G P a的超 高强度和 1 T P a的超高模量 , 使 它成 为提高复 合材料力 学性能 的首 要选择 [ 2 ] 。但 由于 C NT s 存在团 聚、 卷
C NT s 在C F基底 上生长存在 以下问题 : 第一 , C F表面 存 在上浆 剂 , 在沉积温度下上浆剂易氧化 , 影 响催化效率 ; 第 二, 催化 剂容易渗入 C F内部导致催化作用失 效 ; 第 三, 容易 引入其 它含 碳副产 物导 致 C N T s 纯度 降低 】 。因此 , 在生
( C NG C I n s t i t u t e 5 3 , J i n a n 2 5 0 0 3 1 , C h i n a )
Ab s t r a c t : T h e p r e p a r a t i o n me t h o d o f g r o w i n g c a r b o n n no a t u b e s ( C NT s )o n t h e s u r f a c e o f c a r b o n i f b e r s ( C F )wa s i n t r o d u c e d .
Ef fe c t o f d e p o s i t i o n t e mp e r a t u r e ,d e p o s i t i o n t i me a n d c a r b o n s o u r c e g a s o n t h e mo r p h o l o g y a n d s t r u c t u r e o f C NT s wa s r e v i e we d .
碳 纤维表面生长碳 纳米管技术研 究进展

关于碳纳米管的研究报告进展综述

关于碳纳米管的研究报告进展综述

关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。

这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。

之后,人们相继发现并分离出C70、C76、C78、C84等。

1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。

年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。

1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。

1996年,我国科学家实现了碳纳米管的大面积定向生长。

1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。

1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。

2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。

2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。

2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。

而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。

因此对碳纳米管制备工艺的研究具有重要的意义。

目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。

一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。

碳纳米管及碳纳米纤维

碳纳米管及碳纳米纤维

碳纳米管及碳纳米纤维
碳纳米管和碳纳米纤维不是一回事,联系是它们都属于纳米级的碳材料。

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。

近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。

碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴尺寸为微米量级,管子两端基本上都封口)的一维量子材料。

碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。

层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。

并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。

其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。

碳纳米纤维:是指直径为纳米尺度而长度较大的具有一定长径比的线状材料,此外,将纳米颗粒填充到普通纤维中对其进行改性的纤维也称为纳米纤维。

狭义上讲,纳米纤维的直径介于1nm到100nm之间,但广义上讲,纤维直径低于1000nm的纤维均称为纳米纤维。

导电碳纤维 碳纳米管纤维

导电碳纤维 碳纳米管纤维

导电碳纤维碳纳米管纤维导电碳纤维和碳纳米管纤维是两种具有特殊性质的纤维材料,它们在科学研究和工业应用中具有广泛的潜力和重要性。

导电碳纤维是一种具有优异导电性能的纤维材料,而碳纳米管纤维则是由碳纳米管构成的纤维结构。

导电碳纤维由碳纤维和导电添加剂组成,通过特殊的工艺制备而成。

它具有优异的导电性能和机械性能,可以广泛应用于电子、航空航天等领域。

导电碳纤维的导电性能主要由碳纤维中的导电添加剂决定,添加剂的种类和含量对导电性能有着重要影响。

导电碳纤维可以作为导电材料应用于传感器、导电薄膜、导电纤维等领域,广泛用于电子产品和电器设备中。

碳纳米管纤维是由碳纳米管组成的纤维结构,碳纳米管是一种具有特殊结构和性质的纳米材料。

碳纳米管具有优异的导电性能、机械性能和热导性能,具有很高的强度和刚度,同时也具有良好的柔韧性和韧性。

碳纳米管纤维可以通过纺丝、拉伸等工艺制备而成,可以用于制备导电薄膜、导电纤维、导电复合材料等。

碳纳米管纤维在纳米技术、材料科学和工程领域具有重要应用价值。

导电碳纤维和碳纳米管纤维的研究和应用已经取得了很大的进展,但仍然存在一些挑战和问题需要解决。

首先,制备导电碳纤维和碳纳米管纤维的工艺需要进一步优化,提高纤维的导电性能和机械性能。

其次,纤维的成本和规模化生产也是一个重要的问题,需要降低材料的成本并提高生产效率。

此外,导电碳纤维和碳纳米管纤维的应用还需要进一步拓展和研究,以满足不同领域的需求。

总的来说,导电碳纤维和碳纳米管纤维是具有重要应用潜力的纤维材料,它们在电子、航空航天等领域具有广泛的应用前景。

随着科学技术的不断进步和发展,导电碳纤维和碳纳米管纤维的研究和应用将会越来越广泛,为人类社会带来更多的福利和发展机会。

碳纤维化学接枝碳纳米管

碳纤维化学接枝碳纳米管

碳纤维化学接枝碳纳米管碳纤维是一种具有高强度、高模量和低密度的纳米材料,被广泛应用于航空航天、汽车制造、建筑和体育用品等领域。

然而,碳纤维的表面活性羟基较少,对一些化学途径不敏感,使得其与其他材料的复合效果不佳。

为了改善碳纤维的表面活性,一种常用的方法是在碳纤维表面接枝碳纳米管。

碳纳米管是一种具有特殊结构和优异性能的纳米材料,其具有优异的导电、导热和力学性能,因此被广泛应用于能源存储、传感器、催化剂载体等领域。

将碳纳米管与碳纤维复合可以使碳纤维具有更好的导电性和导热性能,同时能够通过碳纳米管的功能化处理,使碳纤维与其他材料的界面粘附性增强,从而提高复合材料的力学性能。

碳纳米管的化学接枝是一种常用的方法,可以通过化学反应将碳纳米管与碳纤维表面的官能团结合,从而实现碳纤维和碳纳米管之间的共价结合。

化学接枝的方法有多种,常用的包括酸碱处理、表面改性剂处理和化学修饰等。

在酸碱处理方法中,可以利用碳纤维表面上的羟基和羧基等官能团与碳纳米管表面上的羟基和羧基发生酯化反应,从而实现碳纤维和碳纳米管的连接。

例如,可以将碳纤维表面浸泡在硫酸和硝酸混合液中,使其表面形成羧基,并将其与碳纳米管表面上的羟基反应,生成酯键连接。

表面改性剂处理方法是通过在碳纤维和碳纳米管表面引入相互吸附的表面改性剂,在改性剂的作用下,碳纤维和碳纳米管之间形成物理吸附力,从而实现二者的连接。

例如,可以在碳纤维和碳纳米管表面引入季铵盐类表面改性剂,通过静电作用使碳纤维和碳纳米管之间相互吸附。

化学修饰方法是通过在碳纤维和碳纳米管表面引入活性官能团,使其与碳纤维和碳纳米管表面上的官能团发生化学反应,从而实现碳纤维和碳纳米管的共价连接。

例如,可以在碳纤维表面引入双极性功能化剂,使其与碳纳米管表面上的官能团发生亲和反应,并形成共价键连接。

综上所述,碳纤维化学接枝碳纳米管是一种有效的方法,可以改善碳纤维的表面活性,使其与其他材料的复合效果更佳。

通过酸碱处理、表面改性剂处理和化学修饰等多种方法,可以实现碳纤维和碳纳米管的连接,从而得到具有优异性能的复合材料。

浅谈碳纳米管的独特性质及应用

浅谈碳纳米管的独特性质及应用

浅谈碳纳米管的独特性质及应用摘要:碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,自问世以来即引起广泛关注,近年来广泛应用于众多科学研究领域,本文综述了碳纳米管由于其独特性质近年来在复合材料,纳米机械,微电子等方面的应用。

关键词:碳纳米管;独特性质;应用A Brief Study on the Properties and applications of carbon nanotubeAbstract: Carbon nanotube have drawn wide attention due to their unique structures and properties,such as special electric conductivity,mechanical,physical and chemical properties since they were first introduced. This review focuses on the application of carbon nanotube in such as composite materials, nano-machinery, and micro-electronic due to its unique nature in recent years.Keywords: Carbon nanotube;unique properties; application碳纳米管是一种具有独特结构的一维量子材料,由石墨碳原子层卷曲而成,管直径一般为几纳米到几十纳米,管壁厚度仅为几纳米,长度可达数微米。

碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种主要类型。

单壁碳纳米管由单层石墨卷成柱状无缝管而形成,是结构完美的单分子材料;多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成。

单壁碳纳米管根据六边环螺旋方向(螺旋角)的不同可以是金属型碳纳米管,也可以是半导体型碳纳米管,并可以用碳纳米管的螺旋矢量参数(n,m)来表征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethaneWeili Hu, Xiaofan Niu, Ran Zhao, and Qibing PeiCitation: Appl. Phys. Lett. 102, 083303 (2013); doi: 10.1063/1.4794143View online: /10.1063/1.4794143View Table of Contents: /resource/1/APPLAB/v102/i8Published by the American Institute of Physics.Additional information on Appl. Phys. Lett.Journal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsDownloaded 09 Apr 2013 to 210.34.5.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: /about/rights_and_permissionsElastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethaneWeili Hu,1,2Xiaofan Niu,1Ran Zhao,1and Qibing Pei 1,a)1Department of Materials Science and Engineering,Henry Samueli School of Engineering and Applied Science,University of California,Los Angeles,California 90095,USA 2State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Department of Materials Science and Engineering,Donghua University,Shanghai 201620,China(Received 12January 2013;accepted 18February 2013;published online 28February 2013)Highly flexible transparent capacitive sensors have been demonstrated for the detection of deformation and pressure.The elastomeric sensors employ a pair of compliant electrodes comprising silver nanowire networks embedded in the surface layer of polyurethane matrix,and a highly compliant dielectric spacer sandwiched between the electrodes.The capacitance of the sensor sheets increases linearly with strains up to 60%during uniaxial stretching,and linearly with externally applied transverse pressure from 1MPa down to 1kPa.Stretchable sensor arrays consisting of 10Â10pixels have also been fabricated by patterning the composite electrodes into X-Y addressablepassive matrix.VC 2013American Institute of Physics .[/10.1063/1.4794143]Future electronics are expected to be flexible,conforma-ble,and can take various form factors in order to realize aplethora of user-friendly applications such as expandable dis-plays,conformable photovoltaic sheets,and artificial skins.1–4Pressure sensors strategically placed on a flexible synthetic skin working in the pressure range of 1kPa to 1MPa would be able to detect fingertip texture,hand grip,and in-shoe pressures.5Future robots wearing such a flexible pressure-sensitive skin can “feel”a touch or pressure.An electronic skin could also be used for advanced prosthetic limbs or applied as surgical gloves to perform feel-real remote opera-tions.6Being stretchable and able to detect the pressure or de-formation at the same time would allow for feedback control.Patients with prosthetic hand or limbs equipped with such arti-ficial skins could completely regain dexterity and maneuver-ability.In consumer electronics,capacitive touch sensors found on most current smartphones and tablet computers do not differentiate pressure differences.The addition of pressure sensing could make the touch screen more intuitive for users.Replacing the touch screen with an electronic skin would sig-nificantly increase the amount of data input or the “livelihood”in each finger touch via pressure sensitivity.7High visual transparency is required for such applications.In these device applications,stretchable transparent elec-trode is an indispensable element.A variable capacitor using a pair of compliant electrodes sandwiching an elastomeric spacer can detect pressure or deformation in the change of ca-pacitance.8–12The Bao’s group recently reported a skin-like capacitive sensor based on single-walled carbon nanotubes (SWNTs)with detectable pressure of 50kPa and strain up to 50%.13This sensor,though not as sensitive to low pressures as their previously reported microstructured sensors,which could detect pressures generated by a fly weighing about 20mg,is stretchable and transparent.The transparency could expand the application scope,such as touch screens and elec-tronic skins with various options of skin color.Cohen et al.reported elastic strain gauges based on percolation SWNTcoatings.10The high sheet resistance of the SWNT coatings could limit the data speed and active area of these devices.The challenge still remains unresolved in developing an elas-tomeric electrode with low surface resistance and high visual transparency.Several methods have been reported in the literature for the preparation of stretchable electrodes.1,3,14–19However,none has simultaneously achieved high stretchability,high conductivity,high transparency,and a low-cost large-area fabrication.Here,we report the fabrication of a high-performance transparent electrode by embedding an ultrathin silver nanowire (AgNW)network in the surface layer of an elastomeric polyurethane (PU)matrix.The composite elec-trodes retain high surface conductance at tensile strains up to 60%,and can be stretched repeatedly with minimal loss of electrical conductivity under both slow and fast strain rates.High-performance stretchable transparent capacitors can be readily fabricated by sandwiching an acrylic elastomer layer between two AgNW-PU composite electrodes.The resulting variable capacitors can detect pressure and deformation in a wide range of stretching and pressure conditions.The preparation of the elastomeric transparent electro-des started with the formation of a conductive AgNW coat-ing on glass.19AgNWs with an average diameter of 60nm and an average length of 10l m were employed.Its disper-sion obtained from Seashell Technologies was diluted with methanol to a concentration of 2mg/ml,drop-cast on a pre-cleaned glass substrate,dried and annealed on a hotplate for 30min at 190 C to form a conductive AgNW coating.AgNWs in the network are uniformly distributed and ran-domly oriented over the entire coating area as shown in Figure 1(a).For the fabrication of capacitive sensor arrays,patterned AgNW coatings were deposited by spray-coating through a contact mask.The patterned AgNW coatings were annealed under the same condition as the un-patterned AgNW coatings.Urethane liquid rubber compounds (Clear Flex V R95,Smooth-On USA LLC)were mixed,degassed,and then drop-cast over the AgNW coatings on glass substrate.A seconda)Electronic mail:qpei@.0003-6951/2013/102(8)/083303/5/$30.00VC 2013American Institute of Physics 102,083303-1APPLIED PHYSICS LETTERS 102,083303(2013)sheet of glass was pressed onto the liquid coating.An adhe-sive tape with 340l m thickness was used as the spacer between the two sheets of glass to control the thickness of the sandwiched liquid layer.The urethane compounds were then cured at room temperature for 24h.The resulting AgNW-PU composite sheet was peeled off and cut into various sample sizes.The PU monomer deposited on the AgNW coating can infiltrate the pores in the network,but should not disrupt the conductive network.After curing,the resulting composite is a transparent sheet with a thickness of 340l m.The thin AgNW network is embedded in the surface of the PU sheet and imparts the surface with high conductivity.Figure 1(b)shows the SEM image of the conductive surface of the composite electrodes with a sheet resistance of 16X /sq.The AgNW net-work is clearly seen to be buried in the surface of the compo-sites and no voids are left on the composite surface,which implies a complete transfer of the nanowires from the original glass substrate.19The PU liquid monomer and polymer both contain -N(H)-groups,which bond to the nanowire surfaces.20The strong bonding between the PU matrix and the AgNW network plays an important role in the transfer of the nano-wires,and prevents the formation of voids between the nano-wires and the matrix.Figure 1(c)shows the transmittance spectra and photo-graph of AgNW-PU composite electrodes with various sheet resistances.The transmittance,inclusive of the PU substrate,approaches 82.7%at 550nm wavelength when the sheet resistance is 44.7X /sq,79.2%at 24.2X /sq,and 74.6%at 8.0X /sq.These sheet resistance values are almost the same as the original AgNW coatings on glass,which further proves the complete transfer of AgNWs.The values are 1–2orders of magnitude lower than typical SWNT percolation networks,thanks to the ability of silver to fuse at the nanowire intersec-tions.In the composite,the AgNWs on the surface form a con-ductive pathway and interconnect with the embedded AgNWs.In repeated Scotch tape test,the surface resistance remained unchanged,indicative of no nanowires being removed from the composite.The PU employed exhibits rubbery elasticity,and the composite retains this property.The composite sheets could be stretched reversibly up to 170%strain,and the stretched sheets relaxed back fairly rapidly to the original shape when the external load was removed.Changes of the surface resist-ance of the AgNW-PU composites under various tensile strains were measured at room temperature.The normalized resistance (R norm ),defined as the ratio of the instantaneous resistance at a specific tensile strain to the initial resistance at zero strain,is shown in Figure 2(a).The elongation was accompanied by an increase in the surface resistance R.At relatively small strains,the normalized resistance increases somewhat linearly with strain for samples with various initial sheet resistances.As strain is further increased,the R norm rises superlinearly.At 60%strain,the resistance has increased to roughly 5.4,8.0,11.9,14.3,and 20.1times the initial resistance for the films with initial sheet resistance values of 8.0,16.1,24.2,32.0,and 44.7X /sq,respectively.For conductive materials,whose bulk conductivities do not change with stretching,the R norm increases with strain due to geometrical changes during a uniaxial stretching fol-lowing the equation:21R norm ¼ð1þstrain Þ2:(1)As Figure 2(a)inset shows,R norm of the electrode with 8.0X /sq initial sheet resistance follows this equation fairly well until about 20%strain.This observation indicates that during small-strain stretching,the loss of nanowire interconnections is insig-nifiposite sheets with higher sheet resistance tend to exhibit lower stretchability.The relative motion or sliding dur-ing stretching could induce more significant loss ofnanowireFIG.1.(a)SEM image of a AgNW coating on a glass substrate.(b)SEM image of the conductive surface of AgNW-PU composite electrode with the sheet resistance of 16X /sq.(c)Transmittance spectra of AgNW-PU com-posite electrodes with sheet resistance specified.Inset:photographs of the composites with specified sheetresistance.FIG.2.(a)Normalized resistance of the composite electrodes as a function of tensile strain with specified initial sheet resistances.(b)Normalized resistance of the composite electrodes with the initial sheet resistances of 8X /sq during one stretching/releasing cycle at different stretching speeds.interconnections for the thinner AgNW networks,which thus causes larger increase of macroscopic resistance.Figure2(b)shows resistance changes during a full cycle of strain from0%!60%!0%at various strain rates.It can be seen that the sheet resistance of the composite electro-des increases with stretching speed.The resistance shows20.0times increase at the60%peak strain when stretched ata speed of1mm/s.At0.01mm/s,the resistance increase at the same peak strain is5.4times.It is unclear what causes such a strain rate effect.However,the resistance change is fully reversible:it recovers the initial value after being relaxed to0%strain.In practical applications,strain can be encountered at var-ious rates,and electronics should operate under all strain or stress conditions.The stability of the composite electrodes at different strain rates was thus performed.The transient R norm during cyclic stretching at different strain rates are shown in Figure S1.22The peaks of the profiles are the resistance at the strain peak(20%,40%,60%,or80%).Apparently,high stretching speed leads to high transient resistance,however, resistance change is quite reversible.The low resistance at the 0%strain state is retained even after200stretching cycles.Transparent variable capacitive sensors were fabricated by laminating two AgNW-PU composite electrodes,with the conducting surface facing inward,to sandwich a clear acrylic elastomeric dielectric spacer(3M TM VHB TM Tape4905or 3M TM Scotch924ATG Tape).Electrical contacts were made using a conductive copper tape onto each of the pat-terned AgNW lines.Capacitances were measured at1kHz frequency with a1V ac signal.The resulting capacitor is elastomeric and useful for strain and pressure sensing.The strain was applied as a uni-axial elongation using a stretching setup with precise length control.The(transverse)pressure was applied by a vertical load on the surface of the device.For cyclic stretching/ releasing tests,the composite strips were mounted onto a pair of tensile grips in a dynamic mechanical analyzer.The variable capacitor sensor samples had a15Â8mm2overlap-ping area between the opposite electrodes,and the dielectric spacer was0.25mm thick.The capacitance of a parallel plate capacitor is given byC¼e0e r Ad;(2)where e o is the permittivity of free space,e r is the permittivity of the dielectric,A is the overlapping electrode area,and d is the thickness of the spacer.The calculated capacitance of the samples at0%strain is25.84pF.Longitudinal stretching and transverse stress applied both cause an increase in capacitor area and reduction of the dielectric spacer,which in turn increase the capacitance.When the capacitor is stretched,it shrinks in width and thickness due to Poisson’s effect.With the assumption that the elastomers in capacitor are isotropic, its capacitance varies with the strain according to10D C¼aÃe lÃC0;(3) where e l is the longitudinal strain and a is the capacitive gauge factor.The gauge factor has a theoretical value of1 for a pure Poisson deformation,but is generally less than1 in experimental measurements.13,23As shown in Figures3(a)and3(b),the changes in capaci-tance exhibit a linear response to strains up to60%and pres-sure to1MPa.The capacitive gauge factor is0.5over the range of0%to60%strain for the stretchable devices.Varying the stretching speed has no discernible effect on the change of capacitance.The smallest change in capacitance that can be distinguished from instrument noise is$20kPa,which corre-sponds to humanfingertip texture and shape sensing.5 In order to study the stability of the devices,a capacitor was stretched to60%strain or pressed at1MPa and then released,and the process was repeated for10cycles.Figure 3(c)shows the transient capacitance change during the cyclic test.In each stretching cycle,the capacitance increases to1.3 FIG. 3.(a)Change of capacitance D C=C0versus strain.(b)Change of ca-pacitance D C=C0versus pressure.(c) Change in capacitance versus time over 10stretching/releasing cycles with60% stretching strain.(d)Change in capaci-tance versus time over10pressing/releas-ing cycles with1MPa pressure.times its original value and reverses back to the initial num-ber after released to0%strain.Figure3(d)shows a similar plot during cyclic testing under1MPa transverse pressure. The capacitance increase is51%of its original value.The re-versibility during both stretching and compressing tests is high in these cycles.For a typical measurement,a sample had a measured capacitance of25.84pF when unstretched, which increased to33.94pF when stretched to60%,and returned to25.85pF when released to0%strain.Capacitive sensor arrays were also fabricated to emu-late the spatial resolution of natural skin.A highly porous dielectricfilm(3M Scotch924ATG Tape)was used as the dielectric spacer in the variable capacitor arrays to increase sensitivity toward small pressures.The fabrica-tion process is illustrated in Figure4(a).The AgNW-PU composite electrodes were patterned into parallel conduc-tive stripes with1.5mm width and spaced by1mm.Two of such patterned electrodes in perpendicular orientation were used to laminate the porous dielectricfilm.Figures 4(b)and4(c)show photographs of an as-prepared capaci-tor array,which exhibits high optical transparency and mechanicalflexibility.The transmittance of the sheet at 550nm is78%in areas without AgNWs and72%in areas where the perpendicular AgNW lines overlap each other.Figure4(d)shows SEM image of a surface area with the upper half comprising patterned AgNWs.The AgNW pat-terns have a well-defined edge,which is important for the ca-pacitor pixels to have the same base capacitance before any external load is applied.The measured capacitances of pixels varied in the narrow range of9.8to11.5pF,with a mean av-erage of10.60pF.Figure4(e)shows a characteristic response of capaci-tance of a sensor pixel to transverse pressures up to100KPa. The curve is linear with a standard deviation R2of0.995. Therefore,this sensor can meet the application requirement in tactile robotics.5The inset of Figure4(e)shows that the lowest detectable pressure is about1kPa,which corresponds tofingerprint sensing.The crosstalk between adjacent pixels for this10Â10pixel pressure sensor was investigated by applying a pressure of30KPa to one pixel,and measuring the capacitance change of this as well as its neighboring pix-els.As shown in Figure4(f),the change of capacitance of the addressed pixel is at least eight times higher than the neighboring pixels.Overall,theflexible transparent capaci-tive sensors have sufficient spatial resolution for robotic sen-sory skins and touchpanels,and can detect in the pressure range of1kPa to100KPa to sense gentle touch,finger press, andfirm hand grip.The capacitance change described above is caused by geometrical changes of the variable capacitors.In cases where afinger or object touches on the top surface of the sensor which does not cause any geometrical deformation, the capacitance could still change if the fringing electricfield above the sensor is disturbed.For instance,when the contact material is an earthed conducting medium such asfinger or pencil,the capacitance would decrease because the charges are(partially)grounded.This leads to the change of the fringing capacitance directly above the capacitor.11We investigated the change of capacitance of each pixel as a function of the applied uniaxial stretching with or without a delicatefinger touch that did not cause any additional trans-verse deformation.As shown in Figure5(a),the sensor with an initial capacitance of10.76pF exhibits a linearresponse FIG.4.(a)The schematic illustration of the fabrication of a transparent capacitive array comprising an acrylic elastomer layer as the dielectric spacer between two transparent AgNW-PU composite elec-trodes.(b)Photograph of a pressure sen-sor array(10Â10pixels),each pixel being a square area of1.5Â1.5mm2and separated by1mm from each other.(c) Photograph of the sensor array bent at 180 .(d)SEM image of a surface area half of which comprises patterned AgNW-PU electrode.(e)Change of ca-pacitance D C=C0of one pixel with trans-versely applied pressure.(f)Mapping of the measured capacitance changes of pixels in the area where a pressure of 30KPa was applied on the central pixel.to strains up to 60%with a sensitivity (capacitance change divided by applied strain in %)of $0.05pF/%.The gauge factor is 0.5,which is in consistency with the results described above.When the user delicately touches the sur-face of the capacitive arrays,the capacitance dropped to 10.02pF.However,the sensor retains the response linearity with strain and the same gauge factor when it is simultane-ously stretched and touched.In alternative experiments,transverse pressures were applied on the surface of sensor,while it was stretched to various strains.The change of capacitance as a function of the transverse pressure remains linear at various horizontal,independently applied strains,while the sensitivity increases with the horizontal strain as shown in Figure 5(b).The pres-sure sensitivity increased from 0.8pF/100kPa at 0%strain (no horizontal stretching applied)to 1.2pF/100kPa at 60%strain.In conclusion,capacitive sensor sheets have been fabri-cated by employing highly compliant polymer composite elec-trodes and dielectric spacer.The sheets have a relatively simple,solid-state sandwich structure,exhibit good stretch-ability and transparency.The sheets can be stretched up to 60%strain and the corresponding capacitance change can be employed to detect the in-plane deformation.They can also detect transversely applied pressure in the range of 1–100KPa,which covers gentle finger touch,finger press,and firm hand gripping.The capacitive sensors can be operated reliably when they are pressed,bent,or stretched.The sheets can also be used for touch sensing which does not cause any physical de-formation,but disturbs the fringing electric field above the sen-sor.These multifunctionalities of stretch,pressure,and touch sensitivities,as well as the high mechanical compliancy of the sheets should find potential applications in prosthetic limbs,robotics,pressure-sensitive bandages,or touch screens for wearable electronics.The work reported here was supported by the Air Force Office of Scientific Research (FA9550-12-1-0074)and National Science Foundation (ECCS-1028412).Weili Hu thanks the “China Scholarship Council PostgraduateScholarship Program.”SEM was taken at the Scanning Probe Microscopy facility at the Nano and Pico Characterization Laboratory,California NanoSystems Institute,UCLA.1J.A.Rogers,T.Someya,and Y.G.Huang,Science 327,1603(2010).2D.H.Kim,N.S.Lu,R.Ma,Y.S.Kim,R.H.Kim,S.D.Wang,J.Wu,S.M.Won,H.Tao,A.Islam,K.J.Yu,T.I.Kim,R.Chowdhury,M.Ying,L.Z.Xu,M.Li,H.J.Chung,H.Keum,M.McCormick,P.Liu,Y.W.Zhang,F.G.Omenetto,Y.G.Huang,T.Coleman,and J.A.Rogers,Science 333,838(2011).3D.H.Kim and J.A.Rogers,Adv.Mater.20,4887(2008).4J.H.Ahn and J.H.Je,J.Phys.D Appl.Phys.45,103001(2012).5E.Pritchard,M.Mahfouz,B.Evans,S.Eliza,and M.Haider,in The 7th IEEE Conference on Sensors,Lecce,Italy,26-29October 2008,pp.1484–1487.6M.Ying,A.P.Bonifas,N.S.Lu,Y.W.Su,R.Li,H.Y.Cheng,A.Ameen,Y.G.Huang,and J.A.Rogers,Nanotechnology 23,344004(2012).7M.Ramuz,B.C.K.Tee,J.B.H.Tok,and Z.N.Bao,Adv.Mater.24,3223(2012).8T.Yamada,Y.Hayamizu,Y.Yamamoto,Y.Yomogida, A.Izadi-Najafabadi,D.N.Futaba,and K.Hata,Nat.Nanotechnol.6,296(2011).9C.Cochrane,V.Koncar,M.Lewandowski,and C.Dufour,Sensors 7,473(2007).10D.J.Cohen,D.Mitra,K.Peterson,and M.M.Maharbiz,Nano Lett.12,1821(2012).11D.P.J.Cotton,I.M.Graz,and cour,IEEE Sens.J.9,2008(2009).12S.C.B.Mannsfeld,B.C.K.Tee,R.M.Stoltenberg,C.V.H.H.Chen,S.Barman,B.V.O.Muir,A.N.Sokolov,C.Reese,and Z.N.Bao,Nature Mater.9,859(2010).13D.J.Lipomi,M.Vosgueritchian,B.C.K.Tee,S.L.Hellstrom,J.A.Lee,C.H.Fox,and Z.Bao,Nat.Nanotechnol.6,788(2011).14D.H.Kim,N.S.Lu,Y.G.Huang,and J.A.Rogers,MRS Bull.37,226(2012).15T.Akter and W.S.Kim,ACS Appl.Mater.Interfaces 4,1855(2012).16P.Lee,J.Lee,H.Lee,J.Yeo,S.Hong,K.H.Nam,D.Lee,S.S.Lee,and S.H.Ko,Adv.Mater.24,3326(2012).17Z.B.Yu,X.F.Niu,Z.T.Liu,and Q.B.Pei,Adv.Mater.23,3989(2011).18S.Yun,X.F.Niu,Z.B.Yu,W.L.Hu,P.Brochu,and Q.B.Pei,Adv.Mater.24,1321(2012).19W.Hu,X.Niu,L.Li,S.Yun,Z.Yu,and Q.Pei,Nanotechnology 23,344002(2012).20P.Jain and T.Pradeep,Biotechnol.Bioeng.90,59(2005).21N.S.Lu,X.Wang,Z.G.Suo,and J.Vlassak,Appl.Phys.Lett.91,221909(2007).22See supplementary material at /10.1063/1.4794143for the supplementary result of the stability of the composite electrodes at differ-ent strain rates.23Q.Cao and J.A.Rogers,Adv.Mater.21,29(2009).FIG.5.(a)Change in capacitance combined with figure touch versus uniaxial stretching strain.Inset illustrates how the two external operations are applied independ-ently.(b)Change in capacitance versus independently applied transverse pressure and uniaxial elongation.Inset illustrates how the transverse pressure and uniax-ial stretching are applied independently.。

相关文档
最新文档