热工流体基础简答题参考解读

热工流体基础简答题参考解读
热工流体基础简答题参考解读

热工流体基础复习题(18学时)

时间仓促,可能有不对的地方,请谅解,希望对大家有帮助。

一、简答题部分

1、需要几个参数才能确定汽轮机或锅炉中水蒸气的状态?

答:需要两个独立的状态参数才能确定汽轮机或锅炉中水蒸气的状态。

2、二回路中水蒸气总能量由几部分构成?

答:由内部储存能(包括化学能,核能,热力学能),外部储存能(宏观动能,宏观位能)

3、造成系统熵变的原因有哪些?

答:系统与外界进行的热量交换,系统与外界进行的质量交换与系统内的不可逆过程

4、可逆过程的功和热量如何计算?功和热量有什么异同点?如何理解功转变为热是无条件的而热转变为功是有限度的?

答:w u q +?=,热量?=2

1Tds q ,功?=2

1pdv w ;功和热量都是过程量,都是通过边界传递的能量,但功是与宏观整体运动形态相关的能量,其推动力是压力差,其标志是比体积的变化,热量是与杂乱的微粒运动相联系的能量,起推动力是温度差,其标志是比熵变化;功是与宏观整体运动形态相关的能量,其能量品质高,可以无条件全部转为热量,热量是与杂乱的微粒运动相联系的能量,其能量品质低,转为功是有限度的;

5、什么是卡诺循环?卡诺循环给我们什么样的启示?什么是卡诺定理?为什么今天我们还要讨论卡诺循环、卡诺定理?

答:卡诺循环由等温膨胀, 绝热膨胀,等温压缩,绝热压缩组成,最后工质返回初态;给我们的启示:1卡诺循环热效率取决于热源、冷源温度,最高不超过(1-Tc/Th);2热机的效率永小于1;3当Tc=Th 时,效率为0,单一热源的动力装置不存在;卡诺定理:在两个不同温度的恒温热源之间工作的所有热机中,以可逆热机的效率为最高;卡诺循环指出了热效率的极限,并给出了提高热效率的方法

6、热力学第一定律的实质是什么?请举核工程和生活中各2例说明。

答:热力学第一定律实质是能量守恒与转换定律在热现象中的应用,蒸汽发生器中冷却剂的热能转换成二回路工质的热能,汽轮机中工质的热能转换成汽轮机的机械能,

7、自发过程方向性的实质是什么?使自发过程的逆过程能进行的热力学本质是什么?

答:一切自发过程都像着系统熵增的方向进行;其热力学本质:消耗高品质能量,如机械能,使系统熵增。

8、热力学第二定律的本质是什么?请举工程和生活中各2例说明。

答:热力学第二定律实质是指出了热过程的方向性、条件和限度;第二类永动机不存在,热

机效率不能到1

9、什么是孤立系统的熵增原理?孤立系统内经过一个过程后其总能如何变化?举例说明孤立系统内经过不可逆过程后机械能损失与孤立系统熵变的关系。

答:S T g I 0=,孤立系统一切实际过程都像着是系统熵增大的方向进行,I 是系统熵增;

其总能不变,但机械能减少;S T g I 0=,例子:

10、什么是饱和状态?饱和状态的温度和压力能否单独变化?如何才能使未饱和水变为饱和水?什么是干度?为什么引进干度?什么是临界状态?水的临界压力和临界温度分别是多少?压水堆内温度是否可超过临界温度?

答:相变过程中,蒸发量和凝结量达到动态平衡的状态称为饱和状态;饱和状态下温度和压力存在着一一对应的关系,无法单独变化;使未饱和水成为饱和水的方法:一是保持压力不变提高温度,一是保持温度不变降低压力;干度是1kg 湿蒸汽中含有干蒸汽的质量百分数;对于湿蒸汽,仅依靠温度和压力无法确定其状态,需要知道饱和水和饱和蒸汽的比例,即干度;当温度和压力升高到某一确定值时,饱和水和饱和蒸汽有同样的比体积和熵,他们之间无差异,这一状态成为临界状态;水的临界参数,t=374.15,p=22.120MPa 。压水堆内温度不能超过临界温度。

11、水的定压加热汽化分几个阶段?各阶段的热量如何计算?水蒸气的汽化潜热是常数吗?随压力升高如何变化?

答:分为预热、汽化、过热三个阶段。43页公式42,43,45;不是,随压力升高而减小。

12、为什么蒸汽动力循环要采用再热?压水堆核电厂的再热循环有什么特点?

答:再热为了是减小进入汽轮机末阶的湿度,保证汽机安全;1重点是提高蒸汽干度;2汽水分离再热过程在增设的汽水分离再热器内进行

13、什么是抽汽回热?抽汽回热提高热效率的本质何在?

答:在蒸汽热力循环中,通常是从汽轮机抽出一部分蒸汽,用于循环工质的加热;本质:提高进入蒸汽发生器工质的平均温度,降低传热温差,循环可逆性减小。

14、理想流体的伯努利方程的物理意义及几何意义怎样理解?总流伯努利方程、黏性流体的伯努利方程与理想流体伯努利方程差异在哪里?

答:物理意义:单位质量流体具有的位势能、压力势能及动能之和是一个常数,或总机械能是常数;几何意义:同一流线上的同种流体,其速度水头、压力水头和位置水头之和是个常数; 理想流体伯努利方程g g c P z c P z f f 2222222111++=++γγ

总流伯努利方程:g g c P z c P z f f 222222

221111ααγγ++=++ 黏性流体的伯努利方程:

h c P z c P z w f f g g +++=++2222222111γγ

由于总流的有效断面上各运动参数一般是变化的,因此总流伯努利方程要修正;流层间的摩擦阻力会消耗机械能,因此总机械能将沿流程减小,黏性流体的伯努利方程多了损耗项。

15、层流和紊流各有什么特征?如何判别?

答:层流各流层之间无扰动,流动平稳;紊流时流体质点互相混杂,作无定向、无规律运动,流体内各点的速度、压力等参数在时间与空间上均具有随机性变化;用雷诺数进行判

断:μd

c f =Re .

16、工程上如何确定管道(圆管、非圆管)的阻力损失?管内流动的局部阻力系数和沿程阻力系数如何确定?

答:通过确定沿程阻力损失和局部阻力损失来确定管道的阻力损失。对于层流,其沿程阻力损失系数采用达西公式Re

64=λ;对于紊流采用查莫迪曲线图的方式确定沿程阻力损失系数沿程阻力损失系数;计算局部阻力损失时要采用相关的图表;如计算非圆管道时,要注意采用当量直径。

17、传热的基本型式有哪几种?

答:热传导,热辐射,热对流。

18、物质导热系数的变化特征是什么?

答:1固定>液体>气体2金属的最高;3良导电体也是良导热体;4纯金属大于合金的

19、对流换热的表面传热系数受那些因素的影响?对流换热的基本计算式是什么?影响反应堆内燃料棒与一回路冷却剂的换热的因素有哪些?

答:1流动原因;2流动状态;3流体的物性;4换热面的形状和位置;5流体有无相变 对流换热的基本计算式是牛顿冷却公式:)(t t f w hA -=Φ

反应堆内燃料棒与一回路冷却剂的换热属于强制对流的管内流动:其影响因素为:入口段效应、弯管效应和相对粗糙度

20、什么是传热过程和传热系数?

答:两种流体通过固体壁面进行热量传递的过程称为传热过程;

)

(21t t f f A k -Φ=,k 为传热系数 21、一维稳态导热(平壁、圆筒壁)如何计算?

155页28式和156页34式

22、 影响冷凝表面传热系数的因素有哪些?举例几何形状对冷凝表面传热系数的影响?

答:不凝结气体、蒸汽流速凝结表面几何形状和布管参数。同样情况下,竖管需要的管子数是横管的2倍。

23、大容器沸腾换热有几个阶段?什么是沸腾危机?

答:自然对流、核态沸腾、过度沸腾和稳态沸腾; 由于沸腾换热机理的变化引起表面传热系数急剧下降而导致壁面温度骤然升高的现象称为沸腾危机。

24、增强传热的原则有哪些?在平壁增设保温层是否一定削弱传热?在圆管增设保温层是否一定削弱传热?在冷凝器内管外侧加肋对增强冷凝器内的传热是否有实质的意义,为什么?

答:增大换热面积,增大换热温差和增大传热系数;在平壁增设保温层一定削弱传热;在圆管增设保温层不一定削弱传热;在冷凝器内管外侧加肋对增强冷凝器内的传热没有实质的意义,因为冷凝器传热系数主要取决与管内的换热系数(它较小)。

25、换热器的温差如何确定?

答:使用对数温差,如有复杂的组成结构还需修正系数。

二、计算题部分

1.稳定流动能量方程

1-20 某蒸汽动力厂中,锅炉以质流量40000kg/h 向汽轮机供汽。汽轮机进口处压力表的读数是8.9MP a ,蒸汽的焓是3441 kJ /kg 。汽轮机出口处真空表的读数是

730.6mmHg ,出口蒸汽的焓是2248 kJ /kg ,汽轮机向环境散热为56.8110kJ/h 。若当地

大气压是760mmHg ,求:(1)进、出口处蒸汽的绝对压力;(2)不计进、出口动能差和位能差时汽轮机的功率;(3)若进、出口处蒸汽的速度分别为70m/s 和140m/s 时对汽轮机的功率有多大的影响?(4)若汽轮机进、出口的高度差为1.6m 时对汽轮机的功率又有多大的影响?

1-22 向大厦供水的主管线埋在地下5m 处,管内压力600kPa ,由水泵加压,把水送到大厦各层。经水泵加压,在距地面150m 高处的大厦顶层水压仍有200kPa ,假定水温为10C ,流量为10kg/s ,忽略水热力学能差和动能差,假设水的比体积为30.001m /kg ,求水泵消耗的功率。

2.循环热效率

7-14 某太阳能动力装置利用水为工质,从太阳能集热器出来

的是175C 的饱和水蒸气,在汽轮机内等熵膨胀后排向7.5kPa 的

冷凝器,求循环的热效率。

7-15 核电站蒸汽动力装置的构成与工作过程与一般的蒸汽动

力装置比较,主要区别就是用反应堆和蒸汽发生器取代了蒸汽锅炉。

二回路的工作介质在蒸汽发生器中从反应堆冷却剂吸收热量,成为具有作功能力的水蒸气,然后膨胀、排热、压缩,进行循环。由于冷却剂为液态水,进、出蒸汽发生器的平均温度约300℃左右,故蒸汽发生器产生的蒸汽是约6.54MPa 的饱和水蒸气,在汽轮机内膨胀后排向7kPa 的冷凝器,求二回路循环理论热效率。

3.单层及多层平壁、圆筒壁稳态导热;通过平壁、圆筒壁的传热

8-8 锅炉过热器合金钢管的内、外直径分别为32mm 和42mm ,导热系数

132.6W/(m K)λ=?,过热器钢管内、外壁面温度分别为1560C t =、2580C t =。试求:

(1)不积灰时每米管长的热流量l q ;(2)倘若管外积有1mm 厚的烟炱,其导热系数

20.06W/(m K)

λ=?,如总温压保持不变,求此时每米管长的热流量l q '。 8-9 一单层玻璃窗,高1.2m ,宽1m 玻璃厚0.003m ,玻璃导热系数g 1.05W/(m K)λ=?,室内、外的空气温度分别为20℃和-5℃,室内、外空气与窗玻璃之间对流传热的表面传热系数分别为215W/(m K)h =?、2220W/(m K)h =?,试求玻璃窗的散热损失及玻璃的导热热阻、

两侧的对流传热热阻。若其它天件不变,改用双层玻璃窗,双层玻璃间的空气夹层厚度为3mm ,夹层中的空气完全静止,空气的导热系数a 0.025W/(m K)λ=?。再求玻璃窗散热损失。

8-10 有一厚度300 mm δ=的房屋外墙,热导率b 0.5W/(m K)λ=?。冬季,室内空气温度120C t =,与墙内壁面之间对流传热的表面传热系数214W/(m K)h =?室外空气温度

23C t =-与外墙之间对流传热的表面传热系数228W/(m K)h =?。如果不考虑热辐射,(1)

试求通过墙壁的传热系数、单位面积的传热量和内外壁面温度;(2)若内墙表面增设厚10mm ,w 0.35W/(m K)λ=?的护墙板,其它条件不变,再求通过墙壁的传热系数、单位面积的传热量和内外壁面温度。

4.管内单相流体对流换热特征数方程应用

9-2 给水流过锅炉省煤器时,从1170C t =被加热到2230C t =,若管子的内径

30mm d =,水在管内的平均流速0.5m/s u =,管壁的平均温度w 250C t =。试确定该省煤

器水侧的表面传热系数h 。

5.黏性流体能量方程

#1 如图示吹风装置,c f1= c f2求风扇前后压强

p 1与p 2。已知:出口处风速f340m/s c =,空气密度

3 1.293kg/m ρ=,当地大气压b 98060Pa p =。

三、选择题部分

1.热能动力装置中热能通过 才能源源不断转变成机械能。

A 工质从高温热源吸热;

B 工质从高温热源吸热,向低温热源放热;

C 工质膨胀;

D “B ”+“C ”。

2.热能工程中工质必须具备

A 良好的膨胀性;

B 良好的流动性;

C 安全、环保、价廉;

D “A ”+“B ”+“C ”。

3. 就是孤立系统。

A 与外界没有质量交换的系统;

B 与外界没有功交换的系统;

C 系统与外界构成的复合系统;

D 与外界没有质量和功交换的简单可压缩系统。

4.下述说法错误的是

A 功和热量都是越过边界传递的能量,所以它们是等价的;

B 功和热量都是越过边界传递的能量,所以它们是过程量;

C 系统作功的标志是比体积变化,传热的标志是比熵变化;

D 功转变为热量是无条件的,热量转变为功是有条件、有限度的。

5.下列说法中,正确的是

A 孤立系统内工质的状态不能发生变化;

B 系统在相同的初、终状态之间的可逆过程中作功相同;

C 经过一个不可逆过程后,工质可以回复到原来的状态;

D 质量相同的物体A 和B ,因A B T T >,所物体A 具有的热量较物体B 为多。

6.经过一个不可逆循环,工质不能恢复原来状态

A 这种说法是错的;

B 这种说法是正确的;

C 这种说法在一定条件是正确的;

D 无法判断。

7.下列说法错误的是

A 动力循环在p v -图上顺时针进行;

B 动力循环在T s -图上逆时针进行;

C p v -图上动力循环的膨胀线在压缩线上方;

D T s -图上动力循环的吸热线在放热线上方。

8.两个容器内分别储有mkg20℃的冷水和80℃的热水,则

A 冷水的热量小于热水的热量;

B 冷水的热力学能小于热水的热力学能;

C 冷水的热力学能小于热水的热力学能,且冷水的热量小于热水的热量;

D 冷水的能量小于热水的能量,且冷水的热量小于热水的热量。

9.在密闭门窗的房间内,启动一台打开的冰箱,经一段时间运行,则室温将

A 降低;

B 升高;

C 不变;

D 不能确定。

10.当设备内工质的温度等于该压力对应饱和温度时,该工质可能为

A 饱和水蒸气;

B 饱和水;

C 湿蒸汽;

D A 、B 、C 都可能。

11.液态水温度为65℃(其饱和压力为0.025MPa ),可以判定其压力

A 大于0.025MPa ;

B 等于0.025MPa ;

C 大于或等于0.025MPa ;

D 无法确定。

12.下列说法正确的是

A 临界状态是水特有的状态;

B 临界状态是压力最高和温度最高的饱和状态;

C 一般认为压力高于临界压力的液态是不存在的;

D 一般认为气体的温度不能高于临界温度。

13.水蒸气的汽化潜热随压力升高而 。

A 降低;

B 增大;

C 不变;

D 不定。

14.若水蒸气的s s ''>,则水蒸气处于 状态。

A 过热蒸汽;

B 湿饱和蒸汽;

C 饱和液;

D 无法确定。

15.将未饱和水(1T )定压加热到过热蒸汽(2T ),加热量为

A s 12s ()()p p q c T T c T T γ=-++-;

B 21q h h =-

C 21()p q c T T =-

D 21q h h γ=-+

16.有位发明家声称他设计了一种机器,当这台机器完成一个循环时,可以从单一热源吸收了1000kJ 的热,并输出1200kJ 的功,这台热机

A 违反了第一定律;

B 违反了第二定律;

C 违反了第一定律和第二定律;

D 既不违反第一定律也不违反第二定律。

17.如果热源温度不变增大卡诺循环净功,则卡诺循环的热效率将

A 增大

B 不变

C 减小

D 不定

18.卡诺定理指出:

A 相同温限内一切可逆循环的热效率相等;

B 相同温限内可逆循环的热效率必大于不可逆循环的热效率;

C 相同温度的两个恒温热源间工作的一切可逆循环的热效率相等;

D 相同温度的两个恒温热源间工作的一切循环的热效率相等。

热工测试课后练习答案

热工测试作业 第一章 1-1、测量方法有哪几类,直接测量与间接测量的主要区别是什么?(P1-2) 答:测量的方法有:1、直接测量;2、间接测量;3、组合测量。 直接测量与间接测量的主要区别是直接测量中被测量的数值可以直接从测量仪器上读得,而间接测量种被测量的数值不能直接从测量仪器上读得,需要通过直接测得与被测量有一定函数关系的量,然后经过运算得到被测量的数值。 1-2、简述测量仪器的组成与各组成部分的作用。(P3-4) 答:测量仪器由感受器、中间器和效用件三个部分组成。 1、感受器或传感器:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号; 2、中间器或传递件:最简单的中间件是单纯起“传递”作用的元件,它将传感器的输出信号原封不动地传递给效用件; 3、效用件或显示元件:把被测量信号显示出来,按显示原理与方法的不同,又可分模拟显示和数字显示两种。 1-3、测量仪器的主要性能指标及各项指标的含义是什么?(P5-6) 答:测量仪器的主要性能指标有:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。 1、精确度:表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反映; 2、恒定度:仪器多次重复测试时,其指示值的稳定程度,通常以读数的变差来表示; 3、灵敏度:以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例来表示。 4、灵敏度阻滞:又称感量,是以引起仪器指针从静止到作极微小移动的被测量的变化值。 5、指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需的时间。 1-4、说明计算机测控系统基本组成部分及其功能。(P6-7) 答:计算机测控系统基本组成部分有:传感器、信号调理器、多路转换开关、模/数(A/D)和数/模(D/A)转换及微机。 1、信号调理器:完成由传感器输出信号的放大、整形、滤波等,以保证传感器输出信号成为A/D转换器能接受的信号; 2、实现多路信号测量,并由它完成轮流切换被测量与模/数转换器的连接; 3、采样保持器:保证采样信号在A/D转换过程中不发生变化以提高测量精度; 4、A/D转换器:将输入的模拟信号换成计算机能接受的数字信号; 5、D/A转换器:将输入的数字信号换成计算机能接受的模拟信号。 1-5、试述现代测试技术及仪器的发展方向。(P6、P9) 答:计算机、微电子等技术迅速发展,推动了测试技术的进步,相继出现了智能测试仪、总线仪器、PC仪器、虚拟仪器、网络化仪器等微机化仪器及自动化测试系统。随着计算机网络技术、多媒体技术、分布式技术等手段的迅速发展,测试技术与计算机相结合已成为当前测试技术的主流,测试技术的虚拟化和网络化的时代已经不远了。 第二章 2-1、试述测量仪器的动态特性的含意和主要研究内容,它在瞬变参数测量中的重要意义。(P11、P16) 答:测量仪器或测量系统的动态特性的分析就是研究动态测量时所产生的动态误差,它主要用以描述在动态测量过程中输入量与输出量之间的关系,或是反映系统对于随机时间变化的输入量响应特性。从而能够选择合适的测量系统并于所测参数相匹配,使测量的动态误差限制在试验要求的允许范围内,这便是动态测量技术中的重要研究课题。在瞬变参数动态测量中,要求通过测量系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。

热工实验报告剖析

目录 常功率平面热源法同时测定绝热 (1) 数据处理: (1) [1]原始数据整理:(原始数据表格见附录) (1) [2]关于高斯误差补函数的方程编写 (2) 高斯误差补函数的一次积分 (2) 高斯误差补函数的一次积分的反函数 (2) [3]数据处理脚本 (2) [4]结果表格 (3) 曲线绘制 (3) [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系 (3) [2]导热系数lamda随时间的变化 (4) [3]导热系数a随时间的变化 (4) 理解分析 (5) [1]改变导热系数lamda对温升曲线的影响 (5) [2]改变导温系数a对温升曲线的影响 (6) 空气横掠单圆管时强迫对流换热实验 (6) 数据处理 (6) [1]原始数据整理:(原始数据表格见附录) (6) [2]结果表格 (7) [3]曲线拟合 (7) 总结讨论 (9) [1]实验偏差讨论 (9) [2]为什么忽略Pr (9) [3]截面小的地方流速大,测量相对误差值小。 (9) 常功率平面热源法同时测定绝热 材料的导热系数λ和导温系数a 数据处理:

高斯误差补函数的一次积分 高斯误差补函数的一次积分的反函数 [3]数据处理脚本

[4] [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系

[2]导热系数lamda随时间的变化 [3]导热系数a随时间的变化

可以看出λ和a均随时间先降低后升高。因为导热初期,温差小,恒定热流,所以传热快,随着时间的增加,导热变慢。当温度增加到一定 程度,温差缩小,导热又逐渐变快。 理解分析 [1]改变导热系数lamda对温升曲线的影响

热工与流体力学复习题

一、单项选择题 1.下列参数中,与热力过程有关的是_____。 A.温度 B.热量C.压力 D.比容 2.若物体内分子的热运动愈剧烈,则愈高。 A.压力 B.温度 C.比容 D.功 3,摄氏零度等于华氏度。 A.32 B.36 C.33.5 D.35 4.满足q=Δu关系的热力过程是。 A.任意气体任意过程 B.任意气体定容过程 C.理想气体等压过程 D.理想气体可逆过程 5.卡诺循环由两个和两个过程组成。 A.等压/定容 B.等温/绝热 C.等压/绝热 D.等温/定容 6.准静态过程是一个过程。 A.可逆 B.内部可逆 C.外部可逆 D.内外均可逆 7.热力学平衡态是指系统同时处于平衡和平衡 A.质量/压力 B.温度/质量 C.压力/质量D.温度/压力 8.从绝对真空算起的压力为。

A.表压力B.绝对压力C.真空度D.标准压力 9.封闭系统是指的系统。 A.与外界没有物质交换 B.与外界没有热量交换 C.与外界既没有物质交换也没有热量交换 D.与外界没有功交换 10.dq=du+pd的适用范围是。 A.理想工质、可逆过程 B.任意工质、可逆过程 C.理想工质、任意过程 D.任意工质、任意过程 11.蒸汽压缩制冷循环用“干压”代替“湿压”的主要目的是。 A. 降低压缩机功耗 B. 避免压缩机产生液击现象 C. 提高制冷系数 D. 使制冷设备简单 12.逆卡诺循环是在哪一个过程向外界放热。 A.定温过程 B.绝热膨胀过程C.B与D D.绝热压缩过程13.要确定未饱和水的参数,除了知道其压力外,还必须知

道其。 A.温度B.温升C.干度D.过热度 14.在水蒸气的p-v图中,零度水线左侧的区域称为。A.过冷水状态区 B.湿蒸汽状态区C.过热蒸汽状态区 D.固体状态区15.某温度和压力下的过热蒸汽,其压力其温度下的饱和压力,其温度其压力下的饱和温度。 A.大于/大于 B.大于/小于 C.小于/大于D.小于/小于 16.当喷管流道截面积从大变小又从小变大时,气体的流速。A.增大B.减小C.不变D.不一定 17.活塞式压缩机多变压缩时的耗功定温压缩时的耗功。A.大于B.等于C.小于D.无法确定 18.对于二维稳态温度场,其温度场可表示为。 A.t=f(x,y,z,τ) B.t=f(x,y,z ) C.t=f(x,y,τ) D.t=f(x,y) 19.热流方向与温度梯度的方向。 A,相同B,相反C,交叉D,垂直

南京工业大学热工基础试题库

南京工业大学热工基础 熵: 一、任意过程熵与热量的关系 系统的熵变是可以用可逆吸热计算的, 当实际过程不可逆时, 可以采用假设可逆过程的 方法。 按假设可逆过程计算熵变, 即用热温比计算,其中的热量度其实是包括两部分: 实际传 入的热量和耗散热量(可逆功 -实际功)一一总热量 一个关系:(假设)可逆传热-(假设)可逆功=传热-功(实际)=系统内能变化(因为 内能是状态参量,是只与前后状态有关的,与过程是否可逆无关) 即:系统在某一温度下的熵变是系统在该温度下所得到的总热量除以该系统的温度, 与 为熵本身就是系统的状态量。 一一第一熵方程 二、微观解释 系统微观粒子热运动能量增量与热运动强度之比 观状态对应的微观状态数。 注: 任何不可逆过程都将一定功化为等量热。 程都可能通过加功消除变化。 三、熵流与熵产 熵产是真正的不可逆程度的度量,是不可逆的本质,是熵的根本来源。 闭系,熵变=熵流+熵产,任意系统熵变可正可负,熵流可正可负,但熵产必然是大于 或等于0的,孤立系统,没有熵流,则熵变就是熵产,所以有孤立系熵增原理。 熵流 熵产:两部分组成一一有有限温差温差的传热和系统内部功的耗散 如果计算熵流用的是系统温度 ,则熵产中就只有耗散项,而不包括温差传热项。 T 两者熵产项不相等,是因为考虑的过程不同,所选择的系统也不同。 用热源温度计算熵流时,计算的是从热源流出的熵流,而熵变是系统的熵变,则系统的熵变 理应包括温差传热带来的熵产。而用系统温度计算熵流时,计算的是流入系统的熵流,而流 入系统的熵流已经包括温差传热的熵产了。 一一温差传热的熵产是最终到受热方的 ,是流入 可逆与否无关。 ds Q T Q T T W r W T ,注意用的是系统温度而不是热源温度, (运动有序程度的度量) 反应了系统宏 效果与功生热一样。一一则任一不可逆过 总方程: ds 第二熵方程

工热热力学实验报告1

工程热力学实验报告 学院 年级专业 学生姓名 学号 2016年12月21日

实验一:气体定压比热的测定 一、实验目的和要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中的测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验内容 通过测定空气的温度、压力流量,掌握计算热量的方法,从而求得比热值和求得比热公式的方法。 三、数据记录 四、实验方法、步骤及测试数据处理 1.接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2.摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附 近。测出流量计出口空气的干球温度(t0)。 3.将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电热 器功率,使出口温度升高至预计温度。 可以根据下式预先估计所需电功率: τt W ?≈12 式中:W为电热器输入电功率(瓦);

Δt 为进出口温度差(℃); τ为每流过10升空气所需的时间(秒)。 估算过程:W=m ×Cp ×(T2-T1)=ρ×V ×Cp ×(T2-T1) =ρ×(10/1000τ) ×Cp ×Δt=1.169×(10/1000τ) ×1.004×Δt =11.7/1000×Δt/τ(kW)=11.7Δt/τ(w) 式中ρ—kg/m3; Cp—kJ/kg ·k; 4. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据,每10升空气通过流量计所需时间(τ,秒);比热仪进口温度——即流量计的出口温度(t 1,℃)和出口温度(t 2℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(Δh ,毫米水柱);电热器的输入功率(W ,瓦)。 5. 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d,克/公斤干空气),并根据下式计算出水蒸气的容积成分: 622 /1622 /d d r w += 推导:对于理想气体混合物,摩尔比等于体积比,由分压力定律可知,理想气体摩尔比等于压力比,因此体积比等于压力比。根据含湿量定义d=m v /m a =n v M v /n a M a =0.622 (v v /v a )。因此:r w =v a /v=v v /(v v +v a )=1/(1+0.622/d)=d/0.622/(1+ d/0.622) 6. 根据电热器消耗的电功率,可算出电热器单位时间放出的热量: 3 10 1868.4?=W Q & (kcal/s )[1w=1J/s=1/1000kJ/s=1/4186.6kcal/s] 7. 干空气流量(质量流量)为: ) 15.273(2871000/103.133)6.13/)(1(00+???+-== t h B r T R V P G w g g g τ&& ) 15.273()6.13/)(1(106447.403+?+-?= -t h B t w τ (kg/s ) 8. 水蒸气流量为: ) 15.273(5.4611000/103.133)6.13/(00+???+== t h B r T R V P G w w w w τ&&

最新 热工学与流体力学试卷答案

《热工学与流体力学》课程第 1 页 共 4 页 课程考试试卷 课程名称:热工学与流体力学 考核方式: 一、填空题:(每空格1分,共20分) 1.水蒸汽在T-S 图和P-V 图上可分为三个区,即___________区,___________ 区和 ___________ 区。 2.一般情况下,液体的对流放热系数比气体的___________,同一种液体,强迫流动放热比自由流动放热___________。 3.水蒸汽凝结放热时,其温度___________,主要是通过蒸汽凝结放出___________而传递热量的。 4.管道外部加保温层使管道对外界的热阻___________,传递的热量__________。 5.炉受热面外表面积灰或结渣,会使管内介质与烟气热交换时的热量___________,因为灰渣的___________小。 6.根据传热方程式,减小___________,增大___________,增大___________,均可以增强传热。 7.相同参数下,回热循环与朗肯循环相比,汽耗率__________________,给水温度___________,循环热效率___________,蒸汽在汽轮机内作功___________。 8. ___________压力小于___________大气压力的那部分数值称为真空。 二、选择题(每小题3分,共30分) 1、同一种流体强迫对流换热比自由流动换热( )。 A 、不强烈; B 、相等; C 、强烈; D 、小。 2、热导率大的物体,导热能力( ) A.大; B.小; C.不发生变化。 3.流体流动时引起能量损失的主要原因是( ) A 、流体的压缩性 B 、流体的膨胀性 C 、流体的粘滞性 4.朗肯循环是由( )组成的。 A 、两个等温过程,两个绝热过程 B 、两个等压过程,两个绝热过程 C 、两个等压过程,两个等温过程 D 、两个等容过程,两个等温过程。 5.省煤器管外是( )。 A.沸腾换热; B.凝结换热; C.水强制流动对流换热; D.烟气强制流动对流换热 6.下列几种对流换热系数的大小顺序排列正确的是:( )。 A.α水强制>α空气强制>α空气自然>α水沸腾; B.α水沸腾>α空气强制>α水强制>α空气自然; C.α水沸腾>α水强制>α空气强制>α空气自然。 7.当物体的热力学温度升高一倍时,其辐射能力将增大到原来的( )倍: A.四倍; B.八倍; C.十六倍。 8.在锅炉中,烟气以对流换热为主的部位是( )。 A.炉膛; B.水平烟道; C.垂直烟道 9.稳定流动时,A 断面直径是B 断面的2 倍,B 断面的流速是A 断面流速( )倍。 A.1; B.2; C.3; D.4。 10.当管排数相同时,下列哪种管束排列方式的凝结换热系数最大:( ) A 、叉排; B 、顺排; C 、辐向排列; D 、无法判断 考生注意: 1.学号、姓名、专业班级等应填写准确。 2.考试作弊者,责令停考,考生签名,成绩作废

热工基础与应用课后习题答案(全)第二版

山东大学 热工基础课后习题解答 第一章 思考题 1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4. 准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 5. 不可逆过程是无法回复到初态的过程,这种说法是否正确? 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。 6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因? 答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。 7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?

答:严格说来,是有影响的,因为U 型管越粗,就有越多的被测工质进入U 型管中,这部分工质越多,它对读数的准确性影响越大。 习 题 1-1 解: kPa bar p b 100.61.00610133.37555==??=- 1. kPa p p p g b 6.137********.100=+=+= 2. kPa bar p p p b g 4.149494.1006.15.2==-=-= 3. kPa mmHg p p p v b 3315.755700755==-=-= 4. kPa bar p p p b v 6.50506.0 5.000 6.1==-==- 1-2 图1-8表示常用的斜管式微压计的工作原理。由于有引风机的抽吸,锅炉 设 备的烟道中的压力将略低于大气压力。如果微压机的斜管倾斜角?=30α, 管内水 解:根据微压计原理,烟道中的压力应等于环境压力和水柱压力之差 mmHg Pa gh p 35.79805.0102008.91000sin 3==????=-αρ=水柱 mmHg p p p b 65.74835.7756=-=-=水柱 1-3 解: bar p p p a b 07.210.197.01=+=+= bar p p p b 32.005.107.212=-=-= bar p p p b C 65.032.097.02=-=-= 1-4 解: kPa H p p p b 2g mm 15745760==-==汞柱真空室- kPa p p p a 36236021=+=+=真空室 kPa p p p b 19217036212=-=-=

流体静力学+热工1003+14+

中国石油大学(华东)工程流体力学实验报告 实验日期:2012年3月14日成绩: 班级:热工10-3班学号:10123314 姓名:张有福教师:王连英 同组者:毛欢、白申杰 实验一、流体静力学实验 一、实验目的:填空 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7.截止阀;8. U形测压管;9.油柱; 10. 水柱;11.减压放水阀 图1-1-1 流体静力学实验装置图

2、说明 1.所有测管液面标高均以标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力 学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p z =+ γ (1-1-1a ) 形式之二: h p p γ+=0 (1-1b ) 式中 z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ== (1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=- (1-1-3)

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

散热器热工性能实验报告 (1)

实验二 散热器性能实验 班级: 姓名: 学号: 一、实验目的 1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。 2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置 1.水位指示管 2.左散热器 3. 左转子流量计 4. 水泵开关及加热开关组 5. 温度压差巡检仪 6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4 图1散热器性能实验装置示意图 三、实验原理 本实验的实验原理是在稳定的条件下测定出散热器的散热量: Q=GC P (t g -t h ) [kJ/h] 式中:G ——热媒流量, kg/h ; C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。 散热片共两组:一组散热面积为:1m 2 二组散热面积为:0.975 m 2 上式计算所得散热量除以3.6即可换算成[W]。 低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤 1、测量散热器面积。 2、系统充水,注意充水的同时要排除系统内的空气。 3、打开总开关,启动循环水泵,使水正常循环。 4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。 5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。 6、系统稳定后进行记录并开始测定: 当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度 t g 与t h 及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量, 流量用转子流量计测量。温度和流量均为每10分钟测读一次。 G t =L/1000=L·10-3 m3/h 式中:L——转子流量计读值; l/h; G t ——温度为t g 时水的体积流量;m3/h G=G t ·ρ t (kg/h) 式中:G——热媒流量,(kg/h); ρt——温度为t g时的水的密度,(kg/ m3)。 7、改变工况进行实验: a、改变供回水温度,保持水量不变。 b、改变流量,保持散热器平均温度不变。 即保持 2h g p t t t + =恒定8、求散热器的传热系数K 根据Q=KA(t p -t ) 其中:Q——为散热器的散热量,W K——散热器的传热系数,W/m2.℃ A ——散热器的面积,一种为0.975 m2,另一种为1 m2 t p ——供回水平均温度,℃ t ——室内温度,℃ 9、实验测定完毕: a、关闭电加热器; b、停止运行循环水泵; c、检查水、电等有无异常现象,整理测试仪器。 五、注意事项 1、测温点应加入少量机油,以保持温度稳定; 2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

第二学期热工基础第2次作业

本次作业是本门课程本学期的第2次作业,注释如下:本次作业为5-8章的容。 一、单项选择题(只有一个选项正确,共9道小题) 1. 在水蒸气的汽化过程中,其汽化潜热为() (A) 该阶段的焓增 (B) 该阶段的膨胀功 (C) 该阶段的焓增和膨胀功之和 (D) 该阶段的焓增和热力学能增量之和 你选择的答案: A [正确] 正确答案:A 解答参考: 2. 饱和湿空气具有下列关系()(t-干球温度、t w-湿球温度、t D-露点温度) (A) t>t w>t D (B) t>t D>t w (C) t=t D=t w (D) t w= t D>t 你选择的答案: C [正确] 正确答案:C 解答参考: 3. 渐缩喷管在设计工况下工作(p2 =p b),如果喷管进口截面参数及背压保持不变,那么将此喷管截掉一段,其出口流速和流量将按()变化。 (A) 流速减小,流量增加 (B) 流速、流量都减小

(C) 流速不变,流量增加 (D) 流速减小,流量不变 你选择的答案: C [正确] 正确答案:C 解答参考: 4. 空气流在定熵滞止后() (A) 温度升高、压力降低 (B) 温度降低、压力升高 (C) 温度、压力均升高 (D) 温度、压力均降低 你选择的答案: C [正确] 正确答案:C 解答参考: 5. 理想气体经过绝热节流后, 其温度() (A) 升高 (B) 降低 (C) 不变 (D) 可能升高、降低或不变 你选择的答案: C [正确] 正确答案:C 解答参考:

6. 活塞式压气机压缩比较高时,采用多级压缩级间冷却的好处是() (A) 减少耗功量,降低出口温度,降低容积效率 (B) 增加耗功量,提高出口温度,增大容积效率 (C) 减少耗功量,降低出口温度,增大容积效率 (D) 增加耗功量,提高出口温度,增大容积效率 你选择的答案: C [正确] 正确答案:C 解答参考: 7. 活塞式压气机的余隙容积越大,容积效率ηV越低,对压气机的理论耗功量和产气量影响为() (A) 理论耗功量增加,产气量减小 (B) 理论耗功量减小,产气量减小 (C) 理论耗功量减小,产气量不变 (D) 理论耗功量不变,产气量减小 你选择的答案: D [正确] 正确答案:D 解答参考: 8. 柴油机混合加热循环,若要提高其热效率,应在一定围适当采用措施() (A) 增加压缩比,减小升压比和预胀比 (B) 增加压缩比和升压比,减小预胀比 (C) 增加升压比,减小压缩比和预胀比 (D) 增加压缩比和预胀比,减小升压比 你选择的答案: B [正确]

2016热工过程控制实验报告——姜栽沙

热工过程控制工程 实验报告 专业班级:新能源1402班 学生姓名:姜栽沙 学号:1004140220 中南大学能源学院 2017年1月

实验一热工过程控制系统认识与MCGS应用 组号______ 同组成员李博、许克伟、成绩__________ 实验时间__________ 指导教师(签名)___________ 一、实验目的 通过实验了解几种控制系统(基于智能仪表、基于计算机)的组成、工作原理、控制过程特点;了解计算机与智能仪表的通讯方式。了解组态软件的功能和特点,熟悉MCGS组态软件实现自动控制系统的整个过程。掌握MCGS组态软件提供的一些基本功能,如基本画面图素的绘制、动画连接的使用、控制程序的编写、构造实时数据库。 二、实验装置 1、计算机一台 2、MCGS组态软件一套 3、对象:SK-1-9型管状电阻炉一台;测温热电偶一支(K型)。 4、AI818/宇电519/LU-906K智能调节仪组成的温控器一台。 5、THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀)一套 6、CST4001-6H电阻炉检定炉(含电阻炉、温度控制器、测温元件、接口)一套 7、电阻炉温度控制系统接线图和方框图如图1-1、1-2所示。 三、实验内容 1、电阻炉温度控制系统(液位、流量、压力) 被控过程: 电阻炉被控变量: 电阻炉温度 操纵变量: 电阻炉的功率主要扰动:环境温度变化,电压值,电流值2、带检测控制点的流程图 3、控制系统方框图

4、控制系统中所用的仪表名称、型号(检测仪表、控制器、执行器、显示仪表)。 检测仪表:CST4001-6H电阻炉检定炉 控制器:AI818/宇电519/LU-906K智能调节仪组成的温控器 执行器:THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀) 显示仪表:计算机 5、智能仪表与计算机是怎样进行通讯?有哪几种方式? 智能仪表与计算机通讯一般有三种方式,分别为USB接口,485接口,232接口,通过这些接口进行信号传输,计算机得以对仪表进行温控。 6、什么是组态软件? 组态软件是指对系统的各种资源进行配置,达到系统按照预定设置,自动执行特定任务,满足使用者要求的目的的应用软件。 四、MCGS组态界面 提供电阻炉温度控制系统一套完整组态界面图(共6个图),包括主界面、运行界面、设备工况、存盘数据、实时曲线、历史数据。

热工课后题答案

习题及部分解答 第一篇工程热力学 第一章基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密 度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。 若水柱高mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若已知斜管倾角ο30=α ,压 力计中使用3 /8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力 MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解: 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45。若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示)kPa p gA 155= 6.试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。 答案略。 7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706。若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力(用MPa 表示)MPa p MPa p 0039.0;0247.021== 8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器内的绝对压力。若 大气压变为MPa p b 102.0=',求此时真空表上的读数为多少mmMPa ?MPa p MPa p v 8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算: (1).绝对压力为11.0MPa 时的表压力; (2).真空计上的读数为kPa 70时气体的绝对压力; (3).绝对压力为kPa 50时的相应真空度(kPa ); (4).表压力为MPa 25.0时的绝对压力(kPa )。

建筑物理实验报告

建筑物理实验报告 班级:建筑112 姓名:刘伟 学号: 01111218 指导教师:周洪涛 建筑物理实验室 2014年10月15日 小组成员:张思俣;郭祉良;李照南;刘伟;王可为;

第三篇建筑热工实验 一、实验一建筑热工参数测定实验 二、实验目的 1、了解热工参数测试仪器的工作原理; 2、掌握温度、湿度、风速的测试方法,达到独立操作水平; 3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果; 4、测定建筑室内外地面温度场分布; 5、可通过对室外环境的观测,针对住宅小区或校园内地形、地貌、生物生活对气候 的影响,进而研究在这个区域内的建筑如何应用有力的气候因素和避免不利的气 候影响。 三、实验仪器概述 I.WNY —150 数字温度仪 ●用途:用于对各种气体、液体和固体的温度测量。 ●特点:采用先进的半导体材料为感温元件,体积小,灵敏度高,稳定性好。温度值 数字显示,清晰易读,测温范围:-50℃~150℃,分辨力:0.1℃。 ●测试方法及注意事项: 1.取下电池盖将6F22,9V叠层电池装入电池仓。 2.按ON键接通电源,显示屏应有数字显示。 3.插上传感器,显示屏应显示被测温度的数值。 4.显示屏左上方显示LOBAT时,应更换电池。 5.仪器长期不用时,应将电池取出,以免损坏仪表。 II.EY3-2A型电子微风仪 ●用途:本产品是集成电子化的精密仪器,适用于工厂企业通风空调,环境污染监测, 空气动力学试验,土木建筑,农林气象观测及其它科研等部门的风速测量,用途十分广泛。 ●特点: 1.测量范围宽,微风速灵敏度高,最小分度值为0.01m/s。 2.高精度,高稳定度,使用时可连续测量,不须频繁校准 3.仪器热敏感部件,最高工作温度低于200℃,使用安全可靠,在环境温度为 -10℃~40℃内可自动温度补偿。 4.电源电压适用范围宽:4.5V~10V功耗低。 ●主要技术参数: 1.测量范围:0.05~1m/s 1~30m/s(A型) 2.准确度:≤±2﹪F.S。 3.工作环境条件:温度-10℃~+40℃相对湿度≤85%RH。 4.电源:R14型(2#)电池4节 ●工作原理:本仪器根据加热物体在气流中被冷却,其工作温度为风速函数这一原理设 计。仪器由风速探头及测量指示仪表两部分组成。 ●测试方法及注意事项:

热工流体第一章、基本概念

热工与流体力学基础 第一篇工程热力学 第一章基本概念 第一节工质及热力系统 一、工质 是物质运动的量度,能量与物质是不可分割的。在热力过程中,完成热能与机械能之间的相互转换必须借助于某种工作介质---工质来实现。工质并不直接参与能量的转换,只是在能量转换过程中起媒介作用,即在热力过程和热力循环中,伴随工质热力状态的不断变化,使得热力系统与外界之间通过界面而发生能量的转换与传递。 二、热力系统 根据热力学分析的需要,在相互作用的各物体中,选取某一范围内的物体作为热力研究的对象,称为热力系统或系统。将与热力系统相互作用的周围物体称为外界或环境。热力系统与外界的分界面成为界面或边界。 热力系统与外界之间的界面可以是真实的,也可以是虚拟的,可以是固定的,也可以是活动的。 图1-1 热力系统、外界与边界 三、热力系统的分类 根据界面上系统与外界间能、质交换的情况不同来分类: 闭口系统:界面上无质量交换的系统(控制质量cm); 开口系统:界面上有质量交换的系统(控制体积cv);

绝热系统:界面上无热量交换的系统; 孤立系统:界面上既无质量交换又无能量交换的系统。 自然界中的物体都是相互联系的。相互制约和相互作用的,因此绝对的绝热系统和孤立系统都是不存在的。只有当系统与外界间的热量、功量、质量的交换无限小或该作用的影响可忽略不计时,可看作是某一特定条件下的简化。 在热力学中还有一些特殊的系统。像具有无限大热容的系统,他们在放出或吸收有限的热量时不改变系统的自身的温度,被称为热源或热库。另外,若热力系统与外界可逆的功交换只有体积变化功一种形式,则该系统称为简单可压缩系统。 第二节工质的热力学状态及其基本状态参数 一、热力状态与状态参数 热力系统在某一瞬间所呈现的宏观物理状况称为热力状态或状态。 热力状态是系统各种宏观物理特性的表现,能描述这种宏观特性的物理量称为热力状态参数或状态参数。 该课程主要讨论的状态参数有温度(T)、压力(P)、比体积(v)或密度(ρ)、热力学能(U)、焓(H)、熵(S)等。其中,温度(T)、压力(P)、比体积(v)或密度(ρ)是可以直接测量的,被称为基本状态参数;而其余状态参数不能直接测量,必须由基本状态参数导出,所以称为导出参数。 二、基本状态参数 1、温度 温度是描述热力系统冷热状态的物理量。从分子运动理论观点看,温度标志着物质内部大量分子热运动的强烈程度。 为了使温度测量准确一致,就要有一个衡量温度的标尺,简称温标。国际上规定热力学温标作为测量的最基本的温标。它是根据热力学第二定律的基本原理制定的,与测温物质的特性无关,可以成为度量温度的标准。 热力学温标的温度单位是开尔文,符号是k(开)。把水的三相点的温度,即水的固相、液相、气相平衡共存的状态的温度作为单一基准点,并规定为273.16k。 因此,热力学温度单位“开尔文”是谁的三相点温度的1/273.16。 国际计量大会通过决议,规定摄氏温度有热力学温度移动零点来获得。

土木工程流体力学实验报告实验分析-与讨论答案

管路沿程阻力系数测定实验 1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果? 现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =, ∑=0j h ,由能量方程可得 ??? ? ??+-???? ?? +=-γγ221121p Z p Z h f 1112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-= γ γ 11222 6.126.12H h h H p +?+?+-= γ ∴ ()()122211216.126.12h h H Z H Z h f ?+?++-+=- )(6.1221h h ?+?= 这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。 2.据实测m 值判别本实验的流动型态和流区。 f h l g ~v lg 曲线的斜率m=1.0~1.8,即f h 与8.10.1-v 成正比,表明流动为层流 (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2%误差时,可产生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

相关文档
最新文档