微纳米气泡发生机理及其应用研究进展

微纳米气泡发生机理及其应用研究进展

微纳米气泡发生机理及其应用研究进展

王永磊1,王文浩1 ,代莎莎2 ,徐学信1 ,薛舜1 ,许斐1 ,贾钧淇1

[摘要】摘要:相比于传统处理技术,微纳米气泡在污废水处理、地下水水土环境修复等环境污染控制领域表现出了良好的技术优势及应用前景,开展微纳米气泡在各领域的应用进展研究,对于其今后的研究发展具有积极的意义。文章围绕停留时间、气液传质率、界面电位、产生自由基、比表面积等方面,阐述了微纳米气泡与普通气泡所不同的特性,综述了加压溶气释气法、分散空气法、电解法、气浮泵产气法等微纳米气泡不同发生方法的技术机理及相关设备研究现状,概述了微纳米气泡在水体增氧、强化臭氧化、气浮、强化生物活性等水处理领域及灌溉水源处理、促进作物生长等种植业领域的应用现状、存在问题以及前景,并对微纳米气泡的发展应用进行了展望。

[期刊名称]山东建筑大学学报

【年(卷),期】2017(032)005

【总页数】7

【关键词】微纳米气泡;发生机理;水处理;增氧

0引言

半径在0.05 ~ 25pm范围内的微小气泡称为微纳米气泡[11微纳米气泡相较于普通气泡,拥有存在时间长、气液传质率高、界面点位高、能自发产生自由基等特点,同时也具有一些独特的化学特性[1L对于微纳米气泡的研究始于19世纪,当时人们的研究重点是毫米级气泡。20世纪50年代,人们开始开展对液滴以及气泡的相关研究[1 ]。而对于微纳米气泡的应用情况,最早可以追溯至20世纪90年代,由日本科学家最先研究制造出气泡的发生装置,并且应

微纳米气泡处理污水小系统开题报告_图文

微纳米气泡处理污水小系统开题报告_图文安徽工程大学 本科毕业设计(论文)开题报告 题目: 微纳米气泡处理污水小系统设计 指导老师: 徐建平 (教授) 院系: 生物与化学工程学院 专业: 环境工程(102班) 学号: 3100406226 姓名: 张琴弦 日期: 2014年3月5日 选题依据: (包括选题的目的、意义、国内外研究现状分析等,并附主要参考文献及出处) 一、选题的目的和意义 中国是个水资源严重短缺的国家,水环境问题极为突出。目前,对于日益严重的河湖污染问题,我国通常采用的处理设备,难以产生微纳米级的细小气泡,溶氧率低、能耗高。而微纳米气泡发生装置能够生产直径在50μm和数十纳米(nm)之间的微小气泡,可快速地溶解于水体中,溶氧效率大大提高。该技术作为一种新型污水处理技术,在水环境治理中的市场前景极为广阔。 微纳米气泡:就是气泡发生时,其大小在十微米(um)以下至数百纳米(nm)之间的气泡混合状态,称为微纳米气泡。水处理领域离不开曝气环节,气泡越小容氧性越强,而气泡小到十微米以下,其物理、化学性质都将发生根本性变化。

微气泡由于尺寸小,可表现出一些特殊的行为特性,如存在时间长、传质效率高、表面电荷形成的ζ 电位高以及可释放出自由基等特性。微气泡破裂瞬间,由于气液界面消失的剧烈变化,界面上集聚的高浓度离子将积蓄的化学能一下子 [5]释放出来,此时可激发产生大量的羟基自由基。本次试验研究将基于微纳 米气泡的一些特殊行为特性,进行微纳米气泡法处理工业废水的探讨。。 本课题拟开展微纳米气泡强化处理污水中的有机物、氨氮、铁锰离子、酚类的 机理与效果研究。探讨一种新型、高效、无二次污染的高级氧化处理方法,对微纳米气泡法在污水处理中的推广应用有重要意义。 二、国内外研究现状分析 2.1微纳米气泡强化氧化法处理污水的现状 利用羟基自由基的强氧化性可以对工业废水中大量污染物进行处理。有研究结 果证实,使用臭氧作为微气泡承载气体更容易产生大量羟基自由基,而且值得注意的是,尽管臭氧具有强氧化性,但自身却不能氧化分解某些有机物,如聚乙烯醇等,但将臭氧与微气泡技术联用后,却可以在短时间内有效地将这些不能降解的有机物氧化为无机物[6]。 Takahashi 等[7]证实强酸条件下空气微气泡破裂产生自由基可以去除酚;Li 等[8]发现酸性条件下铜可以催化氧气气泡破裂产生自由基,以去除聚乙烯醇; Chu 等[9,10]发现臭氧微气泡能够提高臭氧传质效率,并强化溶解性污染物的氧化去除; Liu等[11]在染料废水混凝气浮处理中,发现微气泡可以提高氧传质速率及污染物去除效率。 2.2微纳米气泡强化氧化法处理污水的机理 微气泡由于尺寸小,可表现出一些特殊的行为特性,如存在时间长、传质效率高、表面电荷形成的ζ 电位高以及可释放出自由基等特性。 1. 延长停留时间

微纳米气泡发生器-南京蓝洁环保科技有限公司

微纳米气泡发生器是产生微纳米气泡的主要部件。人们通常把存在于水里的大小在10到几十微米的气泡叫做微米气泡;把大小在数百纳米以下的气泡叫做纳米气泡,而存于双方中间的气泡混合状态称微纳米气泡 微纳米气泡发生器技术简介: 人们通常把存在于水里的大小在10到几十微米的气泡叫做微米气泡;把大小在数百纳米以下的气泡叫做纳米气泡,而存于双方中间的气泡混合状态称微纳米气泡。 微纳米气泡发生器特点: (1)水中停留时间长一般的气泡在水中产生后,会很快上升到水面并破裂消失,即存在时间短。而微米气泡在水中由产生到最终破裂消失会有几十秒钟甚至达到几分钟。有研究数据标明,直径为1mm的气泡在水中的上升速度为 6m/min,而直径为10um的气泡在水中的上升速度为3mm/min。可以看出,

微米气泡在水中的上升速度非常缓慢,所以可在水中停留较长时间。 (2)带电性微米气泡表面带负电荷,而且相对于普通气泡,其所带负电荷比较高,一般30um以下的气泡的表面负荷在-40mV左右,这也是微米气泡能大量聚集在一起时间较长而不破裂的原因之一。利用微米气泡的带负电性,可以吸附水中带正电的物质,对去除水中悬浮物或污染物的吸附和分离起到很好的效果。 (3)自我增压和溶解气泡内部的压力和表面张力有关,气泡的直径约小,内部压力越大。由于微米气泡的直径很小,比表面积很大,所以它内部的压力要比外界液体的压力大很多,而正式由于由于微米气泡的这种内部增压和比表面积大的优势,它的气体溶解能力是毫米级气泡的几百倍之多。因为溶解度与压力有很大关系,所以微米气泡内部压力增大到一定阙值时,会使界面达到过饱和状态,在将更多气泡内的气体溶解到水中的同时,自身也会慢慢溶解消失。 (4)收缩性微米气泡在水中产生后因为自身增压,会不断的收缩或膨胀,其直径是一直变化的。据最新研究标明,20um~40um的气泡会以1.3um/s的速度搜索到8um左右,然后收缩速度会土壤急剧增加,此后可能进一步分裂成纳米级气泡或者完全溶解于水中。(5)界面动电势高微米气泡的表面会吸附带电荷的离子如OH-,而在这OH-离子层周围,又会分布反电荷离子层如H+,这样微米气泡的表面就形成了双电层,双电层界面的电位又称为界面动电势,界面动电势的高低在很大程度上决定了微米气泡界面的吸附性能。因为微米气泡的收缩性,使得电荷离子在段时间内大量聚集在气泡的界面,一直到气泡完全破裂溶解之前,界面动电势一直都会增高,表现出对水中带电粒子的吸附性能越好。

混凝土表面产生气泡的原因及预防措施

混凝土气泡成因及处理 一、产生原因 1、原材料方面 (1)、气泡与水泥品种有非常密切的关 在水泥生产过程中使用助磨剂(外掺专用助磨剂,厂家非常多,质量差异非常大,通常含有较多表面活性剂)的作用下,通常会产生气泡过多的情况,且水泥中碱含量过高,水泥细度太细,含气量也会增加。 (2)、外加剂类型和掺量对气泡的产生有很大影响 市场上常见的减水剂都具有一定的引气效果,不同的类型和掺量都会影响气泡的数量和大小,而且减水剂掺量越大影响越明显。例如聚羧酸减水剂,其减水组分本身就具有一定的引气效果,在混凝土中引入的气泡含量和质量是不稳定的,主要是一些大的有害的气泡会影响混凝土性能。只进行混凝土含气量测试不能对引入的气泡的数量和大小进行表证。当含气量满足要求时,引入的也可能是有害气泡,这对混凝土强度及耐久性反而不利。 (3)、掺合料也会直接影响气泡的数量 当混凝土中水泥的含量可以保证混凝土的强度时,用掺合料代替部分水泥,可以改善混凝土的和易性,活性料还对强度有一些提高,适量的掺合料能改善混凝土的和易性,形成的胶合料能填塞骨料间的空隙,减少气泡的产生。但掺加过量的掺合料会导致混凝土的粘度增加,影响气泡的排出,故混凝土中掺合料较多是导致气泡产生的原因。 (4)、混凝土的骨料级配不合理 根据粒料级配密实原理,在施工过程中.材料级配不合理,粗骨料偏多、大小不当,碎石中针片状颗粒含量过多,以及生产过程中实际使用砂率比试验室提供的砂率偏小,这样细粒料不足以填充粗粒料空隙,导致粒料不密实,形成自由空隙,为气泡的产生提供了条件。(5)、水灰比不合理 水灰比偏大时,会导致水泥浆浆体无法充分填充骨料件的空隙,在水泥用量太少的混凝土拌合物中,由于水化反应耗费用水较少,还会使得薄膜结合水、自由水相对较多,从而让气泡形成的几率增大,这就是用水量较大、水灰比较高的混凝土易产生气泡的原因所在。(6)、混凝土中砂所占比例不理想 混凝土中细砂的比例在35%~60%范围时,细砂含量越大,混凝土拌合物的抗分离性越差,振捣过程越易分层造成上部气泡集中。 (7)、坍落度过小或过大 应采用尽可能低的坍落度,坍落度一般为120~180mm,混凝土拌合物坍落度小于12cm 时,易形成粗骨料离析,同时不易振捣密实;坍落度大于22cm时,不易排气,同时在振捣过程易分层。 2、施工工艺方面 (1)、与混凝土生产搅拌及运输的设备形式和时间有关 搅拌时间不合理,搅拌时间短会导致搅拌不均匀,使气泡产生的密集程度不同。但搅拌时间过长又会使混凝土中引入更多的气泡。由于运距过长,混凝土运输车对混凝土的搅拌过程中也会引入过多的气泡。 (2)施工人员擅自往混凝土里加水

预制混凝土构件表面气泡的产生原因及预防措施.doc

预制混凝土构件表面气泡的产生原因及预防措施1?预制混凝土构件气泡产生的原因 预制混凝土构件气泡的成因非常复杂,但通常离不开原材料及工艺原因,比如水泥品种、外加剂品种、外加剂掺量、骨料粗细、搅拌时间、脱模剂用法、振捣操作、施工温度等,下面就气泡产生的机理进行详细分析: 1.1原材料 对于用水量及水灰比偏高的混凝土产品,其气泡现象比较多发。在水泥生产时要添加一定的助磨剂,而助磨剂往往会诱发过多的气泡,同时水泥的碱度太高、颗粒过细,也会导致含气量的增加,继而使气泡产生的概率增大,这是由于混凝土中夹藏的水泡一经蒸发便会诱发气泡的产生。 若混凝土中出现较多的大气泡,一般是由减水剂中的引气成分所致。普通的减水剂尤其是聚羧酸系及磺化木质素系减水剂,其中会夹杂一些表面活性成分,具备较强的引气性,当使用的减水剂较多时,便会引发较多的气泡;此外,当使用松香类引气剂作为外加剂时,生成的气泡也会有所增加。 在混凝土构件的配制过程中,若材料配比不当、粗集料过多,或碎石料中含有较多的针片状料粒,会造成细料不足以填补粗料空隙,从而诱发气泡的产生。 1.2工艺

工艺原因是导致表面气泡的主要原因,比如搅拌不匀的情况下, 局部外加剂偏多,该部位就会产生较多气泡;但过度搅拌又会造成内部气泡整体增多,同样会造成不利影响。 预制混凝土构件大都采用钢模成型,为方便进行脱模,通常向钢 模表面刷一些脱模剂,这样一来,在进行捣振操作时,由于水沿混凝土表面及上面游走,即便脱模剂是水性的,依旧会吸附较多的气泡,从而使振捣中产生的气泡不能及时沿表面排出,从而产生表面气泡。 在混凝土拌合浇筑时,通常会混入少量空气,这部分空气不能自行溢出只能通过振捣排出,因此振捣操作的好坏是影响气泡数量的重要因素。如果出现超振、欠振、漏振,均会导致表面气泡的增多。超振会造成内部的小气泡逐渐重组为大气泡,而欠振、漏振会导致混凝土分布不均、结构不密实,继而产生局部空洞或无规则的大气泡。 混凝土表面气泡的体积对温度的变化比较敏感,若处理不当就会 在混凝土表面留下较大的孔洞,特别是昼夜温度浮动较大时,附着在混凝土表面的气泡体积随环境温度的变化而变化,当混凝土浆体的强度较小时,包裹着气泡的浆体会随气泡而流动变形而混凝土浆体的强度达到一定程度,不再受气泡的影响,又恰逢气泡体积较大时,就会在混凝土表面产生较大的孔洞。 此外,脱模剂粘度对环境温度也比较敏感,当模具温度偏低时,脱模剂粘度降低,从模具表面向下流淌,使底层表面聚集了的大量脱模剂,阻碍了底层气泡的排出,造成较多的表面气泡。 2?预制混凝土构件表面气泡的预防措施2.1混凝土原材料方面

微纳米气泡机编制说明

微纳米气泡机编制说明 一、工作简况 (一)任务来源 依据《中华人民共和国标准化法》、国家标准化管理委员会、民政部《团体标准管理规定》(国标委联(2019)1号)等有关规定,结合行业发展需要,根据《中国合作贸易企业协会团体标准制定管理办法》(中贸企协字(2018)9号),经预案调研,专家论证审核,《中国合作贸易企业协会2019年第一批团体标准项目计划》,宁波海伯集团有限公司、标准联合咨询中心等单位共同制定《微纳米气泡机》团体标准(标准计划号为:T/CC-JH201901)。 (二)目的和意义 1、微纳米气泡机是通过负压自吸的方式把尽量多的空气吸入混入水中,通过压力使空气超饱和的混入水中,再通过释气装置,把混在水中的空气完全释放出来,形成很小直径的微纳米气泡。释放过程中要尽可能的全部释放出混入水中的空气,形成更多细小的微纳米气泡使出水颜色更白,气泡保持时间更长。 2、随着技术进步和市场对微纳米气泡机的需求逐年增大,产品规格多样,目前国内主要生产厂家达到10多家,年产量60万台,年销售达到1亿多。生产批量也在逐年增大,30%的产品出口到世界各地。微纳米气泡机生产涉及金属材料加工、塑料注塑成型工艺┄等等,生产环节多,工艺复杂,随着市场需求的扩大,由于没有统一的标准,产品质量良莠不齐,给消费者选择产品和技术监督部门监督抽查带来一定的难度,因此制定满足我国现行技术水平的团体标准规范微纳米气泡机,对提高微纳米气泡机产品的质量,促进品牌培育,增强我国产品在国内和国际市场的竞争力等方面都有着重要意义。 (三)主要工作过程 1.准备阶段 ●2019年2月,项目立项并筹备组织开展标准的制定工作; ●2019年3月,召开工作组启动会议,标准工作组提交工作计划及 人员组成等方案;

【CN109876684A】一种实验室可控粒径的纳米气泡发生装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910222910.7 (22)申请日 2019.03.22 (71)申请人 大连理工大学 地址 116023 辽宁省大连市甘井子区凌工 路2号 (72)发明人 赵佳飞 匡洋民 宋永臣 杨磊  刘延振 孙明瑞  (74)专利代理机构 大连智高专利事务所(特殊 普通合伙) 21235 代理人 李猛 (51)Int.Cl. B01F 3/04(2006.01) (54)发明名称一种实验室可控粒径的纳米气泡发生装置(57)摘要一种实验室可控粒径的纳米气泡发生装置,属于微纳米气泡基础应用研究领域。技术方案如下:包括:主体气泡发生器膜组件系统、进气系统、真空抽气系统、循环进水系统;主体气泡发生器膜组件中,陶瓷膜滤芯通过轴向密封圈固定膜外壳内部,形成内外两部分腔室,膜组件外壳上部两侧开口连接进气系统,陶瓷膜滤芯上设有纳米微孔陶瓷膜;有益效果是:本发明利用纳米多孔陶瓷材料为膜分离器,其孔径尺寸分布可控,便于更换,有利于实验室条件下研究纳米气泡产生机理及满足不同实验需求,包括产生的流量大小及不同气体种类、粒径纳米气泡,能够产生一定浓度并且粒径均匀的纳米气泡,解决了现有纳米气泡发生器产生气泡尺寸不可控、容易被污染 等诸多问题。权利要求书1页 说明书3页 附图1页CN 109876684 A 2019.06.14 C N 109876684 A

权 利 要 求 书1/1页CN 109876684 A 1.一种实验室可控粒径的纳米气泡发生装置,其特征在于,包括:主体气泡发生器膜组件系统、进气系统、真空抽气系统、循环进水系统; 所述主体气泡发生器膜组件系统包括:膜组件外壳(10)、陶瓷膜滤芯(13)、轴向密封圈(14),所述陶瓷膜滤芯(13)通过轴向密封圈(14)固定膜外壳内部,形成内外两部分腔室,所述膜组件外壳(10)上部两侧开口连接所述进气系统,所述陶瓷膜滤芯(13)上设有纳米微孔陶瓷膜; 所述进气系统包括:压力表(3)、注气控制阀门(4)、注气管路(5)、高压柱塞泵(6),所述高压柱塞泵(6)通过所述注气管路(5)与所述主体气泡发生器膜组件系统连接,所述注气管路(5)上设置所述压力表(3)和注气控制阀门(4); 所述真空抽气系统包括:真空抽气管路(1)、抽气控制阀门(2)、真空泵(7),所述真空泵(7)通过所述真空抽气管路(1)与所述主体气泡发生器膜组件系统连接,所述真空抽气管路(1)上设置所述抽气控制阀门(2); 所述循环进水系统包括:注水管路(8)、注水入口阀门(9)、抽水泵(11)、储液槽(12)、注水出口阀门(15)、取样控制阀门(16)、取样瓶(17)、取样管路(18)、出水管路(19),所述抽水泵(11)放置在所述储液槽(12)内,所述抽水泵(11)通过所述注水管路(8)与所述主体气泡发生器膜组件系统的进水口连接,所述注水管路(8)上设置所述注水入口阀门(9),所述主体气泡发生器膜组件系统的出水口通过取样管路(18)与所述取样瓶(17)连接,所述取样管路(18)上设置所述取样控制阀门(16),所述主体气泡发生器膜组件系统的出水口通过出水管路(19)与所述储液槽(12)连接,所述出水管路(19)上设置所述注水出口阀门(15)。 2.如权利要求1所述的实验室可控粒径的纳米气泡发生装置,其特征在于,所述纳米微孔陶瓷膜的纳米孔径为10-1000nm。 3.如权利要求1所述的实验室可控粒径的纳米气泡发生装置,其特征在于,所述抽水泵(11)为抽水型潜水泵。 2

泡沫塑料成型中的气泡成核机理讨论

泡沫塑料成型中的气泡成核机理讨论 塑料发泡过程中的初始阶段是在塑料熔体或者液体中形成大量初始气泡核的过程,然后使气泡核膨胀形成发泡体。所谓气泡核是指原始微泡,也就是气体分子最初在聚合物熔体或者溶液中聚集的地方。气泡核的形成对于成型出泡体的质量具有关键作用。假如在熔体中能够同时出现大量均匀分布的气泡核,则常常能够得到泡孔均匀细密的优质泡体,假如气泡核不是同时出现的,而是逐步出现,延续的时间较长,则得到的泡孔较少,而且很大,泡孔尺寸分布不均匀、泡体的密度也很大的劣质泡沫。因此,在泡沫塑料的成型过程中如何有效地控制气泡成核就很关键。 要控制气泡核的形成就必须了解气泡成核的机理,气泡核是如何形成的,什么是阻力、何为动力。现有的气泡成核机理分为三个大类: (1)利用聚合物的自由体积作为成核点形成气泡核 (2)利用聚合物熔体中的低势能点作为发泡成核点 (3)气液相混合直接形成气泡核。 以下分别进行阐述。 (1)利用聚合物的自由体积作为成核点形成气泡核 聚合的体积由两部分组成:一部分是其自身的体积;一部分是各个分子之间的体积,以“孔穴”的形式分布于整个高聚物中,称为自由体积。Fox和Flory认为,任何高聚物,当温度降至玻璃化转变温度以下时,其自由体积分数都为一定值,0.025。在一定的温度和压力下,发泡剂可以浸入这些自由体积中,然后通过升温或卸压,使发泡剂气化,从而形成气泡成核点。 利用自由体积作为成核点进行发泡必须注意以下几点: (1)最为发泡基体的聚合物,其分子中必须含有足够的自由体积,以供聚集足够量的物理发泡剂渗入,形成气泡核; (2)不同聚合物中的自由体积不同,并非任何一种发泡剂都可以渗透进入任意一种聚合物中形成气泡核,必须进行实验验证; (3)聚集在自由体积中的发泡剂,其分子在不停的扩散运动,因此含有此类发泡剂的聚合物不应再大气中停留太长时间,以免发泡剂扩散到大气,影响成核质量,要注意密封 (4)发泡剂渗入自由体积的速度可以通过加压来进行,升温容易加速分子运动,发泡剂容易散失,影响成核效果。 (2)利用聚合物熔体中的低势能点作为发泡成核点 要在聚合物熔体中形成大量均匀分布的气泡核,必须在熔体中同时存在大量的过饱和气体和大量均匀分布的热点。 聚合物熔体中的热点之所以能够成为成核点,从宏观上看,热点处的熔体温度较高,使熔体黏度下降,表面张力下降,使熔体中的过饱和气体容易在此处聚集从而形成气泡核。从微观上看,聚合物熔体中热点处的分子动能增加而势能下降,分子中势能的下降为熔体中过饱和气体的析出提供了有力条件。因此聚合物熔体中的热点之所以成为成核电视因此此处的聚合物分子热势能降低,使熔体中的过饱和气体分子容易从此处析出聚集而成气泡核。在实际生产中我们可以通过多种途径在熔体中形成低势能点,如加入成核剂,形成势能较低的界面,从而使熔体中的过饱和气体容易从此析出,形成气泡核。 (挤出发泡或者注射发泡常采用此机理) (3)气液相混合直接形成气泡核

微纳米气泡的理论体系

微纳米气泡(高能氧)在 ---------污水处理和空气净化中的应用

1、前言 任何微小的粒子都具有非常高的能量,只是能量表现的形式不同,对外的性质也各不相同。如磁性材料钕铁硼,在颗粒度为700目时只能制作成普通磁性的磁铁,当颗粒度达到1200目时,则可以制作磁能级高达70高斯以上的永磁体,当颗粒度达到2000目时,则磁能级可以达到150高斯以上。 高能氧是指具有较高能量的活性氧分子团构成的微小活性氧气泡,主要存在于水或空气环境中。 氧气经过电离后,以高速涡旋运动产生切割作用、并随着高速涡旋运动产生的高压作用,把电离的氧气切割并压缩成微小的气泡,并以极高的线速度射入水中,在水中形成初始运动速度较高、具有比较高的移动效率和转移效率的活性氧分子团——高能氧。 高能氧所拥有的能量全部体现在氧的微观粒子对外表现的特性方面,因此可以称这种能量为粒子能量。 在能量的作用下,高能氧可以快速完成对水和空气中污染物的氧化降解,可以迅速溶解在水中成为高浓度溶解氧,从而彻底解决污水处理中提高氧溶解度的难题。

2、能量的产生 高能氧所含有的粒子能量来源如下五个方面: 2.1、电离能: 氧气经过电离后生成部分氧离子,并形成等离子体,当电离作用消失后,氧等离子体消失,转变成活性氧气团,主要包括臭氧离子团(O 32—、O 3—)、臭氧分子团(O 3)、氧离子团(O 22—、O 2—)、氧分子团(O2)等,这些活性氧气团具有非常高的电离能,经过气体切割后,各种离子团和分子团分离,切割动能转变为气泡能级跃迁能量,在各个气泡中表现为电离能提高,达到可以随时产生氧化作用的高能级,可以氧化一切接触到的物质。

压铸件气泡产生的原因和解决办法

压铸件气泡产生的原因和解决办法 压铸件气泡产生的原因和解决办法锌合金压铸件表面经常出现大小不等的气泡,请 问原因是什么,该如何解决?解决压铸件气孔的办法: 先分析出是什么原因导致的气孔,再来取相应的措施。 (1)干燥、干净的合金料。 (2)控制熔炼温度,避免过热,进行除气处理。 (3)合理选择压铸工艺参数,特别是压射速度。调整高速切换起点。 (4)顺序填充有利于型腔气体排出,直浇道和横浇道有足够的长度(>50mm),以利于 合金液平稳流动和气体有机会排出。可改变浇口厚度、浇口方向、在形成气孔的位置设置 溢流槽、排气槽。溢流品截面积总和不能小于内浇口截面积总和的60%,否则排渣效果差。 (5)选择性能好的涂料及控制喷涂量。 -------------------压铸件气孔分析------------------- 压铸件缺陷中,出现最多的是气孔: 气孔特征:有光滑的表面,表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。(铸件壁内气孔) 一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有 时呈油黄色。(表面气孔) 气泡可通过喷砂发现,内部气孔气泡可通过X 光透视或机械加工发现气孔气泡在X 光底片上呈黑色. 气体来源 (1)合金液析出气体—a 与原材料有关 b与熔炼工艺有关 (2)压铸过程中卷入气体? —a 与压铸工艺参数有关 b与模具结构有关 (3)脱模剂分解产生气体? —a 与涂料本身特性有关 b与喷涂工艺有关 >原材料及熔炼过程产生气体分析 铝液中的气体主要是氢,约占了气体总量的85%。 熔炼温度越高,氢在铝液中溶解度越高,但在固态铝中溶解度非常低,因此在凝固过 程中,氢析出形成气孔。氢的来源: (1)大气中水蒸气,金属液从潮湿空气中吸氢。 (2)原材料本身含氢量,合金锭表面潮湿,回炉料脏,油污。

混凝土产生气泡的原因及处理

混凝土产生气泡的原因 及处理 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

混凝土气泡成因及处理 混凝土作为一种常用的建筑材料,大量应用于工程当中。由于混凝土属于一种多相材料,由固相、液相、气相组成,所以混凝土气泡的存在是必然的,不可避免的。混凝土表面气泡的存在会影响工程的观感质量,更重要的是它反映了该工程质量可能存在潜在风险。可以通过技术手段减少有害气泡的数量,增加有益气泡的数量,对混凝土性能进行改善。因此,工程技术人员应给予足够的重视。 根据成因不同,一般认为在新拌混凝土中引入的空气在混凝土硬化后所占据的空间形态称为气泡,而未水化消耗的拌合用水在混凝土硬化体中所形成的结构称为孔隙。按照混凝土孔结构来划分,气泡属于孔隙的一种。 一、产生气泡的原因 1 混凝土浆集比偏小,水泥浆体体积不足以填充骨料的空隙。 2 混凝土砂率偏小,细集料体积不足以填充粗骨料的空隙,混凝土和易性差。 3 粗骨料级配不合理,粗颗粒过多,或粒型不好,针片状颗粒含量过多。 4 与某些外加剂以及水泥和掺合料自身的化学成分及性能有关。 5 与混凝土生产搅拌及运输的设备形式和时间有关。 6 与混凝土施工工艺的选择有关。 二、机理分析 (1) 材料方面。 气泡的形成主要是一种物理因素。混凝土是由多种材料结合而成,石子起到骨架的作用,砂来填充石子的空隙,水泥浆填充砂的空隙。混凝土中浆体在填充骨料的空隙后要有一定的富余,以使混凝土保持良好的工作性。但配合比设计和生产过程中可能存在浆集比偏小的现象,造成集料不密实,形成自由空隙,因而产生有害气泡。

根据骨料紧密堆积原理,在施工过程中,由于骨料级配不良,针片状颗粒含量较多,或河砂细度模数波动较大,都有可能导致实际使用的砂率小于理论配合比,细颗粒含量不足以填充粗颗粒间的空隙,集料本身未达到最紧密堆积,为气泡的产生提供了空隙。 混凝土用水量对气泡有一定的影响,但对混凝土孔结构影响较大。混凝土拌合用水除提供水泥水化所需用水以外,多余的水可以充当润滑剂的作用,使混凝土具有良好的工作性。在混凝土硬化后,多余的水蒸发会在混凝土中形成大量的连通孔隙。另外由于泌水,会在骨料或钢筋下方形成水隙,当水分蒸发后形成空洞,这与气泡的成因不同。 减水剂对气泡的影响也不可忽视。市场上常见的减水剂都具有一定的引气效果,不同的类型和掺量都会影响气泡的数量和大小,而且减水剂掺量越大影响越明显。例如聚羧酸减水剂,其减水组分本身就具有一定的引气效果,在混凝土中引入的气泡含量和质量是不稳定的,主要是一些大的有害的气泡会影响混凝土性能。只进行混凝土含气量测试不能对引入的气泡的数量和大小进行表证。当含气量满足要求时,引入的也可能是有害气泡,这对混凝土强度及耐久性反而不利。一般应采用“先消后引”技术对聚羧酸盐减水剂进行处理,通过掺加消泡剂降低其含气量,从而消除有害气泡的影响。另外根据混凝土耐久性也需要掺加一定的引气剂,引入大量微小的有益的气泡,复配成引气型聚羧酸减水剂。 由于掺加减水剂后混凝土用水量减小,虽然混凝土坍落度满足要求,但混凝土粘度明显增大,使混凝土中引入的空气不易排出。 (2)工艺影响 搅拌时间不合理。搅拌时间短会导致搅拌不均匀,使气泡产生的密集程度不同。但搅拌时间过长又会使混凝土中引入更多的气泡。由于运距过长,混凝土运输车对混凝土

OCA光学胶产生气泡原因分析与改善方法

O C A光学胶产生气泡原因分析与改善方法 Revised final draft November 26, 2020

O C A光学胶产生气泡原因分析与改善方法 时间:2015-04-1513:48:45来源:本站浏览次数:1054 在使用真空贴合机贴合完后,贴合面容易留下气泡,大部分可以通过脱泡脱除,但百分几的几率会留小单点的小气泡,这种小气泡有两种类型:1,脱泡不良2,汽包反弹脱泡不良:一次脱泡后留下的小气泡很难再次脱掉,因为气泡缩小了而相对面积下的OCA光学胶变大了,形成围墙效应,也就是说压力无法有效传递到小面积的气泡上,导致无法脱泡完成,可以使用单点压力脱泡的来解决这个问题。 汽泡反弹: 汽泡反弹指的是脱泡完成后立即或某一段时间之后又再次复发的气泡,产生的原因归纳为两种特性: 1,挺性型再发气泡 2.内应力型再发气泡 挺性型再发气泡: G+G贴合施压后随之对TP油墨段差产生压力,TP材质挺性不会消失,所以在油墨边缘就会产生挺性型再发气泡,单点压力脱泡可以消除,但TP挺性却永远存在,这就有再次再发的可能性。这里我们使用”脱泡缓慢泄压”的方式有效减少TP挺性应力与OCA光学胶应力回复的不平衡现象。另外,通过调整脱泡机参数,通常减少脱泡压力和降低脱泡温度对减少汽包反弹有益。脱泡缓慢泄压:脱泡缓慢泄压一般我们脱泡机的动作是压力或温度同时或分时产生,然后再依时间设定开始脱泡程序,直到脱泡时间完成同时降温减压,依照设定压力及脱泡机排气设计不同泄压的时间由 30sec~60Sec不等!这样的泄压程序有一个很大的盲点就是TP并不会因为压力及温度造成多大的改变,而OCA光学胶对于温度压力却很敏感,所以当压力快速释放的当下,TP的挺性很快会回复,但暂时被胶的粘性牵制住了!然而OCA光学胶的挺性恢复就很慢了。这样当脱泡Module一离开脱泡机,OCA光学胶还残留一定的核心温度,内应力较小就很容易会被TP挺性应力拉开产生小气泡,这里多数是原来就有气泡的地方,而内部确实也有少量的空气质量,这种称谓稀出现象。缓慢泄压;改变泄压程序先保持温度不变,再以每秒钟较少0.03Kg/M2的的泄压速度直至无压力为止.应力型再发气泡:这种类型的DelayBubble是最麻烦的类型,这类型的再发气泡是由OCA胶及OCA胶与TP/LCM夹层的Particle(杂质)引起的,但不是所有的Particle都会产生这种类型再发气泡,也与Particle的尺寸大小无关,无法根据单纯的量测筛选作防治,主要的关键点在于Particle的立体形状,一般立体的Particle容易产生气泡。 气泡故障观察重点和经验总结:1.确认故障气泡是没有脱干净还是反弹气泡(Delaybubble),没有脱干净气泡通过延长脱泡时间,增加脱泡压力,提高脱泡温度进行试验,优先顺序为时间,压力,温度。2.确定故障气泡是在TP和OCA胶之间,还是OCA胶和LCM之间,通过放大镜调焦清晰度判断是在哪一层,在LCM和OCA之间时,调焦清晰度与LCM的RGB点阵清晰度相同。TP和OCA

混凝土产生气泡原因分析及预防措施

混凝土产生气泡原因分析及预防措施 我工区在DK175+990框架涵混凝土施工中发现表面气泡多,不美观,影响了外观质量,为了在以后工作中进行预防,现在对气泡产生原因进行分析。气泡有无害气泡和有害气泡之分。在混凝土中形成微小气泡属于无害气泡。这种气泡从混凝土结构理论上来讲,它不但不会降低强度,还会大大提高混凝土的耐久性。 一、产生气泡的原因 产生气泡的原因很多,根据自己经验和请教相关前辈,主要有以下几个方面的原因: (1)级配不合理,粗级料过多,细级料偏少; (2)骨料大小不当,针片状颗粒含量过多; (3)用水量较大,水灰比较高的混凝土; (4)与某些外掺剂以及水泥自身的化学成分有关; (5)使用的脱模剂不合理。混凝土结构面层的气泡一旦接触到粘稠的脱模剂,就很难随着振捣而上升排出。直接导致混凝土结构表面出现气泡 (6)与混凝土浇筑中振捣不充分、不均匀有关。往往浇注厚度都偏高,由于气泡行程过长,即使振捣的时间达到要求,气泡也不能完全排出,这样也会造成混凝土结构表面气泡 气泡的形成主要是属于一种物理原因。根据集料级配密实原理,在施工过程中,如果使用材料本身级配不合理,粗集料偏多骨料大小不当,石料中针片状颗粒含量过多,以及在生产过程中实际使用砂率比实验室提供的砂率要少,细粒料不足以填充粗集料之间的空隙,导致集料不密实,形成自由空隙,为气泡的产生提供了条件。 水泥和水的用量,也是导致气泡产生的主要原因。在实验室试配混凝土时,考虑水泥用量主要是针对强度而言。如果在能够满足混凝土强度的前提下,增加水泥用量,减少水的用量,气泡会减少,但成本会加大。 在水泥用量较少的混凝土拌和过程中,由于水和水泥的水化反应消耗部分

微气泡技术原理

微气泡水是指水中的气泡以微米级和纳米级的单位混合存在,气泡在气泡以大于50微米直径存在时是我们平常可以用肉眼观察到的,当水中这种气泡大量存在的情况下,由于光的折射作用我们可以观察到的水溶液呈乳白色,俗称牛奶水。 目前看来能够形成纳米气泡的表面多是疏水的,疏水表面上形成气泡的方法一般有四种: 一是直接浸置法;二是外源法;三是醇水替换法;四是化学反应法。以上几种方法目前基本都有相关的产品,但是大多数都应用于工业领域.民用微气泡设备主要以日本与台湾技术为主,比较出名的就是日本的悦泊,是一种面向家庭为主的小型化的微气泡发生装置。 由于微气泡具有氧化性、稳定性和杀菌性等特性,现已经普遍应用于日常生活之中,如: 1、清洁皮肤健康沐浴 水中的气泡从零开始增大至微米级气泡而破灭,产生的低音频率具有去除污垢的效果,同时低音频率更具有刺激脑内啡的产生,令人有镇静与愉悦的感觉。此外,如果水中含有以氧气产生的超微氧气泡,当身体浸泡在这种含高氧量的水中,可以滋养皮肤、延缓老化,达到高氧疗法之功效。 2、缓解皮肤病症状 皮肤病的成因很多大部分是由真菌造成,通过微气泡水的洗涤虽然不能达到治愈的效果,但是由于微气泡水的清洁与高增氧功能在一定程度上可以缓解皮肤病的一些症状。比如皮肤瘙痒、脚气等都是有明显的效果。而且对于一些较轻的表层皮肤病状确实还存在着一些治疗效果。 3、高效去除厌氧菌缓解口腔疾病 氧气可抑制和杀灭导致“口气”难闻,牙齿腐烂和牙龈疾病的厌氧菌,使用微气泡水,对有口腔疾病的患者是一大福音。 4、蔬菜、水果出色的清洗效果

微气泡水清洗蔬菜主要是利用微气泡水蕴藏着的丰富的动能及气泡爆炸的波浪使水进入到蔬菜水果表面的凹凸缝隙,以及茎杆的夹缝处从而达到清除污垢及取出农药残留的效果。 5、xx氧水的神奇功效 经过微气泡处理过的普通水可以称之为“富氧水”富氧水中的溶解氧可达到70mg/L,是普通水的10倍。初步研究发现,喝富氧水对心血管系统的健康有益;许多人自觉喝了“富氧水”后精神焕发;有人喝了后头痛消失;运动员喝了以后可提高运动能力。如果使用富含微量元素的矿泉水生产“富氧水”还可达到防病健身的多种目的。

微纳米气泡曝气机原理

微纳米曝气机的工作原理,其实就是通过快速发生装置,把气体溶入水中,从而产生直径小于50微米的气泡,通常使用的方式是高速旋回切割。从而达到将气体快速、高效地溶入水中。本次就想起分享其原理信息,希望对大家有所帮助。 这种设备所应用的是纯物理方法产生气泡水,不添加任何化学物质,耗电量与国内最好的曝气装置电耗相比可以降至1/5,相对传统设备效率高得多,节能效果明显。而且系统在设定的水深处通过释放系统释放大量微纳气泡散布到水中每一角落,氧利用可达50%-80%以上。 系统核心技术主要利用的就是纳米分散技术,从而将大量的空气初步压缩成大量的直径为0.25mm的无压微泡,然后利用释放系统将这些直径为0.25mm的无压微泡在半真空的情况下通过气相和液相的高度分散,产生直径小于3μm的微米级气泡和纳米级气泡,统称为微纳米气泡释放到水体以达到对水体迅速充氧的效果。 微纳气泡水发生器在工作的时候会在向缺氧水域发射微纳米气泡的时候,不断向水中补充活性氧,从而弥补气泡内溶解氧的消耗,达到迅速增加水中含氧量的目的。而与此同时,还会迅速分解水中的各种有机颗粒,使之变为更小的微粒,有利于进一步的生化分解,并可大量减少污泥的沉淀。 而且因为这些微纳气泡不会增大,所以基本不会出现上浮状况。所以这些气泡会具有长时间

的存活特点,而且是可以在水中维持长达72小时之久,比表面积大,高界面活性、带能带电等特殊的理化特性,与水的接触面积极大,溶氧率极高。 南京蓝洁环保科技有限公司是一家环保全产业链的综合服务业,专门从事于高浓度工业有机废水、工业交通民用环境噪音污染、高难度工业废水烟尘处理以及工业废水余热回收利用技术等方面的综合性的环境工程服务,

气泡产生的原因

施工中泵送混凝土墙体表面若产生体积较大的气泡、联通气泡等,将会导致混凝土表面形成大麻点的气泡孔,既影响墙体的美观和耐久性又会影响混凝土的抗冻性能,因此对气泡产生的原因进行分析并制定相应的解决措施具有非常现实的意义。 一、泵送混凝土墙体表面气泡产生原因 1 引气剂质量因素。目前施工混凝土多为泵送混凝土。因此为了保证其可泵性或部分水泥厂家为增大水泥细度并考虑节约电能而在混凝土内掺加各种适量的引气剂,引气剂的加入可导致混凝土在搅拌过程中引人大量的均匀分布、稳定而封闭的微小气泡,气泡的存在虽增强了混凝土的和易性和可泵性,但对其坍落度将会有较大影响,同时由于各种引气剂的质量及性能存在较大差异,导致其在混凝土内呈现的装填也不尽相同,有的引气剂在混凝土内形成较大的气泡导致易形成联通性气泡,若施工中振捣不合理而不能将气泡完全排出则会导致硬化混凝土结构表面造成麻面。 2 配合比因素。若混凝土配合比不当导致混凝土过于粘稠,在振捣时气泡很难排出;混凝土的水灰比过大则混凝土结构表面产生的气泡会增多,因为混凝土内的水分达到饱和后多余的水分将会从混凝土内游离而出并吸附于混凝土结构表面,并由于混凝土自身氧化而吸收或随着空气蒸发而形成气泡;若采用的混凝土和易性较差而产生离析沁水,因此为防止浇筑后的混凝土分层而不敢充分振捣导致大量气泡不能外排最终导致结构面层出现麻面。 3 搅拌时间因素。在混凝土拌合过程中若搅拌不均匀,则同样的水灰比情况下外加剂多的部位产生的气泡则较多,而不含外加剂的部分则会出现坍落度不均、坍损大以及离析等现象,同时施工中过度振捣则会导致混凝土内生成更多的气泡而产生负面作用。 4 脱模剂因素。目前建筑市场脱模剂产品良莠不齐,一般为矿物油类;由轻质油类加水后再加定量的乳化剂而生成水包油型乳化油类;将植物油进行皂化再加水稀释而成的水质类;由石蜡等物质加入有机溶剂而成的聚合物类等类别。其各种类别脱模剂性能具有较大偏差,若使用油性脱模剂,由于其对气泡有较大的吸附性,混凝土内气泡已经与其接触则会吸附在模板面上而不易脱落,即使是水性脱模剂也对气泡有一定的吸附作用而导致内部气泡无法完全外排最终影响混凝土结构外观效果。 5 模板因素。不同材质模板也将导致混凝土结构面层出现不同状态溶液,和各种固体接触后都将形成不同的接触角,并且其接触角越小则其在固体上的附着力越强,其也是导致墙体表面气泡形成原因之一。 6 振捣因素。振捣过程中分层振捣的高度和振捣时间将决定混凝土的振捣效果,混凝土分层越高则其内部气泡越不容易排出,同时振捣时间越短则内部气泡越不易排放并导致混凝土不密实,而振捣时间过长则会导致混凝土内部的微小气泡在机械作用下出现破灭重组而变大,并且施工中粗骨料下沉水泥浆上浮也将会产生一定量的气泡。

微气泡发生器和微气泡发生器

微气泡发生器和微气泡发生器[問題] 和快速回轉速度的混合液,心態和降噪是可行的。 [解決方案] 微泡第 1 代旋流射流室 91 像液體液混合流體的投影面上形成成立在丹特的介意與放電開放 60 個位置,放在密封體 10 兩側密封的空心管內的氣缸壁 11 形成立場為圓柱殼 11 桶蓋牆的 12,13,和板狀導牆 60 和指南的站在缸密封體 10 60 牆牆 60 60 b 渦流形成客房 90 及指南和像液體噴孔 40 桶蓋牆 13 車廂像液體引入孔 30 開幕到 11 到缸壁上對應的位置漩渦形成客房 90 和旋流射流室 91,開放和特點,像液體噴孔排出開放 60 40 噴旋流射流室 91 通過微氣泡流形成的旋渦狀流體混合,形成入旋流像流體混合旋流的形成辦公室 90 提供的護理液引入孔在 30。 大廣有限公司(2) [本發明的產品詳細的介紹] [技術] [] 0001 本發明是關於微氣泡發生器提出了大量的微氣泡發生器的微氣泡。 [背景技術] [] 0002 作為傳統的微氣泡發生器為例,部分的核心圈子: 微容器本體與圓錐形的空間和Ρ 空格和其焊接程ΑΑλ kaio 國際空間底部的加壓液體波董Αθ,圓錐形的先驅和氣體傳導董Ζ 是到圓錐形空間先驅的先端,旋轉液體派生校準θ 像我,建設s Φ 是成為已成為磨細護理方法ΑΩ 細?!,比爾 (尤其是Ω 文學1) br / > 專利文獻 1 開放 2000年-447 問題的公開報告 [發明的披露] [發明試圖解決這一問題: [] 0003 不過,這種微氣泡發生器和流動液體混合流體的切線方向,像打開像液體混合液注射的城牆時噪音太大。有問題,例如當你使用盆浴或淋浴在家裡,特別是雜訊較高。

橡胶制品产生的气泡原因分析

一、模压制品产生气泡的原因分析: 主要原因有: 1、材料的问题,橡胶材料来混炼、储存、使用过程中有湿气,湿气未排除,导致产生气泡,或天气变化原因受潮。 大多数原因可能是原材料有问题,我们以前也出现过类似情况,换另外一个批次材料就好了; 2、模具排气孔设置不当或者堵塞也会产生气泡,排气的时候没有排好。 原材料在炼胶中,空气被裹附在材料内部,导致在加工的过程中,材料和空气一起进入模具,假如模具没加排气槽或加工中没有设置排气工艺的话,空气很容易被困在模具里面,使得产品产生气泡或气孔。 3、生产橡胶制品,硫化后有气泡,可能是橡胶配方中的问题,可以找技术人家给调整一下配方。 二、橡胶制品硫化时有气泡原因 1、橡胶混炼不均匀,操作工不规范。 2、橡胶胶片停放不规范,环境不卫生。管理不规范。 3、材料有水份(混炼时加点氧化钙) 4、硫化不充分,不熟看起来有气泡。 5、硫化压力不足。 6、硫化剂杂质较多,小分子的杂质提前变成分解,气泡残留制品中 7、模具本身排气设计不合理,胶料冲线时气不能及时排出! 8. 制品太厚,胶料过少,橡胶传热慢,外表硫化后,橡胶流动性下降,造成缺料,所以就可能产生气泡。 9.硫化过程中排气没排好。 10、配方问题,硫化体系要改善。 解决办法:在硫化压力和时间上加以改善 1、延长硫化时间或提高硫化速度。

2、硫化前薄通几次。 3、硫化时排气次数多一点。 三、橡胶产品表面有气泡的原因分析 1.有水份(混炼时加点氧化钙); 2.未充分硫化,不熟看起来有气泡; 3.硫化剂杂质较多,小分子的杂质提前变成分解,气泡残留制品中; 4.模具本身排气设计不合理,胶料冲线时气不能及时排出; 5.分散不良; 6.胶料塑炼时间长,产品硫化时也有气泡。 四、硅胶成型产生气泡是什么原因呢? 1、排气不足,硅胶原料放置于成型模具后,在合模的瞬间会带入许多空气,而空气是不可能与硅胶原料融为一体的,如果没有将这些空气排放出来,就会造成硅胶按键成型后表面产生气泡。

超微纳米气泡发生器设备型号以及特点有哪些

该产品主要由发生器装置、微纳米曝气头装置、连接管件等部分组成。通过泵力加压,由曝气头内部的曝气石高速旋转离心作用下,使内部形成负压区,空气通过进气口进入后,经过高速旋回切割成微纳米气泡,从而达到将气体快速、高效地溶入水中。由于气泡细小,不受空气在水中溶解度的影响,同时也不受温度、压力等外部条件限制,可以在污水中长时间停留,具有良好的气浮效果。 型号如下: 一、LJ-CWNM-1.1KW/10 处理水量:25m3/h 300m3 /天 二、LJ-CWNM-3KW/20 处理水量:75m3/h 900m3 /天 三、LJ-CWNM-5.5KW/30 处理水量:125m3/h 1350m3 /天 四、LJ-CWNM-7.5KW 处理水量:150m3/h 1550m3 /天 五、LJ-CWNM-11KW 处理水量:150m3/h 1750m3 /天 微纳米气泡特点: (1)水中停留时间长一般的气泡在水中产生后,会很快上升到水面并破裂

消失,即存在时间短。而微米气泡在水中由产生到最终破裂消失会有几十秒钟甚至达到几分钟。有研究数据标明,直径为1mm的气泡在水中的上升速度为6m/min,而直径为10um的气泡在水中的上升速度为3mm/min。可以看出,微米气泡在水中的上升速度非常缓慢,所以可在水中停留较长时间。 (2)带电性微米气泡表面带负电荷,而且相对于普通气泡,其所带负电荷比较高,一般30um以下的气泡的表面负荷在-40mV左右,这也是微米气泡能大量聚集在一起时间较长而不破裂的原因之一。利用微米气泡的带负电性,可以吸附水中带正电的物质,对去除水中悬浮物或污染物的吸附和分离起到很好的效果。 (3)自我增压和溶解气泡内部的压力和表面张力有关,气泡的直径约小,内部压力越大。由于微米气泡的直径很小,比表面积很大,所以它内部的压力要比外界液体的压力大很多,而正式由于由于微米气泡的这种内部增压和比表面积大的优势,它的气体溶解能力是毫米级气泡的几百倍之多。因为溶解度与压力有很大关系,所以微米气泡内部压力增大到一定阙值时,会使界面达到过饱和状态,在将更多气泡内的气体溶解到水中的同时,自身也会慢慢溶解消失。 (4)收缩性微米气泡在水中产生后因为自身增压,会不断的收缩或膨胀,其直径是一直变化的。据最新研究标明,20um~40um的气泡会以1.3um/s的速度搜索到8um左右,然后收缩速度会土壤急剧增加,此后可能进一步分裂成纳米级气泡或者完全溶解于水中。(5)界面动电势高微米气泡的表面会吸附带电荷的离子如OH-,而在这OH-离子层周围,又会分布反电荷离子层如H+,这样微米气泡的表面就形成了双电层,双电层界面的电位又称为界面动电势,界面动电势的高低在很大程度上决定了微米气泡界面的吸附性能。因为微米气泡的收

相关文档
最新文档