Multisim 10-正弦稳态交流电路仿真实验
Multisim 10仿真实验课件第二章

(5)在同一电路窗口中,根据有源单口网络的开路 电压和等效内阻,建立有源单口网络的戴维南等效 电路,如图2-13(参数自定)。
四、实验注意事项
(1)进行仿真实验时,要注意电压、电流的实际方 向。
(2)要先停止仿真,然后再改接电路。 (3)运行仿真时,要等电路达到稳定后,再读取电
流表、电压表的读数。
二、实验原理
电压:电路中两点之间的电位差称为电压。电流流过负载 形成电压。电压符号:U,单位:V。A,B两点之间的电 压用用表U红A表B表棒示接,A含,义黑是表从棒A接点B到。B点之间的电压,测量时万
电位:电路中某点相对于参考点之间的电压。电位符号: U点。之单间位的:电V压。,A点测的量电时位万用用U表A表红示表,棒含接义A,是黑从表A点棒到接参参考考 点。
二、实验原理
电桥的概念:最简单的电桥是由四个支路组成的电 路。各支路称为电桥的“臂”。如图2-6电路中有一电 阻为未知(Rx),一对角线中接入直流电源E,另一 对角线接入电流表V1(或电压表)。可以通过调节 各已知电阻的值使电流表指示为0(或电压表无电 压),则电桥平衡,此时R1/Rx=R2/R。通常R1、R2为 固定电阻,R为可调电阻,Rx为被测电阻。电桥平衡 时,可由电桥平衡条件求得被测电阻阻值。
(4)运行仿真时,要等电路达到稳定后,再读取电 流表、电压表的读数。
2.5 戴维南定理的验证
一、实验目的 (1)掌握测量等效电源的等效电动势和等效内阻的
方法。 (2)通过仿真实验验证戴维南定理,加深对“等效”
概念的理解。 二、实验原理 具有两个引出端纽,内部含有独立电源且两个端纽
上的电流为同一电流(这称为端口条件)的部分电 路称为有源单口网络(图2-10),也称为有源二端网 络。
Multisim_10_课程设计仿真

元件工具栏
电 源 库
基 本 元 件 库
二 极 管 库
晶模 体拟 管元 库件
库
系 列 元 器 件 库
其
他
系 列 元 器 件 库
数 字 元 器 件 库
模 数 混 合 元 器 件 库
指 示 器 件 库
mcu
COMS TTL
电 源 器 件 库
杂 项 元 件 库
高 级 外 围 设 备
被选中的元件
(2)调整导线
如对某条导线放置的位置不满意,可以调整其位置:首 先点击选中导线,此时导线两端和拐角处出现黑色小方 块。若将鼠标放在选中导线中间,鼠标变成一个双向箭 头,如图1-12所示,按住鼠标左键,拖动导线至理想的 位置松开鼠标左键即可;若鼠标放在选中导线拐角处的 小方块上,按住鼠标左键,就可改变导线拐角的形状。
Multisim 7提供一个5位的数字万用表, 除了可以用来测量交直流电流、交直流 电压与电阻外,还可以测量分贝值。
1、数字万用表的连接
虚拟数字万用表的外观与实际仪器基本相同, 其连接方法与现实万用表完全一样。都是通过 “+”、“-”两个端子来联接的。
* 注意:
(1)数字万用表作电流表用时,应串联在所测 支路中。
用信号发生器产生正弦波、 三角波和方波
瓦特表(Wattmeter)
瓦特表的图标和面板
瓦特表的连接
瓦特表的连接如图所示。
瓦特表的面板由两组输 入端,左侧两个输入端 为电压输入端,应与被 测电路并联,右侧两个 输入端为电流输入端, 应与被测电路串联。
Oscilloscope-示波器
Oscilloscope是一种 显示电路信号的重要 仪器。
正弦稳态电路及其MATLAB仿真

正弦交流电是随时间按照正弦函数规律变化的电压和电流,在现代工农业生产和日常生活中具有广泛的应用。
在正弦激励的动态电路中, 若各电压、电流均为与激励同频率的正弦波, 则称该电路为正弦稳态电路。
无论在理论研究还是实际应用中, 对于正弦稳态电路的分析都是十分重要的。
它是变压器、交流电机以及电子电路的理论基础, 在实际应用中, 许多电气设备的设计、性能指标就是按正弦稳态来考虑的。
因此, 分析和计算正弦稳态电路是工程技术和科学研究中常常会碰到的问题。
一、正弦稳态电路及其分析的重要性 (1)1.1 正弦稳态电路的定义 (1)1.2 分析正弦稳态电路的重要性 (1)2.1相量分析法 (1)2.2 Matlab分析 (1)三、Matlab在正弦稳态电路分析中的应用 (2)3.1 Matlab的概况 (2)3.2 Matlab分析的优势 (2)3.2.1 友好的工作平台和编程环境 (2)3.2.2 简单易用的程序语言 (3)3.2.3 强大的科学计算机数据处理能力 (3)3.2.4 出色的图形处理功能 (3)3.2.5 应用广泛的模块集合工具箱 (4)3.2.6 实用的程序接口和发布平台 (4)3.2.7 应用软件开发 (4)3.3 分析流程 (4)四、正弦稳态电路分析实例 (5)4.1 电路图 (5)4.2采用节点电压法求解 (5)4.3 用Matlab编程计算 (6)4.4电流向量图和波形图绘制 (6)五、结束语 (9)六、参考文献 (10)七、成绩评定 (11)一、正弦稳态电路及其分析的重要性1.1正弦稳态电路的定义线性时不变动态电路在角频率为ω的正弦电压源或电流源激励下,随着时间的增长,当暂态响应消失,只剩下正弦稳态响应,电路中全部电压电流都是角频率为ω的正弦波时,称电路处于正弦稳态。
满足这类条件的动态电路通常称为正弦电流电路或正弦稳态电路。
1.2 分析正弦稳态电路的重要性1.2.1 很多实际电路都工作于正弦稳态。
《电工技术基础与仿真(Multisim 10)》项目4单相正弦交流电路分析

p
ui
Im
sin tU m
sin(t
2
)
U m I m cos t sin t
UI sin 2t
在电感元件的交流电路中,没有任何能量消耗,只 有电源与电感元件之间的能量交换,其能量交换的 规模用无功功率Q来衡量,它的大小等于瞬时功率 的幅值。
QL UI I 2 X L
4.2.3 纯电容电路
将开关K1闭合,K2和K3断开,分别按给定的频 率值调节信号源的频率,每次在信号发生器中设 置好频率后,打开仿真开关,双击万用表符号, 得到测量数据,
任务3 相量法分析正弦交流电路
4.3.1 RLC串联电路 1.RLC串联电路电压电流关系 (1)瞬时关系 由于电路是串联的,所以流过R、L、C三元
件的电流完全相同
1 Z1
1 Z2
(2)复阻抗并联的分流关系
I1
U Z1
I
Z Z1
I
Z2 Z1 Z2
U
I2
I Z1 Z1 Z2
I I1 I2 Z1 Z2
a)
I
U
Z
b)
4.3.3 功率因数的提高
1.提高功率因数的意义 功率因数愈大,所损耗的功率也就愈小,
输电效率也就愈高。 负载的功率因数 愈高,发电机可提供的有
1.电压与电流的关系 线性电容元件在图所示的关联方向的条件下
iC
C duc dt
i +
u
C
_
i C duc dt
C dUm sin t
dt
U mC cost
U
mC
s
in(t
2
)
据此,可得出电容元件电压与电流关系的结论:
Multisim电路仿真实验PPT课件

电路
RC充放电仿真实验
电路模型和电路定律
电路
电路模型和电路定律
电路
电路模型和电路定律
Multisim简介
隶属于美国国家仪器公司(National Instruments,简称 NI)的Electronics Workbench公司发布了Multisim软件, 是一种紧密集成、终端对终端的解决方案,工程师利用这 一软件可有效地完成电子工程项目从最初的概念建模到最 终的成品的全过程。
电路
电路模型和电路定律
(1) 万用表的使用 如图所示,在万用表控制面板上可以选择电压值、电流值、
电阻以及分贝值。参数设置窗口,可以设置万用表的一些参数
。
万用表图标、面板和参数设置
电路 (2) 函数信号发生器
电路模型和电路定律
如图所示,在函数信号发生器中可以选择正弦波、三角波和 矩形波三种波形,频率可在1~999范围内调整。信号的幅值、 占空比、偏移量也可以根据需要进行调节。偏移量指的是交流 信号中直流电平的偏移。
(4) 导线的连接点
在Place菜单下选择Junction命令,可以放置连接点,可 以将连接点直接插入导线中。连接点是小圆点,连接点最 多可以连接来自4个不同方向的导线
(5) 在导线中间插入元器件
我们可以非常方便地实现在导线中间插入元器件。选 中元器件,用鼠标将其拖至导线上,释放鼠标即可。
电路
电路模型和电路定律
电子通信类其它常用的仿真软件: System view---数字通信系统的仿真 Proteus――单片机及ARM仿真 LabVIEW――虚拟仪器原理及仿真
电路
电路模型和电路定律
multisim 10概述
Multisim 被美国NI公司收购以后,其性能得到了 极大的提升。最大的改变就是:Multisim 与 LABVIEB 的完美结合:
Multisim模拟电路仿真实验

Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。
其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。
本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。
通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。
一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。
Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。
Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。
2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。
例如,电阻器的阻值、电容器的容值、电源的电压等。
这些参数值将直接影响到电路的仿真结果。
3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。
根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。
4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。
通过分析这些仿真结果,可以评估电路的性能和工作情况。
二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。
以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。
Multisim电路仿真实验

仿真错误
遇到仿真错误时,首先 检查电路原理是否正确 ,然后检查元件库是否
完整。
界面显示问题
如果界面显示异常,可 以尝试调整软件设置或
重启软件。
导出问题
在导出电路图或仿真结 果时出现问题,检查文 件路径和格式是否正确
。
THANKS
分析实验结果,验证电路的功 能和性能是否符合预期。
如果实验结果不理想,需要对 电路进行调整和优化。
04
电路仿真实验分析
实验数据整理
1 2 3
实验数据整理
在Multisim中进行电路仿真实验后,需要将实验 数据导出并整理成表格或图表形式,以便后续分 析和处理。
数据格式
数据整理时需要确保数据的准确性和完整性,包 括电压、电流、电阻、电容、电感等参数,以及 仿真时间和波形图等。
数据存储
整理好的数据应妥善存储,以便后续查阅和引用。
数据分析与处理
数据分析
对整理好的实验数据进行深入分 析,包括参数变化趋势、波形图 特征等,以揭示电路的性能和特 性。
数据处理
根据分析结果,对数据进行必要 的处理,如计算平均值、求取标 准差等,以得出更准确的结论。
误差分析
分析实验数据中可能存在的误差 来源,如测量误差、电路元件误 差等,以提高实验的准确性和可 靠性。
Multisim软件
Multisim软件是进行电路仿真实验的核心工具,用户可以在软件中创建电路图、设置元件参数、 进行仿真实验等操作。
实验电路板
实验电路板是用来搭建实际电路的硬件设备,用户可以在上面放置电路元件、连接导线等,实现 电路的物理连接。
元件库
Multisim软件提供了丰富的元件库,用户可以从元件库中选择需要的元件,将其添加到电路图中 ,方便快捷地搭建电路。
multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暨南大学本科实验报告专用纸
课程名称 电路分析CAI 成绩评定 实验项目名称 正弦稳态交流电路仿真实验 指导教师 实验项目编号0806109705实验项目类型 验证型 实验地点 计算机中心C305 学生姓 学号 学院 电气信息学院 专业实验时间 2013 年5月28日
一、 实验目的
1.分析和验证欧姆定律的相量形式和相量法。
2.分析和验证基尔霍夫定律的相量形式和相量法。
二、实验环境定律
1.联想微机,windows XP ,Microsoft office ,
2.电路仿真设计工具Multisim10 三、实验原理
1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。
正弦稳态电路中的KCL 和KVL 适用于所有的瞬时值和向量形式。
2.基尔霍夫电流定律(KCL )的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。
3. 基尔霍夫电压定律(KVL )的向量模式为:具有相同频率的正弦电流电路中的
任一回路,沿该回路全部的支路电压向量的代数和等于零。
四、实验内容与步骤
1. 欧姆定律相量形式仿真
①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。
打开仿真开关,用示波器经行仿真测量,分别测 量电阻R 、电感L 、电容C 两端的电压幅值,并用电流表测 出电路电流,记录数据于下表
②改变电路参数进行测试。
电路元件R 、L 和C 参数不变, 使电源电压有效值不变使其频率分别为f =25Hz 和f =1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。
③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。
暨南大学本科实验报告专用纸(附页)
)所示仿真电路图。
=
,使电源电压参数不变,参照①
在Multisim 10 中建立如图(3所示仿真电路图.
打开仿真开关,用并接在各元件两端的电流
表经行仿真测量,分别测出电阻R支路、
电感L支路‘电容C支路中的电流值,及
电源支路中流过的电流I,记录数据于下表。
②改变电路参数进行测试。
电路元件R=
300Ω、L=50mH和C=3300pF,使电源电
压参数不变,参照①仿真测试方法,对参数
改变后的电路进行相同内容的仿真测试。
③将两次测试结果数据整理记录,总结分析
比较电路参数变化后对电路特性影响,研究
、分析和验证基尔霍夫电流定律相量形式和
相量法。
暨南大学本科实验报告专用纸(附页)
( 五)实验结果分析
1.理论值计算
实验一:
由欧姆定律的向量模式可知:
2.跟据上述实验数据可知:在正弦交流电路中欧姆定律、KVL和KCL的向量形式是成立的。
即在正弦交流电路中有:流入某节点的电流向量的代数和为零,任一回路,沿该回路全部的支路电压向量的代数和等于零。
另外U=IZ。
3.误差分析:a.实验1中测量个电流元件的电压时,在示波器的信号图中拉动T1的线时,不准,造成读数误差大。
b.理论值计算过程中数据精确度取的过小。
4.由以上数据也可的出:正弦交流电路中,回路中全部电压有效值的代数和并不一定零。
流入某一节点的电流的有效值的代数和也不一定为零。
5.实验时,电路中的电压表和电流表注意要用AC形式,否则测量出的数据是错误的。
6.读取数据时,要等数据稳定时才开始读。
六、实验总结
1、对实验的分析不懂得理解,而且在本实验当中遇到了不少的问题,最后与同学讨论才得到解决,可知多交流对学知识有很大作用。
2、感觉mulitisim学到的东西不是很多,投入的时间与收入并没有成正比。
3、以后在正弦交流电路中,要先把各元件改为向量形式,然后才用欧姆定律、KCL、KVL、网孔法....分析电路。