电感和变压器的区别

电感和变压器的区别
电感和变压器的区别

电感和变压器的区别

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感

应元件,也是电子电路中常用的元器件之一。

电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示。

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。

变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母"T"(旧标准为"B")表示。

变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。主要作用有:降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等。

只不过变压器是利用其原边线圈通电后产生的磁场影响了副边线圈,导致它产生了“感生电势”,也就是副边就有电压产生。也就是变成了一个能量转换器件在使用。

而电感本身“却是隔交通直”的说法不全面,所谓隔交通直只是我们在电路中利用了电感器的“感抗”原理而已。这只是与变压器的自感、互感在电路中不同的用法。

简言之:变压器是通过自身电感对副边产生互感而生电压。电感器是通过其感抗,产生对交流电的谐振而遏制,但直流电不受其影响。

变压器在电路中的连接方式是与交流电源并联,电感在电路中的连接方式一般是与交流电路串联,电感虽然对交流电有阻挡作用,但也并不是完全不让交流电通过,它是通过所谓的感抗来产生对交流电的限制作用。对于变压器来说,它是作为交流电负载的方式来工作的,它对交流电产生的作用是能量转换,而不是通过。

电感与变压器的区别

能够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。

电感、线圈和变压器的实用知识

什么是电感器、变压器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应组件,也是电子电路中常用的元器件之一。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源组件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母“L”表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母“T”(旧标准为“B”)表示,其电路图形符号如图6-12所示。 (二)变压器的作用

变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离,如图6-4所示。2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。 绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种,如图6-5所示。 3.磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有“工”字形、柱形、帽形、“E”形、罐形等多种形状,如图6-6所示。 4.铁心铁心材料主要有硅钢片、坡莫合金等,其外形多为“E”型。 5.屏蔽罩为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。 6.封装材料有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线圈和磁心等密封起来。封装材料采用塑料或环氧树脂等。

变压器基础知识

变压器原理、质量等基础知识 作者:未知????文章来源:未知????点击数:669????更新时间:2008-2-14 变压器的基本原理??????? ??? 变压器是利用线圈互感特性构成的一种元器件,几乎在所有的电子产品中都要用到。它原理简单,但根据不同的使用场合(不同的用途),变压器的绕制工艺会有所不同。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等。它是由一个初级线圈(线圈圈数n1)及一个次级线圈(线圈圈数n2)环绕着一个核心。常用的铁心形状一般有E型和C型。 ?

???????E1是初级电压,次级电压E2是? E2 = E1×(n2/n1)??????? ??? 上图是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。??????? ??? 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。???????? ??? 下图是各种变压器的电路符号,从变压器的电路符号可以看出变压器的线圈结构。 ? ?

变压器知识培训学习资料

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

电感和变压器的识读与检测(授课教案)

【课题名称】电感器与变压器的识别与检测 【课时安排】2课时(90分钟) 【知识目标】 1、向学生展示不同类型的固定电感器、可变电感器,熟知它们的适用场合 2、讲解电感器的电感量的识别方法,并确定其允许误差范围、额定电流 值。 3、讲解变压器的结构种类。 【能力目标】 1、能用目视法识别常见电感和变压器; 2、能读出电感和变压器上标识的主要参数; 3、会用万用表测电感和变压器并判断质量。 【教学重点】 电感器标识方法 【教学难点】 1、电感器电感量标注法 2、万用表测电感和变压器判断质量. 【教学方法】 多媒体展示法、讲授法、现场演示法 【教具资源】 多媒体课件、各种类型电感万用表 【学情分析】 1、学生在电路学习了与本章内容相关的知识,对电感器和变压器有一定了解。 2、学生对通过学习电阻、电容的标注方法,触类旁通,对电感器的标注方法接受会快一点。 【教学过程】 1、复习旧知:教师提问,学生回答,复习电阻和电容的相关知识,为学习电感做铺垫。 问题1:电阻的标识方法有几种?分别是什么? 问题2:电阻和电容的主要参数有哪些? 问题3:电容的特性有哪些? 2、课题引入:引入另外一种常用电子元器件——电感器,复习已学电感相关知识,为新课新知识做铺垫。 相关知识:电感(或称电感器)也是一种非线性元件,是利用电磁感应原理制成的器件。能够储存磁场能量。由于通过电感的电流值不能突变,所以,电感对直流电流短路(通直流),对突变的电流呈高阻态(阻交流)。 作用: 1、做为滤波线圈阻止交流干扰(隔交通直)。 2、可起隔离作用。 3、与电容组成谐振电路。 4、构成各种滤波器、选频电路等,这是电路中应用最多的方面。 5、利用电磁感应特性制成磁性元件。如磁头和电磁铁。

变压器与电感知识

变压器与电感知识 能够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H 表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点: 1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。 2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频

电感器、变压器检测方法与经验

电感器、变压器检测方法与经验 1色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:A被测色码电感器电阻值为零,其内部有短路性故障。 B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 2中周变压器的检测 A将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。 B检测绝缘性将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3电源变压器的检测 A通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 B绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。 E空载电流的检测。 (a)直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。 (b)间接测量法。在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。 F空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 G一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。 H检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的

14高考变压器知识点

变压器、电能输送 基础知识 一、变压器 1理想变压器的构造、作用、原理及特征 构造:两组线圈(原、副线圈)绕在同一个闭合铁芯上构成变压器. 作用:在输送电能的过程中改变电压. 原理:其工作原理是利用了电磁感应现象. 特征:正因为是利用电磁感应现象来工作的,所以变压器只能在输送交变电流的电能过程中改变交变电压. 2.理想变压器的理想化条件及其规律. 在理想变压器的原线圈两端加交变电压 U l 后,由于电磁感应的原因,原、副线圈中都将产生 感应电动势, 根据法拉第电磁感应定律有: E n 一1, E 2 n 2 —2 (①忽略原、副线圈内阻,有 U 1 = E 1, U 2= E 2;②另外,考虑 到铁心的导磁作用而且忽略漏磁,即认为在任意时刻穿过原,副线圈的磁感线条数都相等,于是又有 由此便可得理想变压器的电压变化规律为 出 21 U 2 n 2 再忽略变压器自身的能量损失 (一般包括线圈内能量损失和铁芯内能量损失这两部分,分别俗称为“铜损” 和 有 P 1=P 2 (而 P 1 = I 1“ , P 2 = I 2U 2) 于是又得理想变压器的电流变化规律为 U 1I 1 U 2I 2, I l 72 n 2 由此可见: (1)理想变压器的理想化条件 一般指的是:忽略原、副线圈内阻上的分压,忽略原、副线圈磁通量的差别, 忽略变压器自身 的能量损耗(实际上还忽略了变压器原、副线圈电路的功率因数的差别. (2)理想变压器的规律实质上就是法拉第电磁感应定律和能的转化与守恒定律在上述理想条件下的新的表现形式. 3、规律小结 (1)熟记两个基本公式:① U 1 21,即对同一变压器的任意两个线圈,都有电压和匝数成正比。 U 2 n 2 ②P 入=P 出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和。 ⑵原副线圈中通过每匝线圈的磁通量的变化率相等. (3)原副线圈中电流变化规律一样,电流的周期频率一样 ⑷公式S 丄,生中,当原线圈中 U 2 巧 12 n 2 U 1、11代入有效值时,副线圈对应的 U 2、I 2也是有效值, 当原线圈中 U i 、I l 为最大值或瞬时值时,副线圈中的 U 2、12也对应最大值或瞬时值. (5)需要特别引起注意的是: “铁损

4.变压器与电感器的设计要点

损耗确认:在3.2:节已对反激变压器的损耗进行了分析,但如何确 认实际的情况,只有实测原副边绕组和磁芯的温度,而且要在无风的条件下测量,并根据温度进行改进,使铜损等于铁损,且原副边的铜损相等。但实测原副边绕组的温度很困难,所以,要保证原副边绕组的铜损相等,必须按原副边绕组总的铜面积相等的原则选定线径。 磁芯尺寸:要知道磁芯的尺寸是经过反复优化而确定的,目的是传输更大的功率和减小寄生参数,所以,在使用磁芯时,窗口一定要用满,如原副边绕组一定要绕满窗口,否则就一定会有不妥之处,如选的磁芯型号过大等等。 半匝:在多绕组输出时,偶尔会为得到准确的输出电压而使用半匝,但要搞清楚半匝的本质,从电流必须流过完整的回路角度看,半匝其实并不真正存在,只是另一半是由其余线路来充当而已。这样一来,漏感大增是肯定的,故此,半匝不能在主要绕组上使用。另外还有安规方面的问题。所以要慎用半匝。

线路对漏感有惊人的影响,特别是变压器匝比较大时,所以,良好的布线是保 证漏感较小的前提,因此,变压器漏感的测量要在PCB 板上进行,在输出二极 管D 和电解电容C 的位置,要用短粗铜线短接,这样测ab 点之间的漏感值才是 在电路中起作用的漏感,千万不要被错 误的测量而误导。漏感测量:为了减小漏感,我们花费很大的精力在变压器上进行改善,并测得有不超过2~3%的漏感,深感欣慰。但不要忘记, PCB Q Vin+C Np Ns Vo+Vo-a b D 脉冲丢失:反激变换器在轻载或空载时,会有脉冲丢失的现象,其原因是反激变压器开通一次所存的能量超过负载的需求,电压环的误差放大器处于随机工作状态所致。 增大电感量会有改善,但只增电感量会有其他问题产生,所以,还是在电路上寻找改善的办法,如增大D max 、降低f s 、增加假负栽、加大电流前沿尖峰的削减等等。

变压器和电感的知识

够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。 2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f="f0"的交流信号),所以LC谐振电路具有选择频

变压器基础知识培训教材

变压器基础知识培训教材 第一部分 原材料类 培训资料一 变压器工作原理 一变压器组成 变压器主要由骨架铁芯漆包线绝缘胶带纸等组成其中骨架起支撑作 用铁芯起能量转换桥梁作用漆包线主要用来做绕组绝缘胶带则用来对各绕组之间 的绝缘作保证最简单的变压器应有铁芯和漆包线缺一不可 胶带漆包线 铁芯磁芯 骨架 第1页 二变压器种类 按用途可分为 1电源变压器为电子设备提供电源如整流隔离灯丝等变压器 2音频变压器用于音频放大电路及音响设备中如话筒线间匹配等变压器 3开关电源变压器用于开关电源中的变压器如反激正激半桥正桥等变压 器 4特种变压器主要指具备特殊功能的一些变压器如电力变压器等 按工作频率可分为 1工频变压器指工作频率为50或60HZ的变压器俗称低频变压器

2中频变压器指工作频率为4001000HZ的变压器 3 音频变压器指工作频率在20KHZ 以下的变压器 4 高频变压器指工作频率在20KHZ 以上的变压器 其分类方法有多种如按铁芯结构按相位按绝缘等级按升降压方式等 二变压器工作原理 变压器是把电能从一个电路传递到另一个电路的静止电磁装置 磁力线 初级次级 ui RL 变压器工作原理图 图中与输入电源相连的为初级绕组初级绕组流过交变电流与负载相连的为次级绕组产生的电流同样是交变的 第2页 培训资料二 漆包线 WIRE 一漆包线类别 聚胺基甲酸脂漆包线是以Polyure thane树脂为主体的油脂为绝缘漆膜直铜软化 后表面涂一层或数层绝缘漆并经加工烘干而成其最大的特点是漆包膜在300?以上 时能于短时间内溶解便于直接上锡作业 1 UEW类型直接焊锡容易着色耐温等级有7级分别为 90度--Y级 105度--A级

变压器基础知识培训教材

变压器基础知识培训教材 第一部分原材料类培训资料一变压器工作原理一变压器组成变压器主要由骨架铁芯漆包线绝缘胶带纸等组成其中骨架起支撑作用铁芯起能量转换桥梁作用漆包线主要用来做绕组绝缘胶带则用来对各绕组之 的绝缘作保证最简单的变压器应有铁芯和漆包线缺一不可胶带漆包线铁芯磁芯骨架第1页二变压器种类按用途可分为 1 电源变压器为电子设备提供电源如整流隔离灯丝等变压器 2音频变压器用于音频放大电路及音响设备中如话筒线间匹配等变压器3开关电源变压器用于开关电源中的变压器如反激正激半桥正桥等变压 4特种变压器主要指具备特殊功能的一些变压器如电力变压器等 按工作频率可分为 1工频变压器指工作频率为50或60HZ的变压器俗称低频变压器 2中频变压器指工作频率为4001000HZ的变压器3 音频变压器指工作频率在20KHZ 以下的变压器 4 高频变压器指工作频率在20KHZ 以上的变压器其分类方法有多种如按铁芯结构按相位按绝缘等级按升降压方式等二变压器工作原理变压器是把电能从一个电路传递到另一个电路的静止电磁装置磁力线初级次级 ui RL 变压器工作原理图图中与输入电源相连的为初级绕组初级绕组流过交变电流与负载相连的为次级绕组产生的电流同样是交变的第2页培训资料二漆包线WIRE 一漆包线类别聚胺基甲酸脂漆包线是以Polyure thane 树脂为主体的油脂为绝缘漆膜直铜软 后表面涂一层或数层绝缘漆并经加工烘干而成其最大的特点是漆包膜在300?以

时能于短时间内溶解便于直接上锡作业 1 UEW类型直接焊锡容易着色耐温等级有7级分别为90 度--Y 级 105 度--A 级 120 度--E 130 度--B 155 度--F 180 度--H 200 度--H 目前一般最常用的漆包线为130度B级类其漆皮膜厚度分别如下 0UEW 1UEW 2UEW 3UEW 对应GB QA-3 QA-2 QA-1 QA-0 漆包膜层数3 层2 层1 层1 层最薄工作温度每升高10 度漆包线的使用寿命就减少一半即漆包线的老化寿命减少一半 2 P EW类型聚脂瓷漆包线是以耐热的Tere phthalic Polyester 树脂为主体的 油脂为绝缘漆包膜分可焊与不可焊两种耐温等级较高一般为155度或以上常用来做环 温度较高的产品如灯饰变压器交直流马达等 3 三层绝缘线分可焊与不可焊两种耐温等级一般为120度和130度两种其基本 组成为中心一根铜丝其外围有三层绝缘层可承受4500VAC以上的高压在安规变 压器上面用此铜线最多可以减除绕组两端的隔带减少层间胶带的层数同时还可 增加初次级之间的耦合程度减少漏感减小主变压器体积使变压器及电源部分更 小型化但其价格昂贵设计时要仔细考虑 4 其它类比如胶皮线丝包线较少使用一般温度等级在105度或以上

电抗器与变压器异同

电抗器与变压器异同 maychang 电抗器(电感)与变压器最大的不同之处,是变压器并不存储能量,仅传输能量,而电抗器尤其是滤波电抗器必须存储能量。 变压器并不存储能量,空载时一次电流非常小,理想变压器二次空载时一次电流为零。一次之所以有电流,完全是二次电流反射到一次的结果。因此,变压器铁心的作用仅仅是使一次二次达到完全的耦合,也就是一次电流产生的磁场完全穿过二次绕组,二次电流产生的磁场也完全穿过一次绕组。对变压器来说,加在铁心上的限制只有一条:铁心中的磁通密度不得太大以致铁心达到深度饱和。因此,变压器铁心一般不留气隙,纯交流工作的变压器更是如此。 滤波电抗器则不然,它必须存储能量,无论是谐振回路中的电抗器,还是整流电路中的电抗器都必须存储能量。为使电抗器能够存储足够的能量,绝大多数电抗器(电感)中都留有气隙。当然,铁心中磁通密度仍不能太大以致铁心达到深度饱和这一限制条件在电抗器中仍存在,甚至比在变压器中更甚,因铁心中磁通密度即使浅饱和也将使电感量减小而使谐振频率发生变化。故谐振工作的电抗器中铁心磁通密度往往选择得比直流滤波电感中的磁通密度更小。 这一点可以从开关电源中使用的变压器看出来。正激方式工作的开关电源,无论是单端正激、推挽、半桥、全桥,其变压器一般不留气隙。而反激工作的开关电源,在开关管导通期间直流电源输出的能量存储在变压器中,开关管关断期间变压器向负载输出能量,故反激工作的开关电源变压器必留有气隙。留气隙之目的是在体积重量限制条件下存储最大的能量。 磁场强度、磁通密度和存储能量的关系如下

赵凯华陈熙谋《电磁学》第626页 这是矢量表达式。因实际铁心中磁通密度总是与磁场强度同一方向,故可写成标量式 (赵修科《开关电源中磁性元器件》第6页) 普通工频变压器空载时一次电流非常小,意味着其电感量很大。而电抗器通常要求具有一定的电感量,不能大也不能小,这就要求磁性材料磁导率不能很大。另一方面,从单位体积磁场能量是B与H之积的一半来看,为使单位体积磁场能量尽量大而又要B不超过饱和磁通密度,降低磁导率是有利的。为保持一定磁通密度,磁导率降低一半,磁场强度需要增加到二倍,而单位体积磁场能量也增加到二倍,因磁场能量与磁场强度平方成正比。 因此,电抗器无可避免地一定要留有气隙,甚至做成空心。没有气隙的电抗器几乎是不可能的。 电子电路中,小功率电抗器(电感、扼流圈)设计,通常已知工作频率、需要承受的电压或电流、电感量。工作频率、电压、电流、电感量各参数中只能给出三个,第四个应该根据给出的三个求出。 小功率电抗器(电感、扼流圈)设计由于不能对铁心进行加工,往往只能使用现成的铁心,而且磁路中往往只能留一个气隙(机械的气隙,环绕磁路实际上是两个气隙)。 根据给出的参数要求,可以初步估计出需要用多大铁心以及需要多大气隙。然后根据初步选定的铁心进行计算。铁心中磁通密度不能达到饱和的约束条件仍起作用,线性要求高的电感其磁通密度应该越小些。计算过程中往往需要调整气隙大小、匝数等。最后的计算结果若绕组不能放到铁心窗口中,则必须改用大一号的铁心重新进行设计。若绕组放到窗口中有相当大的余量,则应该考虑使用小一号的铁心重新设计。 由于匝数、铁心型号都是不连续的变量,所以电抗器设计往往是反复调整重新设计的过程。更由于有若干参数可以自由选择,可能出现几个不同的结果,最后需要在各不同设计结果中比较成本、加工难易程度、通用性等等,选择一个最终结果。 在功率比较小的电抗器中仍使用留气隙的铁心,是为了使体积和成本最小。使用带气隙的铁心,可以使磁场约束在铁心内而不致于扩散得很大。无论留几个气隙,气隙都是放在铁心的心柱位置而不能放到心柱之外就说明了这一点。空心电抗器也要在电抗器绕组外面加导磁外壳,目的仍是为了减小体积避免磁场扩散影响到其它电抗器或结构件。

电感和变压器的相关公式

电感和变压器的相关公式 安培环路定律: 磁压: 磁动势: 电磁感应定律: 带磁芯的电感公式: 磁压: 磁阻: 电阻: 开气隙磁芯: 磁通变化量: n l H i ?= i n l H ?=?c m l H U ?=i n F ?=t t n t n e ΔΔ= Δ?Δ= ΔΔ? =ψφφ) (dt di L dt di l A n dt dH nA dt dB nA dt d n e u c ?=?====?=μμφ2 c l A n L ??= μ2 φ φμμφ μ ?=?=?=?==mc c c c c c c m R A l l A l B Hl U c c mc A l R ?=μS l R ? =ρδ δ δ μμA l A l n R R n R n L c c m mc m ?+ ?=+==02 2 22 111φφφ?=t 2 21111i N i N i N t ???=? 1i =输入电流 反射电流 变压器工作原理:

导线集肤深度: 矩形波电流产生的集肤效应:矩形波电流的集肤深度为基波正弦 波的集肤深度的70%。 当负载电流比较大时(一般大于20A),应采用铜箔,而不是用 利兹线(多股细小且绝缘)或多股实心线并绕,开关频率低于50kHz 时,应尽量避免使用利兹线。 铁氧体磁芯损耗: 磁芯的工作状态分为三类: Ⅰ类:有直流偏磁的单向磁化(主要关注磁芯的饱和问题) Ⅱ类:无直流偏磁的单向磁化(主要关注磁芯的复位问题) Ⅲ类:双向磁化(主要关注磁芯的高频损耗问题) γ μπ?????= Δf k 22μ导线材料的磁导率 γ材料的电导率(γ=1/ρ) k材料电导率的温度系数 β=2.2~2.4 α=1.2~1.7 B为磁感应强度 η为材料系数 f为交变频率

变压器与电感磁芯设计原则

变压器与电感磁芯大小设计 2016/10/6 HIT_yys 一、变压器与电感 传统意义上的变压器为正弦输入正弦输出的变压器,输入的同时产生输出,输入切断输出也立马切断。随着高频开关电源的普及,变压器的范围也逐渐拓展,如正激电路变压器、LLC 电路变压器、移相全桥变压器等,这些变压器的工作形式与传统意义的变压器还是比较接近的,在原边有电流时副边也有电流输出,而原边无电流时副边也无电流,仅是工作时的输入电压波形不同,在此将其统称为正激型变压器。而反激电路中,变压器的工作形式与传统的变压器便不再相同,因为反激电路中原边有电流时副边无电流,而原边电流关断时副边开始输出,因而反激变压器一般也会叫做耦合电感。变压器或者电感设计的核心问题是保证磁芯不饱和。 二、变压器磁芯设计 三个基本原则: 原边的基尔霍夫电压环路定律:in 10+=u e 法拉第电磁感应定律:d d e N dt dt ?ψ=-=- 毕奥-萨伐尔定律的推广形式: e B A ? μμ =Ni =Hl =l l (1)变压器工作时的磁分析 对于正激型变压器,记原边产生的磁通为1?,副边产生的磁通为2?,则原边磁通与副边磁通之差(12??-)即为励磁磁通?,也为原边的净磁通。 空载时,记原边产生的磁通为10?,此时副边产生的磁通200?=,则励磁磁通(原边或者副边的净磁通)0102010????=-=,原边回路的基尔霍夫电压环路定律可写为:in 10+=u e ,其中感应电动势可根据法拉第电磁感应定律计算 (d d e N dt dt ?ψ=-=-)。 因而有:010in 111e d d dB N N N A dt dt dt ??===u ,据此可求出磁芯的励磁磁场,进 而可根据毕奥-萨伐尔定律的推广形式求得励磁电流。 另一方面,若知道原边的励磁电感L ,则可根据以下方程组先求出磁芯中的励磁电流,然后求得磁芯中的磁场状态。 in 1d dt N μ?=?? ???? i L u i =Hl B =H (由上述两个方程求得的磁芯中磁场状态是一致的,因为原边的电感量为: 22e 11A μ?=?L =Al N N l ,将其带入上述方程组中便可得到与前述同样的结果) 当副边带载时,记原边产生的磁通为1?,副边产生的磁通为2?,副边产生的磁通方向与原边相反,此时通过原边的净磁通便为12???=-。此时原边的基尔

电感线圈及变压器的基本知识

电感线圈及变压器的基本知识 常见的高频阻流圈、振荡线圈、天线线圈、天线阻抗变换器、电源变压器、输出变压器等,都属于电感器件。电感线圈与电阻器、电容器及三极管等元件恰当组合后,能构成滤波器、放大器、振荡器等电子电路。 一、电感线圈及其电路图形符号 电感线圈就是用漆包线或纱包线一圈靠一圈地绕在绝缘管架、磁芯或铁芯上的一种元件。电感线圈也可简称为线圈,通常在电路图中用字母“L”表示,常用的图形符号如图1所示。 图1 各种电感线圈的电路图形符号 二、线圈的自感和互感 任何线圈有电流通过时其周围会产生磁场;若通过线圈的电流变化时,线圈周围磁场也会变化,这变化的磁场又产生感应电动势。感应电动势是由于线圈中的电流变化引起的,即自感应作用,叫做自感。 自感应电动势的方向符合楞次定律。当线圈中电流变化时,自感应电动势总是阻碍电流的变化。 两只线圈相互靠近,一只初级线圈,另一只次级线圈,初级线圈通变化的电流,次级线圈产生感应电动势。初、次级线圈虽无直接相连,但有磁力线耦合作用,使初级线圈的电能转移到次级线圈,这种作用称为互感,由互感作用产生的感应电动势称为互感电动势。 根据初级线圈磁力线通过次级线圈产生作用的多少,即互感量的大小,有紧耦合和松耦合。若把初、次级线圈彼此垂直放置,则没有磁感应作用,即没

有耦合。 三、电感线圈的种类和型号命名方法 由于工作频率、绕组匝数、骨架材料等因素不同,线圈种类繁多,主要有振荡线圈、阻流线圈、电视偏转线圈和校正线圈、固定电感线圈等。 按磁体性质又分为:空芯线圈和磁芯线圈; 按线圈形式又分为:固定线圈和可变线圈。 电感线圈的型号命名一般由四部分组成: 第一部分:用字母表示主称,其中L代表线圈,ZL代表阻流圈; 第二部分:用字母表示特征,其中G代表高频; 第三部分:用字母表示型号,其中X代表小型; 第四部分:用字母表示区别代号。 下来介绍几种线圈: 1.单层线圈 单层线圈的电感量一般在几个微亨到几十个微亨之间,适用在高频电路中,为了提高Q值,线圈骨架选用介质损耗小的陶瓷、聚苯乙烯、聚四氟乙烯等。密绕法单层线圈就是将导线一圈挨一圈地绕在螺线管上;间绕法单层线圈就是将导线一圈一圈地隔一定的距离绕在螺线管骨架上。 2.带磁芯的线圈 在线圈中加入铁粉芯或铁氧体芯,可以提高电感量和品质因数,调节磁芯与线圈的位置可以改变电感量。线圈有了磁芯,电感量提高了,分布电容减小了,给线圈小型化创造了有利条件。 3.阻流圈 电子电路中用来限制交流电通过的线圈称为阻流圈。分为高频阻流圈和低频阻流圈两种。高频阻流圈用来阻止高频信号通过而让较低频率的交流信号和直流信号通过的一种线圈;低频阻流圈在收音机中,常与电容器组成滤波电路,消除整流后残存的一些交流成分而只让直流通过。 四、电感线圈的标志方法

电流互感器 电压互感器和变压器的区别

电流互感器和变压器原理差不多,在构造上也基本一样,都是两个绕组:一个匝数多、线径细,另外一个匝数少、线径粗。 若匝数多、线径细的绕组是作为一次绕组与被测量的电路并联连接,而匝数少、线径粗的绕组接测量仪表(电压表),则该互感器就是一个电压互感器。电压互感器实际上就是一台工作在空载状态下的降压变压器(因为电压表是高阻表,电流很小,所以是空载。又因为一次绕组匝数多、二次绕组匝数少,所以是降压) 若匝数少、线径粗的绕组是作为一次绕组与被测量的电路串联连接,而匝数多、线径细的绕组接测量仪表(电流表),则该互感器就是一个电流互感器。电流互感器实际上就是一台工作在短路状态下的升压变压器(因为电流表是低阻表,电流很大,所以相当于短路。又因为一次绕组匝数少、二次绕组匝数多,所以是升压,而之所以实际电流互感器的二次绕组电压没有升压,是因为它工作在短路状态)。电流互感器工作时二次绕组绝对不能开路,否则会感应高电压危及设备或人身安全,并因失去二次绕组的去磁磁势,会使铁心严重饱和而失去测量的准确性。电流互感器(CT)在运行中不允许开路 电压互感器和电流互感器在作用原理上有什么区别? 主要区别是正常运行时工作状态很不相同,表现为: 1)电流互感器二次可以短路,但不得开路;电压互感器二次可以开路,但不得短路; 2)相对于二次侧的负荷来说,电压互感器的一次内阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。 3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱 互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100 伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈.

电感器、变压器及中周检测方法与设计应用经验

电感器、变压器及中周检测方法与设计应用经验 发布: 2010-3-21 10:58 | 作者: pcb_dz | 来源: 网络 | 查看: 20次 1.色码电感器的的检测 将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别: A 被测色码电感器电阻值为零,其内部有短路性故障。 B 被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 2.中周变压器的检测 A.将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。 B.检测绝缘性能 将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3.电源变压器的检测 A 通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈

蚀,绕组线圈是否有外露等。 B 绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C 线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D 判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。 E 空载电流的检测。 (a) 直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。 (b) 间接测量法。在变压器的初级绕组中串联一个10 /5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。F 空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值 (U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。G 一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。 H 检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。否则,变压器不能正常工作。 I.电源变压器短路性故障的综合检测判别。电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。存在短路故障的变压器,其空载电流值将远大于满载电流的10%。当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。此时不用测量空载电流便可断定变

相关文档
最新文档