配对t检验公式

合集下载

配对样本t检验的定义与前提条件

配对样本t检验的定义与前提条件

配对样本t检验(p本人red sample t-test)是一种统计分析方法,用于比较同一样本在两个不同条件下的平均值是否存在显著差异。

在进行配对样本t检验时,需要满足一定的前提条件,并且需要理解其定义和具体步骤。

为了充分理解配对样本t检验的定义和前提条件,我们需要对其进行深入解析和探讨,以便更好地应用于实际研究中。

1. 配对样本t检验的定义配对样本t检验是一种用于比较两个相关样本平均值差异的统计方法。

它适用于不同条件下对同一组样本进行观察或测量的情况,例如同一组人员在两种不同条件下的表现、同一组产品在不同时间点的质量等。

配对样本t检验的目的在于判断两种不同条件对同一组样本的影响是否存在显著差异。

2. 配对样本t检验的前提条件在进行配对样本t检验前,需要满足以下前提条件:(1)样本来自正态分布总体。

为了验证此条件是否成立,可以通过观测样本数据的直方图或利用正态性检验进行检验。

(2)样本的差异服从正态分布。

此条件可以通过绘制差值的直方图或进行正态性检验来验证。

(3)样本来自的总体具有相同的方差。

可以利用方差齐性检验来验证此条件。

3. 配对样本t检验的具体步骤进行配对样本t检验时,需要完成以下步骤:(1)计算每一对配对样本的差值(即两个条件下的差异),并计算差值的平均数。

(2)计算差值的标准差,以验证差值的正态性和方差齐性条件是否成立。

(3)利用配对样本t检验公式计算t统计量,并根据自由度和显著性水平查找t临界值。

(4)根据t统计量和t临界值的比较,判断两个条件下的平均值是否存在显著差异。

4. 实例分析为了更好地理解配对样本t检验的应用,我们以一个具体实例进行分析。

假设某药物在治疗前后对同一组病人进行了血压测量,我们希望利用配对样本t检验来判断治疗前后的血压平均值是否有显著差异。

在这个实例中,我们需要计算每个病人的血压差值,并进行配对样本t检验,以验证治疗的效果是否显著。

5. 结论配对样本t检验是一种用于比较同一组样本在不同条件下平均值差异的统计方法,它能够帮助研究人员判断两种条件对同一组样本的影响是否存在显著差异。

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

配对样本t检验公式

配对样本t检验公式

配对样本t检验公式
配对样本t 检验用于比较同一组个体或实验对象在不同时间点或条件下的平均值是否有显著差异。

其计算公式如下:
t = (x̄d - μd) / (sd / √n)
其中:
t 是检验统计量;
x̄d是配对样本差值(即两个时间点或条件下的观测值之差)的平均值;
μd 是假设的差异均值(通常为0,表示没有显著差异);
sd 是配对样本差值的标准差;
n 是配对样本观测数量。

接下来,根据计算得到的t 值,可以参考t 分布表确定其对应的P 值,从而判断是否存在显著性差异。

若P 值小于预先设定的显著性水平(通常为0.05),则可以拒绝原假设,认为两个时间点或条件下存在显著性差异。

需要注意的是,在进行配对样本t 检验之前需要满足以下前提条件:
已知数据符合近似正态分布;
配对样本之间是相关联或相关程度较高。

在实际应用中,可以使用统计软件(如SPSS、R、Excel等)进行配对样本t 检验的计算和结果分析。

配对t检验和秩和检验

配对t检验和秩和检验

配对符号秩检验方法
H0为真时,T服从对 称分布,大多数情况 下,T在对称点 n(n+1)/4附近 H0为非真时,T呈 偏态分布,大多数的 情况下,T远离对 称点为n(n+1)/4
配对符号秩检验方法
样本量较小时,可以查附表10,大样本时,可以 用正态近似的方法进行检验。
本例T=6.5,n=12,H0为真时,T的非拒绝的界值 范围为(13,65),因此本例T<13,所以拒绝H0 (查表进一步确认P<0.01) 基于T+>T-,因此可以认为高剂量组的小鼠肝糖原 含量高于中剂量组,差异有统计学意义。
秩表示差值的绝对值从小到大的排序号,正负号取之差值的正负号, 相同大小的差值取平均秩。
配对符号秩检验方法
H0:差值的中位数为0 H1:差值的中位数不为0
=0.05
统计量 对正的秩求和T+=48.5,对负的秩求和 T-=6.5,由于T++T-=n(n+1)/2,所以只需任 取一个秩和,不妨取数值较小的秩和T=6.5
配对资料的t检验和秩 和检验
内容
1
配对资料的t检验
2
配对资料的秩和检验
配对设计的t检验
设计方式:配对设计

同一样本接受不同处理的比较 同一对象治疗(或处理)前后的比较(时间影响) 配对的两个受试对象分别给予两种处理
原理:通过配对设计,尽量消除可能的干扰因素。如果处
理因素无作用,则每对差值的总体均数μd应为0,样本均数 也应离0不远。
配对设计的t检验
计算公式:
d 0 d 0 t sd sd / n
d
为差值的均数,n为对子数
配对设计的t检验
配对设计的t检验的步骤

卫生统计学专题八:t检验

卫生统计学专题八:t检验

专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。

⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。

⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。

【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。

⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。

⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。

⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。

⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。

⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。

②同一样品用两种不同方法测量同一指标或接受不同处理。

③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。

④同一对象的两个部位给予不同处理。

⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。

计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。

⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。

两独立样本和配对样本T检验

两独立样本和配对样本T检验

两独立样本T检验目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。

检验前提:样本来自的总体应服从或近似服从正态分布;两样本相互独立,样本数可以不等。

两独立样本T检验的基本步骤:提出假设原假设H_0:μ_1-μ_2=0备择假设H_1:μ_1-μ_2≠0建立检验统计量如果两样本来自的总体分别服从N(μ_1,σ_1^2)和N(μ_2,σ_2^2),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。

第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2)则两样本均值差的估计方差为:σ_12^2=s^2 (1/n_1 +1/n_2 )构建的两独立样本T检验的统计量为:t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) )此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。

第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2构建的两独立样本T检验的统计量为:t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 )此时,T统计量服从修正自由度的t分布,自由度为:f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 )可见,两总体方差是否相等是决定t统计量的关键。

所以在进行T检验之前,要先检验两总体方差是否相等。

SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。

三、计算检验统计量的观测值和p值将样本数据代入,计算出t统计量的观测值和对应的概率p值。

配对样本t检验

配对样本t检验

四、成组设计的两样本几何均数的 比较 1.分析目的:推断两样本几何均数 各自代表的总体几何均数有无差 别。 2.应用条件:等比资料和对数正态 分布资料。(例3.9)
SHIFT
log … 50 … SHIFT 12800 , …

1 ; , 3 M+ M+ M+
log
SHIFT
X
1 XσnSHIFT
规则:一般先确定检验水准α,
然后决定检验功效。α取值一般 为0.05,若重点减小(如方差 齐性检验、正态性检验等),一 般取α=0.1或0.2。
第七节 假设检验中的注意事项 一、 要有严密的抽样设计 这是假设检验的前提,同质总体 中随机抽取的,组间要具有均衡 性和可比性(即除了要比较的因 素外,其它可能影响结果的因素 如年龄、性别、病情轻重、病程 等在对比的组间应尽可能相同或 相近)
F S1 (较大) S 2 (较小)
2 2
(3.10)
υ1=n1-1,υ2=n2-1
求得F值后,查附表12方差齐性检验 (F界值表)得P值,按所取的α水准 做 出 判 断 结 论 : (1 ) 若 F≥F0.10(υ 1,υ2) ,P≤0.10拒绝H0 ,接受H1 ,可 认为两总体方差不具有齐性。(2) 若F<F0.10(υ1υ2),P>0.10,则认为 两总体方差具有齐性。
二、Ⅱ型错误(typeⅡ error) 1.定义:Ⅱ型错误是指接受了 实际上不成立的H0 ,即“存伪” 的错误。(用表示)。 2.确定:只有与特定的H1结 合起来才有意义,但的大小很 难确切估计。
仅知n 确定时,
Βιβλιοθήκη 且 的唯一办法是
n
客观 实际 H 0成 立 H 0不 成立

第5章t检验

第5章t检验

3.5
12.25
10
15.0
8.0
7.0
49.20
Байду номын сангаас
11
13.0
6.5
6.5
42.25
12
10.5
合计
9.5
1.0
1.00
39(d)
195(d2)
H0:d=0, H1:d0, 0.05。
自由度计算为 ν=n-1=n-1=12-1=11,
查附表2,得t0.05(11) = 2.201,
t0.01(11) = 3.106,本例t > t0.01(11), P < 0.01,差别有统计学意义,拒绝H0,接受H1,
应的总体方差相等(方差齐性) u 检验:1.大样本
2.样本小,但总体标准差已知
➢t检验 样本均数与总体均数比较的t检验 配对设计资料比较的t检验 两独立样本均数比较的t检验
➢样本均数与总体均数的比较的t检验,亦 称单样本t检验(one sample t test) 。
➢用于从正态总体中获得含量为n的样本, 算得均数和标准差,判断其总体均数μ 是否与某个已知总体均数μ0相同。
可认为两种方法皮肤浸润反应结果的差别有 统计学意义。
查表,t与自由度为9(10-1)时的t界值进行比 较,得到0.01<p<0.05。
P=2*[1-CDF.T(2.434,9)]
CDF.T(quant, df)。数值。返回 t 分布(指定自由度为 df)中的 值将小于 quant 的累积概率。
SPSS软件操作
• 第一步:以“血尿素氮” 为变量名,建立变量
t
df
Sig. (2-tailed) Difference Lower
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档