解线性方程组直接方法
解线性方程组的直接方法

解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
解线性方程组的直接方法

(1.5)
消去法的回代过程是解上三角形方程组(1.5).我们从方程组(1.5)的第三个方 x3 6 / 6 1 ; 程解得 然后将它代入第二个方程得到
x2 ( 5 x3 ) / 3 2;
最后,将 x3 1, x2 2 代第一个方程得到
x1 (3 2 x2 3 x3 ) / 2 2.
②
(n+1)n/2次运算
i 1 l11 bi lij x j l21 l22 j 1 A xi , i 1, , n lii l l l nn n1 n 2
③
(n+1)n/2次运算
n u11 u12 u1n bi uij x j u22 u2 n j i 1 A x , i n, ,1 i uii u nn
1,2,...,n)
( 1 .2 )
Ax b,
a1n a2 n , ann
§1 1.1 Gauss 消去法 本章主要介绍求解线性方程组(1.1)的直接法。所谓直接法,就是不考虑 计算过程的舍入误差时,经有限次数的运算便可求得方程组准确解的方法.我 们还将在§5中对计算过程中的舍入误差作一些初步分析.
a11 a 21 A, b ... an 2
之间有一对应关系.不难看出:
a12 a22 ... an 2
... ... ... ...
a1n a2 n ... ann
b1 b2 ... bn
(1.3)
(1)交换矩阵(1.3)的第p,q两行(记作 的第p,q两个方程;
(1.8)
(1.9)
(1.9)式是消元过程的一般计算公式.式中作分母的元素
线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。
解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。
本文将介绍几种常见的解线性方程组的方法。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。
以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。
2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。
3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。
4. 反向代入,从最后一行开始,依次回代求解未知数的值。
二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。
以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。
2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。
3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。
三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。
以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。
2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。
3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。
克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。
四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。
对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。
1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。
数值分析--解线性方程组的直接方法

值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。
该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。
首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。
2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。
在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。
通过选取列主元,可以避免数值稳定性问题,提高计算精度。
3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。
首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。
最后通过回代求解出方程组的解。
4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。
追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。
5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。
该方法的基本思想是通过不断迭代求解出方程组的解。
首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。
6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。
该方法在每一次迭代时,使用已经更新的解来计算新的解。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。
该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。
可以通过选择合适的松弛因子来加快迭代速度。
以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。
在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。
解线性方程组的直接方法

解线性方程组的直接方法1.1 主元的选取与算法的稳定性1.1.1问题提出Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
1.1.2实验内容考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
1.1.3实验要求(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取10n =计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数20n =或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)将上述矩阵A中的主元改为0.00006再重新作一次数值实验看看。
(5)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
1.1.4实验过程(1)程序:clear;clc;a=input('是否调整消元次序(是:1,否:0)');n=input('系数矩阵的阶数:');%构造题中给定形式的矩阵A(1,1)=6;A(1,2)=1;A(1,n+1)=7;%第n+1列取题中的bfor i=1:(n-2);A(i+1,i)=8;A(i+1,i+1)=6;A(i+1,i+2)=1;A(i+1,n+1)=15;end;A(n,n-1)=8;A(n,n)=6;A(n,n+1)=14;%自动消元if a==0;for i=1:(n-1);for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;%手动控制消元次序if a==1;for i=1:(n-1);A %显示每步消元的结果m=input('请选取作为主消元行的行号');for l=1:(n+1);c=A(i,l);A(i,l)=A(m,l);A(m,l)=c;end;for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;(2)数值实验结果及分析:1、根据要求当10n=时用Matlab算得Cond(A)=1727.6,让程序自动选主元,x=与精确解一致。
线性方程组的解法

线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。
解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。
二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。
具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。
三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。
四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。
五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。
六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。
应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。
对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。
随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。
求解线性方程组

求解线性方程组线性方程组是数学中的一类重要方程组,它可用于描述许多实际问题。
解线性方程组的目标是找到满足所有方程条件的未知数的值。
本文将介绍解线性方程组的基本方法和步骤。
方法一:高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它的基本思想是通过一系列行变换将线性方程组化简为阶梯形或行最简形。
以下是高斯消元法的步骤:1. 将线性方程组表示为增广矩阵的形式,其中未知数的系数构成方程组的系数矩阵A,常数构成列向量B。
2. 利用行变换,将增广矩阵化简为阶梯形矩阵。
行变换包括互换两行、某一行乘以非零常数、某一行乘以非零常数后加到另一行上。
3. 根据化简后的阶梯形矩阵,可以直接读出方程组的解。
如果存在零行,即无解;如果存在形如0 = c(c为非零常数)的方程,即无解;其他情况下,解的个数等于未知数的个数减去方程数的个数。
方法二:矩阵求逆法矩阵求逆法也是一种求解线性方程组的方法。
它的基本思想是通过求解系数矩阵的逆矩阵,进而得到方程组的解。
以下是矩阵求逆法的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。
2. 检查系数矩阵A是否可逆。
若可逆,则方程组有唯一解;若不可逆,则方程组可能没有解或有无穷多个解。
3. 若A可逆,计算系数矩阵的逆矩阵A^(-1)。
4. 解方程组的解为X = A^(-1) * B。
需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况。
方法三:克拉默法则克拉默法则是一种基于行列式的求解线性方程组的方法。
它的基本思想是根据克拉默法则公式,求解未知数的值。
以下是克拉默法则的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。
2. 计算系数矩阵A的行列式值D,即|A|。
3. 对每个未知数,将系数矩阵的列向量替换为方程组常数向量,得到新的矩阵A_i。
4. 计算新的矩阵A_i的行列式值D_i。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想是通过逐次消元计算,把一般线性方程组的求解转化为
等价的上三角形方程组的求解。
§1.1 顺序Gauss消去法
为了清楚起见,先看一个简单的例子.
考虑线性方程组
第2页/共57页
2x1 4x2 2x3 2
x1
3x2
3x3
1
4x1 2x2 2x3 3
消去后两个方程中的x1得
2x1 4x2 2x3 2 5x2 2x3 2
的直接解法。方程组(2.1)的矩阵形式为
(2.1)
Ax=b
其中
a11 a12 ... a1n
x1
A
a 21 ...
a 22 ...
... ...
a2n ...
,
x
x2 ...
a n1 a n2 ... a nn第1页/共57页 x n
b1
,
b
b2 ...
bn
若矩阵A非奇异,即det(A)≠0,则方程组(2.1)有唯一解。
2
4
2
2
r3
6 5
r2
2
4
2
2
~ 0 r32r1 0
5 6
2 6
2 ~ 0 1 0
5 0
2
42 5
2
7 5
这是Gauss消去法的计算形式,新的增广矩阵对应的线性
方程组就是上三角形方程组,可进行回代求解。
现在介绍求解线性方程组(2.1)的顺序Gauss消去法:
记
A(1)
A, b(1)
b,
a
(1) ij
第2章 解线性方程组的直接法
本章讨论n元线性方程组
a11x1 a12 x2 ... a1n xn b1
.a..2..1.x..1.....a..2.2..x..2............. .a...2.n..x..n.
b2 ........
an1x1 an2 x2 ... ann xn bn
a ij , bi(1)
bi
则,线性方程组(2.1)的增广矩阵为 第4页/共57页
a1(11)
a
(1) 12
a1(13)
...
a
(1) 1n
b1(1)
a
(1) 21
a
(1) 22
a
(1) 23
...
a
(1) 2n
b
(1) 2
( A (1)Βιβλιοθήκη ,b(1))
a
(1) 31
a
(1) 32
a
(1) 33
(b
(i) i
n
ji1
a
(i) ij
x
j
)
a
(i) ii
,
i n 1, n 2, ,1
顺序Gauss消去法求解n元线性方程组的乘除运算量是:
n2-1 +(n-1)2-1 +…+22-1 +1+2+…+n
n
(k 2
1)
n
k
n(n 1)(2n 1) n n(n 1)
k1
k1
6
2
1 (n3 3n 2 n) 3
6x2 6x3 1
再消去最后一个方程的x2得
2x1 4x2 2x3 5x2 2x3
2 2
消元结束,经过回代得452解x3:第3页75x/共357页16 ,
x2
1, 3
x1
1 2
上述求解的消元过程可用矩阵表示为:
(A,b)=
2 1
4 3
2 3
2 1
4 2 2 3
r2
1 2 r1
...
a
(1) 3n
b
(1) 3
... ... ... ... ... ...
a
(1) n1
a
(1) n2
a
(1) n3
...
a
(1) nn
b
(1) n
第一步.设 a1(11) 0
,依次用
li1
ai(11) a1(11)
,
乘矩阵的第1行加到第i行,得到矩阵:
(i 2,3,..., n)
n=20时,顺序Gauss消去法只需3060次乘除法运算.
顺序Gauss消去法通常也简称为Gauss消去法.
顺序Gauss消去法中的
a
(k) kk
(k
1,2,...,
n)
称为主元素.
主元素都不为零矩阵A的各阶顺序主子式都不为零.
(i 3,4,..., n)
其中
a
(1) 11
a1(12)
a
(1) 13
...
a
(1) 1n
0
a
(2) 22
a
(2) 23
...
a
(2) 2n
( A (3)
,
b (3)
)
0
0
a
(3) 33
...
a
(3) 3n
... ... ... ... ...
0
0
a
(3) n3
...
a
(3) nn
ai(j3) ai(j2) li2a2(2j) , i, j 3,4,..., n
(2) 2n
b
(2) 2
(A
(n)
,
b
(n)
)
0
0
a
(3) 33
...
a
(3) 3n
b 3( 3)
... ... ... ... ... ...
0
0
0
...
a
(n) nn
b
(n n
)
这就完成了消元过程。对应的方程组变成:
a1(11) x1 a1(12) x2 ... a1(1n) xn b1(1)
所谓直接解法是指,若不考虑计算过程中的舍入误差,
经过有限次算术运算就能求出线性方程组的精确解的方法。
但由于实际计算中舍入误差的存在,用直接解法一般也只
能求出方程组的近似解。
Cramer法则是一种不实用的直接法,下面介绍几种实
用的直接法。
§1 Gauss消去法
Gauss消元法是一种规则化的加减消元法,其基本思
a
(1) 11
a
(1) 12
a1(13)
...
a
(1) 1n
b1(1)
0
a
(2) 22
a
(2) 23
...
a
(2) 2n
b
(2) 2
(A
(2)
,
b
(2)
)
0
a
(2) 32
a
(2) 33
...
a
(2) 3n
b
(2) 3
... ... ... ... ... ...
0
a a (2) (2)
第n52页/共57n页3
a2(22) x2 ... a2(2n) xn b2(2)
.......... .......... .......... .......... ........
an(nn) xn bn(n)
对此方程组进行回代,就可求出方程组的解。
第7页/共57页
x n
b
(n) n
a
(n) nn
x i
...
a
(2) nn
b
(2) n
其中
ai(j2) ai(j1) li1a1(1j) , i, j 2,3,..., n
bi(2) bi(1) li1b1(1) , i 2,3,..., n
第二步.设
a
(2) 22
0
,依次用
li2
ai(22) a 2( 22 )
,
乘矩阵的第2行加到第i行,得到矩阵:
bi(3)
bi(2)
li2b2(2) ,
i 3,4,..., n
第6页/共57页
b1(1)
b
(2) 2
b
(3) 3
...
b
(3) n
如此继续消元下去,第n-1步结束后得到矩阵:
a
(1) 11
a
(1) 12
a1(13)
...
a
(1) 1n
b1(1)
0
a
(2) 22
a
(2) 23
...
a