简单曲线的极坐标方程
人教版数学选修4-4课件1.3 简单曲线的极坐标方程

理得 sin
O∠MO AM=sin
∠1 OMA,
即 sin
ρ
34π=sin
1π4-θ,化简得 ρ(cos θ-sin
θ)=1,
经检验,点 A(1,0)也适合上述方程.则直线的极坐标方程为 ρ(cos θ-sin θ)=1.
方法二 先求过点 A 且倾斜角为π4的直线的直角坐标方程为 y-0=tan π4(x-1),
【例题 2】 求过点 A(1,0),且倾斜角为π4的直线的极坐标方程. 思维导引:作出图形,找出动点性质,运用正弦定理解三角形建立动点 M 的关系 式,从而建立动点(ρ,θ)的方程.也可先求出直角坐标方程,再转换成极坐标方程.
解析:方法一 由题意,设 M(ρ,θ)为直线上任意一点,则△OAM 中,由正弦定
的任意一点. • (2)由曲线上的点所合适的条件,列出曲线上
任意一点的极径ρ与极角θ之间的关系式. • (3)将(2)所得方程进行整理与化简,得出曲线
• 【例题4】 (202X·河南郑州高二检测)从极点 O作直线与另一直线l:ρcos θ=4相交于点M, 在OM上任取一点P,使OM·OP=12.
• (1)求点P的轨迹方程;
• (1)曲线C上点的坐标都是方程f(x,y)=0的解; • (2)以方程f(x,y)=0的解为坐标的点都在曲线
C上. • 满足以上两点则说曲线与方程建立了一一对
应的关系,方程是曲线的方程,曲线是方程 的曲线.
•要点二 曲线的极坐标方程
• 一般地,在极坐标系中,如果平面曲线C上 的任意一点的极坐标中至少有一个满足方程 f(ρ,θ)=0,并且坐标满足方程f(ρ,θ)=0的 点都在曲线C上,那么方程f(ρ,θ)=0叫做曲 线C的____极__坐_标__方_程______.
1.3 简单曲线的极坐标方程(1)

(2) 圆心在C(a, 0),半径为a; =2acos
(3) 圆心在(a, ),半径为a; 2
(4) 圆心在C(0, 0),半径为r. 2+ 0 2 -2 0 cos( - 0)= r2
=2asin
高中 数学备课组
课堂小结
1、极坐标方程
2、圆的极坐标方程 求曲线的极坐标方程步骤
高中 数学备课组
在平面直角坐标系中, 平面曲线C可以用方 程 f(x, y)=0表示. 曲线与方程f(x, y)=0满足如下关 系: (1) 曲线C上点的坐标都是方程f(x, y)=0的解 ; (2) 以方程 f(x, y)=0 的解为坐标的点都在曲线 C上. 那么, 在极坐标系中,平面曲线是否可以用方 程 f( ,)=0 表示呢?
高中 数学备课组
设M(ρ,θ)为圆上任意一点,则|OM|=r,即 ρ=r 为所求的圆的极坐标方程 . 显然,使极点与圆心重合时的极坐标方程在形 式上比 ρ=2acosθ更简单. 与直角坐标方程 x2+y2=r2 比较, 你能说说极坐 标方程 =r 的优点吗?
高中 数学备课组
题组练习
求下列圆的极坐标方程 (1) 圆心在极点,半径为2; = 2
高中 数学备课组
由此可知,ρ=2acosθ 就是圆心在C(a, 0) (a>0) 半径为a的圆的极坐已知圆O的半径为r,建立怎样的极坐标系, 可以使圆的极坐标方程简单? 解:如果以圆心O为极点, 从O出发的一条射线为极 轴,建立极坐标系(如图),
M
O r x
那么圆上各点的几何特征 就是它们的极径都等于半 径r .
1、根据题意画出草图; 2、设点M(, ) 是曲线上任意一点,并连接OM; 3、根据几何条件建立关于, 的方程,并化简; 4、检验并确认所得的方程即为所求.
简单曲线的极坐标方程(教案)

简单曲线的极坐标方程教案内容:一、教学目标:1. 让学生掌握极坐标系的基本概念。
2. 让学生了解极坐标与直角坐标之间的关系。
3. 让学生学会求解简单曲线的极坐标方程。
二、教学内容:1. 极坐标系的基本概念。
2. 极坐标与直角坐标之间的关系。
3. 圆的极坐标方程。
4. 直线的极坐标方程。
5. 椭圆的极坐标方程。
三、教学重点与难点:1. 教学重点:圆、直线、椭圆的极坐标方程的求解。
2. 教学难点:椭圆的极坐标方程的求解。
四、教学方法:1. 采用讲解法,讲解极坐标系的基本概念,极坐标与直角坐标之间的关系。
2. 采用案例分析法,分析圆、直线、椭圆的极坐标方程的求解过程。
3. 采用练习法,让学生通过练习来巩固所学知识。
五、教学过程:1. 引入极坐标系的基本概念,讲解极坐标与直角坐标之间的关系。
2. 讲解圆的极坐标方程,举例说明求解过程。
3. 讲解直线的极坐标方程,举例说明求解过程。
4. 讲解椭圆的极坐标方程,举例说明求解过程。
5. 布置练习题,让学生巩固所学知识。
教学评价:通过课堂讲解、案例分析和练习,评价学生对极坐标系的理解和掌握程度,以及对简单曲线极坐标方程的求解能力。
六、教学准备:1. 教学PPT或黑板。
2. 极坐标系的图示或模型。
3. 圆、直线、椭圆的图示或模型。
4. 练习题。
七、教学步骤:1. 回顾极坐标系的基本概念,通过PPT或黑板展示极坐标系的图示,让学生回顾极坐标与直角坐标之间的关系。
2. 讲解圆的极坐标方程。
以一个具体的圆为例,说明圆的极坐标方程的求解过程。
将圆的直角坐标方程(x-a)²+ (y-b)²= r²转换为极坐标方程。
利用极坐标与直角坐标之间的关系,即x=ρcosθ,y=ρsinθ,将直角坐标方程中的x和y替换为极坐标方程中的ρcosθ和ρsinθ,得到圆的极坐标方程ρ=2a·cosθ。
3. 讲解直线的极坐标方程。
以一个具体的直线为例,说明直线的极坐标方程的求解过程。
简单曲线的极坐标方程 课件

由极径的意义可知 ρ≥0,当极角 θ 的取值范围是 [0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0) 建立一一对应的关系,我们约定,极点的极坐标是极径 ρ=0,极角 θ 可取任意角.
3.坐标之间的互化
(1)点的极坐标和直角坐标的互化 以直角坐标系的原点 O 为极点,x 轴的正半轴为极 轴,且在两种坐标系中取相同的长度单位(如图).平面 内任意一点 P 的直角坐标与极坐标分别为(x,y)和(ρ, θ),则由三角函数的定义可以得到如下两组公式:
∴ρ=a·cos 12ωt,……② θ
由①②消去 t,得 ρ=acos 3 , 这就是点 M 轨迹的极坐标方程.
【点评】求曲线的极坐标方程的两个基本方法是直 接法和待定系数法,极坐标系中用直接法求点的轨迹方 程时常用“三角形法”,它通过找出一个三角形,利用 三角形中的边角关系,求得轨迹的极坐标方程.
ρ02-r2=0.
一、平面直角坐标系中的伸缩变换及应用 例1在同一平面直角坐标系中,曲线 C 经过伸缩变
换xy′′==y 3x,后变为曲线 C′:x′2+9y′2=9.在以此直角 坐标原点为极点,x 轴正半轴为极轴的极坐标系中,动
点 M 的极坐标(ρ,θ)满足方程 ρsinθ+π4=3,设点 P 为曲线 C 上一动点,则|PM|的最小值是___2____.
(0<θ<π)
(2)一般位置的直线的极坐标方程:若直线 l 经过点 M(ρ0,θ0),且极轴到此直线的角为 α,直线 l 的极坐标 方程为:
_______s_i_n___________0 _si_n_______0 _____.
5.半径为 r 的圆的极坐标方程
(1)特殊位置的圆的极坐标方程:
极坐标与参数方程

选修4-4 极坐标与参数方程一、极坐标1.(1)极坐标系 (2)极坐标2.极坐标与直角坐标的互化 3.简单曲线的极坐标方程二.参数方程 1.概念2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).直线参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则①|M 1M 2|=|t 1-t 2|.②若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=⎪⎪⎪⎪t 1+t 22.③若M 0为线段M 1M 2的中点,则t 1+t 2=0. ④|M 0M 1||M 0M 2|=|t 1t 2|.(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).1. (3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数)一、极坐标方程与直角坐标方程互化及判断曲线类型【例1】化下列极坐标方程为直角坐标方程,并说明它是什么曲线。
(1) 2540ρρ-+=; (2) 53cos 4sin ρθθ=+;(3) 523cos ρθ=-; (4)242ππρθθρ-+=, 其中R ρ∈【解析】(1)方程变形为(1)(4)0ρρ--=,∴1ρ=或4ρ=,即221x y +=或2216x y +=, 故原方程表示圆心在原点半径分别为1和4的两个圆。
(2) 变形得3cos 4sin 5ρθρθ+=,即3450x y +-=,故原方程表示直线3450x y +-=。
高中数学新人教版A版精品教案《三 简单曲线的极坐标方程》

再引导学生回忆直角坐标系中求曲线方程的一般步骤.
(建系设点→等量关系→列出方程→整理化简→限制说明(可省略))
教学
重点
特殊位置下的圆(如过极点或圆心在极点的圆)的极坐标方程.
教学
难点
如何根据图形的几何特征寻找等量关系求解圆的极坐标方程.
教法
学法
为实现上述教学目标,本节课我采用了教师启发点拨与学生自主探究相结合的教法,让学生体会了从特殊到一般、由直角坐标系类比极坐标系,遵循“以学生为主体,教师为主导”的原则,充分调动学生的积极性,倡导学生“自主探索、动手实践、合作交流”的学习数学的方式,力求体现教师的设计者、组织者、帮助者的地位,突出学生的主体地位.
请学生类比直角坐标系下曲线的方程的定义,大胆猜想极坐标中,曲线的极坐标方程的定义.
(学生可能猜想出:在极坐标系中,如果①曲线C的点的极坐标都是方程f(ρ,θ)=0的解;②以方程f(ρ,θ)=0的解为坐标的点都在曲线C上.那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.)
提出问题:在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?
【例题】把下列极坐标方程化成直角坐标方程:(1) ;(2) .
【练习】已知圆的极坐标方程 ,求圆在直角坐标系下的圆心及半径.
提升:求与圆有关的点的轨迹的极坐标方程
1.在极坐标系中,已知圆 的圆心 ,半径 ,(1)求圆 的极坐标方程.
(2)若 点在圆 上运动, 在 上,且 ,求动点 的轨迹方程.
高二数学简单曲线的极坐标方程试题答案及解析

高二数学简单曲线的极坐标方程试题答案及解析1.已知极坐标的极点在平面直角坐标系的原点O处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,曲线C:(为参数),其中.(Ⅰ)试写出直线的直角坐标方程及曲线C的普通方程;(Ⅱ)若点P为曲线C上的动点,求点P到直线距离的最大值.【解析】(Ⅰ)直接利用极坐标与直角坐标的互化,以及消去参数,即可取得直线的直角坐标方程及曲线C的普通方程;(Ⅱ)求出圆的圆心与半径,利用圆心到直线的距离加半径即可求出点P到直线距离的最大值.试题解析:(Ⅰ)因为,所以,则直线的直角坐标方程为.曲线C:,且参数,消去参数可知曲线C的普通方程为.(Ⅱ)由(Ⅰ)知,曲线C是以(0,2)为圆心,半径为2的圆,则圆心到直线的距离,所以点P到直线的距离的最大值是.【考点】参数方程化成普通方程.2.已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则曲线的直角坐标方程为 .【答案】【解析】已知曲线的极坐标方程是,以极点为原点,因此方程【考点】参数方程的应用.3.已知圆的极坐标方程为ρ2-4ρ·cos+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.【答案】(1)普通方程:,圆的参数方程为:,为参数;(2).【解析】(1)圆的普通方程与圆的极坐标方程之间的转换关系在于圆上一点与极径,极角间的关系:,圆的普通方程与圆的参数方程的关系也在于此,即圆上一点与圆半径,圆上点与圆心连线与轴正向夹角的关系:;(2)利用圆的参数方程,将转化为关于的三角函数关系求最值,一般将三角函数转化为的形式.试题解析:由圆上一点与极径,极角间的关系:,可得,并可得圆的标准方程:,所以得圆的参数方程为:,为参数.由(1)可知:故.【考点】(1)圆的普通方程与圆的参数方程和极坐标之间的关系;(2)利用参数方程求最值. 4.已知曲线M与曲线N:ρ=5cosθ-5sinθ关于极轴对称,则曲线M的方程为() A.ρ=-10cos B.ρ=10cosC.ρ=-10cos D.ρ=10cos【答案】B【解析】设点是曲线M上的任意一点,点关于极轴的对称点必在曲线N上,所以故选B.【考点】极坐标方程.5.在极坐标系中,圆的圆心的极坐标为()A.B.C.D.【答案】D.【解析】把圆的极坐标方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.6.极坐标方程表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆【答案】C【解析】化简为,得到或,化成直角坐标方程为:或,故选C.【考点】极坐标方程与普通方程的互化7.在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.【答案】(1),(2)相交【解析】解:(Ⅰ)由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为 5分(Ⅱ)由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交 10分【考点】直线与圆点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
简单曲线的极坐标方程 说课稿 教案 教学设计

常见曲线的极坐标方程教学目标:1.掌握各种圆的极坐标方程;2.能根据圆的极坐标方程画出其对应的图形.教学重点:极坐标系中根据条件求出圆的极坐标方程.教学难点:圆的极坐标方程及其应用.教学过程:一、问题情境:1.阅读课本12-13页回答下面问题⑴直角坐标系和极坐标系中怎样描述点的位置?⑵曲线的方程和方程的曲线(直角坐标系中)定义⑶求曲线方程的步骤2.(1)如图,在极坐标系下半径为a 的圆的圆心坐标为(a ,0)(a >0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?(2)曲线上的点的坐标都满足这个方程吗?二、新知探究:思路分析:1.先和学生一齐在黑板上画出圆与极坐标轴2.把所设圆上任意一点的极坐标在所画图形上明确标出来ρ、θ 即明确长度ρ与角度θ是哪一边, 哪一个角3.找边与角能共存的三角形,最好是直角三角形4.利用三角形的边角关系的公式与定理列等式5.列式时要充分利用所给的圆心与半径的条件6.引出指明极坐标方程的条件 三、建构数学 若圆心的坐标为M (ρ0,θ0),圆的半径为r ,求圆的方程. 022********P()MOP MP =OM +OP -2OM OP cos . -2cos()0POM r ≠∆⋅∠-+-=ρρθρρρθθρ解:当时,设圆上任意一点为,,在中,由余弦定理知 可得 022200000=0=r ()-2cos()0r r -+-=ρρρθρρρθθρ当时,圆心位于极点,圆的极坐标方程是,亦满足上面的方程.故圆心为,,半径为的圆的极坐标方程是显然点P 的坐标也是它的解.运用此结果可以推出一些特殊位置的圆的极坐标方程.M(,0)2M(r,)==22r ρθπρθ1.当圆心位于时,由上式可得圆的极坐标方程是 ;.当圆心位于时,由上式可得圆的极坐标2rcos rsi 程是 n 方 .四、数学应用:O MPρρr θ0θx(1)A(3,0) (2)B(8)2 (3)O C(-4,0) (4))6ππ例1 按下列条件写出圆的极坐标方程:以为圆心,且过极点的圆;以,为圆心,且过极点的圆;以极点与点连接的线段为直径的圆;圆心在极轴上,且过极点与点,的圆.(详细解答过程见教材P23)例2 求以点)0)(0,(>a a C 为圆心,a 为半径的圆C 的极坐标方程.变式练习:1.求圆心在点(3,0),且过极点的圆的极坐标方程.2.求以)2,4(π为圆心,4为半径的圆的极坐标方程.例3 已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半径.五、课堂练习:1.在极坐标系中,求适合下列条件的圆的极坐标方程:(1)圆心在)4,1(πA ,半径为1的圆;(2)圆心在)23,(πa ,半径为a 的圆.2.把下列极坐标方程化为直角坐标方程:(1)2=ρ;(2)θρcos 5=.3.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=.4.求圆05)sin 3(cos 22=-+-θθρρ的圆心的极坐标与半径.六、回顾小结:如何求圆的极坐标方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 周 第 课时教案
时间:
教学主题 简单曲线的极坐标方程
一、教学目标
1、掌握极坐标方程的意义,掌握直线的极坐标方程
2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化
3、过观察、探索、发现的创造性过程,培养创新意识。
二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程
的互化
教学难点:极坐标方程的意义 ,直线的极坐标方程的掌握
三、教学方法 讲练结合 四、教学工具 无 五、教学流程设计 教学 环节
教师活动
学生活动
圆的极坐标方程 一、复习引入: 问题情境
1、直角坐标系建立可以描述点的位置极坐标也有同样作用?
2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾
1、直角坐标系和极坐标系中怎样描述点的位置?
2、曲线的方程和方程的曲线(直角坐标系中)定义
3、求曲线方程的步骤
4、极坐标与直角坐标的互化关系式: 二、讲解新课:
1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为
(a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件?
解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM ,
则有:OM=OAcos θ,即:ρ=2acos θ ①,
2、提问:曲线上的点的坐标都满足这个方程吗?
可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上.
3、定义:一般地,如果一条曲线上任意一点都有一个极坐
标适合方程0),(=θρf 的点在曲线上,那么这个
方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。
例1、已知圆O 的半径为r ,建立怎样的坐标系,
可以使圆的极坐标方程更简单? ①建系;
②设点;M (ρ,θ)
③列式;OM =r , 即:ρ=r ④证明或说明.
变式练习:求下列圆的极坐标方程
(1)中心在C(a ,0),半径为a ; (2)中心在(a,π/2),半径为a ;
(3)中心在C(a ,θ0),半径为a
答案:(1)ρ=2acos θ (2) ρ=2asin θ (3)
0cos()a ρθθ-=2
例2.(1)化在直角坐标方程0822=-+y y x 为极坐标方程,
(2)化极坐标方程)3
cos(6π
θρ-= 为直角坐标方程。
直线的极坐标方程 一、探究新知: 阅读教材P13-P14
探究1、直线l 经过极点,从极轴到直线l 的角是4
π
,如何用极坐标方程表示直线l
思考:用极坐标表示直线时方程是否唯一? 探究2、如何表示过点(,0)(0)A a a >,且垂直于极轴的直线l 的极坐标方程,化为直角坐标方程是什么?过点
(,0)(0)A a a >,平行于极轴的直线l 的极坐标方程呢?
4
π O
l
x。