计量经济学第五章 专门问题-滞后变量模型
计量经济学简答题四

计量经济学简答题四第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1—2.简述当代计量经济学发展的动向.1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1—5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1—10.试分别举出五个时间序列数据和横截面数据并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1—13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1—15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1—16.经济数据在计量经济分析中的作用是什么?1—20.模型参数对模型有什么意义?习题参考第一章绪论1-1.答:计量经济学是经济学的一个分支学科是以揭示经济活动中客观存在的数量关系为内容的分支学科是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来无论在技术方法还是在应用方面发展都十分迅速尤其是经过50年代的发展阶段和60年代的扩张阶段使其在经济学科占据重要的地位主要表现在:①在西方大多数大学和学院中计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”.③计量经济学方法与其他经济数学方法结合应用得到发展;④计量经济学方法从主要用于经济预测转向经济理论假设和政策假设的检验;⑤计量经济学模型的应用从传统的领域转向新的领域如货币、工资、就业、福利、国际贸易等;⑥计量经济学模型的规模不再是水平高低的衡量标准人们更喜欢建立一些简单的模型从总量上、趋势上说明经济现象.1—3.答:计量经济学方法揭示经济活动中各个因素之间的定量关系用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系用确定性的数学方程加以描述。
【计量经济学】第5章 第3节 几何分布滞后模型

这些例子说明,解释变量的现值决定了被解释变 量的预期值(期望达到的水平)。
(3)局部调整假定:
由于技术、制度、市场以及管理等各方面的限 制,被解释变量的预期水平在单一周期内一般不会 完全实现,而只能得到部分的调整。
局部调整假定数学表示是:
此模型称为局部调整模型(Partial adjustment model)。
(2)实际经济背景
部分调整模型首先是由 Nerlove 基于如下事实 提出的:在讨论滞后效应时,解释变量在某一时期 内的变动所引起的被解释变量值的变化,要经过相 当长一段时间才能充分表现出来。
这样,模型表达的应该是第t期解释变量观测值 与同期被解释变量期望达到的水平之间的关系。
局部调整假设认为,被解释变量的实际变化仅 仅是预期变化的一部分,即
Yt Yt1 (Yt* Yt1 )
其中, 为部分调整系数,它代表调整速度。且有
0 ≤ ≤ 1。越接近 1,表明调整到预期最佳水平
的速度越快。
(4)将局部调整模型转化为一阶自回归模型 由部分调整假设可得
Yt*
1
Yt
1
Yt 1
在建立经济计量模型时,很多情况下,库伊克 假设有一定的合理性。
(二)几何分布滞后模型
将式 j 0 j 代入原无限分布滞后模型中,得 到如下模型:
Yt 0 X t 0 X t1 0 2 X t2 0 j X t j ut
此模型就称为几何分布滞后模型,因为滞后权重 数列是以几何数列下降的。
接观测的变量化成可以直接观测的变量。
Cangan 和 Friedman 这两位经济学家提出了对
预期
X
计量经济学习题与解答

第五章经典单方程计量经济学模型:专门问题一、内容提要本章主要讨论了经典单方程回归模型的几个专门题。
第一个专题是虚拟解释变量问题。
虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。
本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。
在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。
第二个专题是滞后变量问题。
滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。
本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。
如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。
而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS法进行估计。
由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。
第三个专题是模型设定偏误问题。
主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。
模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。
在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。
在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。
滞后变量模型与自回归模型

2、分布滞后模型的修正估计方法
人们提出了一系列的修正估计方法,但并不很 完善。 各种方法的基本思想大致相同:都是通过对各 滞后变量加权,组成线性合成变量而有目的地减 少滞后变量的数目,以缓解多重共线性,保证自 由度。 (1)经验加权法
根据实际问题的特点、实际经验给各滞后变量 指定权数,滞后变量按权数线性组合,构成新的 变量。权数据的类型有:
由于无法预见知电力行业基本建设投资对发电 量影响的时滞期,需取不同的滞后期试算。 经过试算发现,在2阶阿尔蒙多项式变换下,滞 后期数取到第6期,估计结果的经济意义比较合理。 2阶阿尔蒙多项式估计结果如下:
ˆ 3319 Y .5 3.061 W0t 0.101 W1t 0.271 W2t t
2、滞后变量模型
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt 1 2Yt 2 qYt q 0 X t 1 X t 1 s X t s t
q,s:滞后时间间隔 自回归分布滞后模型 ( autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
k 1 2
(*)
s
将(*)代入分布滞后模型
s 2 i 0 k 1
Yt i X t i t
i 0
得
Yt ( k (i 1) k ) X t i t
1 (i 1) X t i 2 (i 1) 2 X t 2 t
Yt 0 i X t i t
2、自回归模型(autoregressive model) 自回归模型:模型中的解释变量仅包含X的当 期值与被解释变量Y的一个或多个滞后值
《滞后变量模型 》课件

滞后变量模型考虑了时间序列数据的 自相关性和时间依赖性,能够更好地 解释和预测时间序列数据的变化趋势 。
滞后变量模型的应用场景
经济预测
用于预测股票价格、消费、投资等经济指标的 变化趋势。
金融分析
用于分析股票、债券、期货等金融产品的价格 波动和趋势。
自然灾害研究
用于预测地震、洪水等自然灾害的发生和影响。
要点三
案例分析
例如,在分析气温变化时,可以引入 前一期的气温作为滞后变量。通过建 立滞后变量模型,可以对未来气候变 化趋势进行预测,为应对气候变化提 供科学依据。
06
总结与展望
滞后变量模型的优势与不足
01
优势
02
考虑了时间滞后效应,能够更好地描述经济现象的 动态变化。
03
在数据不足的情况下,可以利用已知信息进行预测 ,提高预测精度。
找最优解。
参数估计的步骤
模型设定
根据研究目的和数据特征,设 定合适的滞后变量模型。
模型检验
对估计的参数进行检验,确保 模型的拟合效果和预测能力。
数据收集
收集与滞后变量模型相关的数 据,确保数据的准确性和完整 性。
估计参数
根据设定的模型选择合适的参 数估计方法,对模型中的未知 参数进行估计。
结果解释
滞后变量模型与其他模型的比较
与线性回归模型相比
滞后变量模型考虑了自相关性,能够 更好地处理时间序列数据。
与ARIMA模型相比
滞后变季节性 和趋势的影响。
02
滞后变量模型的原理
滞后变量的产生原因
经济现象的惯性
经济现象的变化往往具有惯性, 一个变量的变化往往会影响其未 来的变化趋势,因此需要引入滞
§5.2 滞后变量模型

................................ . ... ....... ... .. .
王中昭制作
滞后变量模型的一般形式
• • • • • • • • • • •
在模型中含有滞后变量的模型称为滞后变量模型。 滞后变量模型的一般形式(线性): Yt=b0+b1Yt-1+…+bsYt-s+a0Xt+…+aq Xt-q+μt S,q分别称为滞后因变量和滞后解释变量的滞后期。 例如:消费函数:Ct= b0+b1Ct-1+b2It+μt (1)、分布滞后模型 只含有滞后解释变量的模型称为分布滞后模型。 Yt=b0+a0Xt+…+aq Xt-q+μt (2)、自回归模型 只含有解释变量和滞后因变量的模型称为自回归模型。 例如:Yt=b0+b1Yt-1+…+bsYt-s+a0Xt+μt
பைடு நூலகம்
王中昭制作
4、模型的参数含义
• (1)、对于分布滞后模型: • Yt=a0+b0Xt+b1Xt-1+…+bsXt-s+μt • 分布滞后模型的各系数体现了解释变量的当 期值和各期滞后值对被解释变量的不同影响程度。 因此称为乘数。 • b0称为短期(或即期)乘数,表示本期X变 化一单位对Y平均值的影响程度。 bi (i=1,2…,s): 动态乘数或延迟系数,表示各滞后期X的变动对 Y平均值影响的大小。 • b0+b1+…+bs称为累计系数或长期或均衡乘 数,表示X变动一个单位,由于滞后效应而形成 的对Y平均值总累计影响的大小。
•
• 即把它化为分布滞后模型。各种参数的含义与 分布滞后模型相同。
经典单方程计量经济学模型专门问题

Y(X,D)α βμ
1 1
X11 X12
X k1 Xk2
1 0
0 1
0 0
0 0
(X, D) 1 1
X13 X14
X k3 Xk4
0 0
0 0
1 0
0 1
1 X16 . X k6 1 0 0 0
女职工本科以上学历的平均薪金:
E ( Y i|X i , D 1 0 , D 2 1 ) ( 0 3 ) 1 X i
男职工本科以上学历的平均薪金:
E ( Y i |X i , D 1 1 , D 2 1 ) ( 0 2 3 ) 1 X i
.
2、乘法方式
• 加法方式引入虚拟变量,考察:截距的不同。 • 许多情况下,斜率发生变化,或斜率、截距同时
C t0 1 X t 2 D tX t t
E ( C t|X t,D t 1 ) 0 (1 2 ) X t
E ( C t|X t,D t 0 )0 1 X t
.
3、同时引入加法与乘法形式的虚拟变量
• 当截距与斜率发生变化时,则需要同时引入加 法与乘法形式的虚拟变量。
• 对于一元模型,有两组样本,则有可能出现下 述四种情况中的一种:
发生变化。 • 斜率的变化可通过以乘法的方式引入虚拟变量来
测度。
.
• 例如,根据消费理论,收入决定消费。但是, 农村居民和城镇居民的边际消费倾向往往是不 同的。这种消费倾向的不同可通过在消费函数 中引入虚拟变量来考察。
1
Di 0
农村居民 城镇居民
C i01 X i2 D iX ii
(精品)第五章-虚拟变量模型和滞后变量模型

第五章虚拟变量模型1.表5.1中给出了中国1980—2001年以城乡储蓄存款新增额代表的居民当年储蓄及以GNP 代表的居民当年收入的数据。
以1991年为界,判断1991年前和1991年后的两个时期中国居民的储蓄—收入关系是否已发生变化。
年份储蓄S GNP 年份储蓄S GNP 1980 118.5 4517.8 1991 2072.8 21662.5 1981 124.2 4860.3 1992 2438.4 26651.9 1982 151.7 5301.8 1993 3217 34560.5 1983 217.1 5957.4 1994 6756.4 46670 1984 322.2 7206.7 1995 8143.5 57494.9 1985 407.9 8989.1 1996 8858.5 66850.5 1986 615 10201.4 1997 7759 73142.7 1987 835.7 11954.5 1998 7127.7 76967.2 1988 728.2 14922.3 1999 6214.3 80579.4 1989 1345.4 16917.8 2000 4710.6 88228.1 1990 1887.3 18598.4 2001 9430 94346.4 估计以下回归模型:0123()i i i i i iY X D D X uββββ=++++其中iD为引入的虚拟变量:1,19910,1991iD⎧=⎨⎩年前年后对上面的模型进行估计,结果如下:所以表达式为:15350.0751981.90.032()i i i i i Y X D D X =+-+(1.40) (4.45) (-1.38) (0.37)从2β和3β的t 检验值可以知道,这两个参数显著的为0,所以1991年前和1991年后两个时期的回归结果是相同的。
下面用邹式检验来验证上面对于两个时期的回归结果相同的结论是否正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•递减型: 即认为权数是递减的, X的近期值对Y的影响较 远期值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
则新的线性组合变量为:
W 1t 1 1 1 1 X t X t 1 X t 2 X t 3 2 4 6 8
《计量经济学》
《Econometrics》 《经济计量学》
1
5.2 滞后变量模型
一、滞后变量模型 二、分布滞后模型的参数估计 三、自回归模型的参数估计 四、格兰杰因果关系检验
一、滞后变量模型
在经济运行过程中,广泛存在时间滞后效应。某些经 济变量不仅受到同期各种因素的影响,而且也受到过 去某些时期的各种因素甚至自身的过去值的影响。 通常把这种过去时期的,具有滞后作用的变量叫做滞 后变量(Lagged Variable),含有滞后变量的模型称 为滞后变量模型。 滞后变量模型考虑了时间因素的作用,使静态分析的 问题有可能成为动态分析。含有滞后解释变量的模型 ,又称动态模型(Dynamical Model)。
有限自回归分布滞后模型:滞后期长度有限
无限自回归分布滞后模型:滞后期无限
(1)分布滞后模型(distributed-lag model)
分布滞后模型:模型中没有滞后被解释变量, 仅有解释变量X的当期值及其若干期的滞后值:
Yt i X t i t
i 0 s
0:短期(short-run)或即期乘数(impact multiplier), 表示本期X变化一单位对Y平均值的影响程度。 i (i=1,2…,s):动态乘数或延迟系数,表示各 滞后期X的变动对Y平均值影响的大小。
给定递减权数:1/2, 1/4, 1/6, 1/8
令
W 1t 1 1 1 1 X t X t 1 X t 2 X t 3 2 4 6 8
原模型变为: Yt
ˆ 0 =0.5
0 1W1t t
该模型可用OLS法估计。假如参数估计结果为
ˆ1 =0.8
则原模型的估计结果为:
i 0
s
i
称为长期(long-run)或均衡乘数(total distributed-lag multiplier),表示X变动 一个单位,由于滞后效应而形成的对Y平 均值总影响的大小。
如果各期的 X 值保持不变,则 X 与 Y 间的长 期或均衡关系即为
E (Y ) ( i ) X
称为一阶自回归模型(first-order autoregressive model)。
二、分布滞后模型的参数估计
1、分布滞后模型估计的困难
无限期的分布滞后模型,由于样本观测值的有 限性,使得无法直接对其进行估计。
有限期的分布滞后模型,OLS会遇到如下问题
1、没有先验准则确定滞后期长度; 2 、如果滞后期较长,将缺乏足够的自由度进 行估计和检验; 3、同名变量滞后值之间可能存在高度线性相 关,即模型存在高度的多重共线性。
再计算出:
i k (i 1) k 1 (i 1) 2 (i 1) 2
k 1
2
求出滞后分布模型参数的估计值:
ˆ , ˆ , , ˆ 1 2 s
由于m+1<s,可以认为原模型存在的 自由度不足和多重共线性问题已得到改 善。 需注意的是,在实际估计中,阿尔蒙 多项式的阶数m一般取2或3,不超过4, 否则达不到减少变量个数的目的。
i 0 i 0 s s
定义新变量
W1t (i 1) X t i
i 0 s
W2t (i 1) 2 X t i
i 0
s
将原模型转换为:
Yt 1W1t 2W 2 t t
第二步,模型的OLS估计 对变换后的模型进行OLS估计,得 ˆ , ˆ1 , ˆ2
例5.2.2 表5.2.1给出了中国电力基本建设投资X 与发电量Y的相关资料,拟建立一多项式分布滞 后模型来考察两者的关系。
表5.2.1 中国电力工业基本建设投资与发电量 年度 基本建设投资X 发电量 (亿元) (亿千瓦时) 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 30.65 39.98 34.72 50.91 50.99 48.14 40.14 46.23 57.46 76.99 107.86 1958 2031 2234 2566 2820 3006 3093 3277 3514 3770 4107 年度 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 基本建设投资X (亿元) 161.6 210.88 249.73 267.85 334.55 377.75 489.69 675.13 1033.42 1124.15 发电量 (亿千瓦时) 4495 4973 5452 5848 6212 6775 7539 8395 9218 10070
(13.62)(1.86) (0.15) (-0.67)
求得的分布滞后模型参数估计值为
ˆ =3.061, ˆ =2.180, ˆ =0.927 ˆ =0.323, ˆ =1.777, ˆ =2.690, ˆ =2.891, 0 3 5 6 1 2 4
最后得到分布滞后模型估计式为:
如滞后期为4,权数可取为
1/6, 1/4, 1/2, 1/3, 1/5
则新变量为
1 1 1 1 1 W 3t X t X t 1 X t 2 X t 3 X t 4 6 4 2 3 5
例5.2.1 对一个分布滞后模型:
Y t 0 0 X t 1 X t 1 2 X t 2 3 X t 3 t
i 0 s
(2)自回归模型(autoregressive model) 自回归模型:模型中的解释变量仅包含X的当 期值与被解释变量Y的一个或多个滞后值
Yt 0 1 X t i Yt i t
i 1 q
而
Yt 0 1 X t 2Yt 1 t
多选几组权数,分别估计出几个模型, 然后根据常用的统计检验(R方检验, F检验,t检验,D-W检验),从中选 择最佳估计式。
(2)阿尔蒙(Almon)多项式法
主要思想:针对有限滞后期模型,通过阿尔蒙 变换,定义新变量,以减少解释变量个数,然后 用OLS法估计参数。 主要步骤为:
第一步,阿尔蒙变换
对于分布滞后模型
k 1 2
(*)
s
将(*)代入分布滞后模型
s 2 i 0 k 1
Yt i X t i t
i 0
得
Yt ( k (i 1) k ) X t i t
1 (i 1) X t i 2 (i 1) 2 X t 2 t
14 .70 X t 4 26 .94 X t 5 25 .42 X t 6
(-0.93) (1.09) F=42.54 (-1.12)
R 2 =0.9770
DW=1.03
(3)科伊克(Koyck)方法
科伊克方法是将无限分布滞后模型转换为自回 归模型,然后进行估计。
对于无限分布滞后模型:
Yt 0 i X t i t
i 0
由于无法预见知电力行业基本建设投资对发电 量影响的时滞期,需取不同的滞后期试算。 经过试算发现,在2阶阿尔蒙多项式变换下,滞 后期数取到第6期,估计结果的经济意义比较合理。 2阶阿尔蒙多项式估计结果如下:
ˆ 3319 Y .5 3.061 W0t 0.101 W1t 0.271 W2t t
•
产生滞后效应的原因
1 、心理因素 :人们的心理定势,行为方式滞 后于经济形势的变化,如中彩票的人不可能很快 改变其生活方式。 2 、技术原因 :如当年的产出在某种程度上依 赖于过去若干期内投资形成的固定资产。 3、制度原因:如定期存款到期才能提取,造 成了它对社会购买力的影响具有滞后性。
6
2、滞后变量模型
Yt i X t i t
i 0 s
假定其回归系数i可用一个关于滞后期i的适当 阶数的多项式来表示,即:
i k (i 1) k
k 1 m
i=0,1,…,s
其中,m<s-1。阿尔蒙变换要求先验地确定适当 阶数k,例如取k=2,得
i k (i 1) k 1 (i 1) 2 (i 1) 2
ˆ 0.5 0.8 X 0.8 X 0.8 X 0.8 X 0.5 0.4 X 0.2 X 0.133 X 0.1X Y t t t 1 t 2 t 3 t t 1 t 2 t 3 2 4 6 8
经验权数法的优点是:简单易行 缺点是:设置权数的随意性较大 通常的做法是:
Yt 3319 .5 0.323 X t 1.777 X t 1 2.690 X t 2 3.061 X t 3
(13.62) (0.19) (2.14) (1.88) (1.86)
2.891 X t 4 2.180 X t 5 0.927 X t 6
(1.96) (1.10) (0.24)
为了比较,下面给出直接对滞后6期的模型进行 OLS估计的结果:
Yt 31 15 .14 X t 2 4.71 X t 3
(12.43) (1.80) (-1.89) (1.21) (0.36)
Yt i X t i t
i 0
科伊克变换假设i随滞后期i按几何级数衰减:
i 0 i
其中,0<<1,称为分布滞后衰减率,1-称 为调整速率(Speed of adjustment)。