平面向量高考经典试题

合集下载

平面向量经典试题(含答案)

平面向量经典试题(含答案)

平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。

专题11 平面向量专项高考真题总汇(带答案及解析)

专题11 平面向量专项高考真题总汇(带答案及解析)

专题11平面向量1.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.2.【2021·全国高考真题】已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP = B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC3.【2020年高考全国III 卷理数】6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b A .3135-B .1935-C .1735D .1935【答案】D【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-【答案】A 【解析】如图,AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB⋅的取值范围是()2,6-,故选:A .【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=- ,1BC == ,得3t =,则(1,0)BC = ,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅ ,即22||||AB AC AC AB +>- ,因为AC AB BC -= ,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.【2021·浙江高考真题】已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.9.【2021·全国高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.10.【2021·全国高考真题】已知向量0a b c ++= ,1a =,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.11.【2021·全国高考真题(理)】已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.12.【2021·北京高考真题】(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅=_______;a b ⋅=_______.【答案】03【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+= ,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.13.【2020年高考全国Ⅰ卷理数】设,a b 为单位向量,且||1+=a b ,则||-=a b ______________.【解析】因为,a b 为单位向量,所以||||1==a b所以||1+====a b ,解得:21⋅=-a b ,所以||-===a b ,故答案为:.【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.14.【2020年高考全国II 卷理数】已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.15.【2020年高考天津】如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.【答案】(1).16;(2).132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠= ,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴ ,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫⎪⎪⎝⎭,∵又∵16AD BC = ,则5,22D ⎛⎫⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,22DM x ⎛⎫=-- ⎪⎝⎭,3,22DN x ⎛⎫=-- ⎪⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭ ,所以,当2x =时,DM DN ⋅ 取得最小值132.故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.16.【2020年高考北京】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.;1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.17.【2020年高考浙江】已知平面单位向量1e ,2e满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.【答案】2829【解析】12|2|e e -≤u r u r Q 124412e e ∴-⋅+≤u r u r,1234e e ∴⋅≥u r u r ,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅u r u r u r u r r r u r u r u r u r u r u rr r 12424228(1(1)3332953534e e =-≥-=+⋅+⨯u r u r .故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.18.【2020年高考江苏】在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是▲.【答案】185【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭ ,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC = ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=> .19.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【答案】23【解析】因为2=-c a ,0⋅=a b ,所以22⋅=-⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.20.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= ___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5(,)22D .因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒,所以直线BE 的斜率为33,其方程为3(3y x =-,直线AE 的斜率为33-,其方程为33y x =-.由(333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x 1y =-,所以1)E -.所以35(,)1)122BD AE =-=- .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.21.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即,AB = 故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.22.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++ 的最小值是___________;最大值是___________.【答案】0; 0所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.。

平面向量经典例题30道

平面向量经典例题30道

平面向量经典例题30道一、选择题1.已知|→a| = 3, |→b| = 2, 向量→a 和→b 的夹角为π/3,则→a · →b= A. 3 B. √3 C. -3 D. -√32.已知|→a| = 1, |→b| = 2, →a 与→b 的夹角为π/2,若→a - →b 与→a垂直,则→a 与→b 的夹角为 A. π/6 B. π/4 C. π/3 D. π/23.已知|→a| = 1, |→b| = 2, →a 与→b 的夹角为π/4,若→a - λ→b 与→a +→b 共线,则实数λ 的值为A. -1/2 B. 1/2 C. -√2/4 D. √2/44.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,若(→a +→b) · (→a - λ→b) = 0,则实数λ 的值为A. -1 B. 1 C. -√2 D. √25.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/3,若(→a +→b) · (→a - →b) = 0,则实数λ 的值为A. -1 B. 1 C. -√2 D.√26.已知向量a = (-2, 3),b = (1, -1),若a 与b 的夹角为钝角,则a · b 等于( ) A. -4 B. -2 C. 0 D. 27.若平面向量a,b 满足|a| = 1,|b| = 2,且向量a,b 的夹角为π/4,若 a - λb 与 b 垂直,则实数λ 的值为( ) A. -1/2 B. 1/2 C. -√2/4 D.√2/48.已知F1,F2 是椭圆C:(x^2)/9 + (y^2)/4 = 1 的两个焦点,P 是C 上一点,且与F1,F2 在同一直线上,若|PF1| × |PF2| = 12,则P 到椭圆C 的两个焦点的距离之和为( ) A. 8 B. 9 C. 10 D. 129.已知a = ,b = (-1, 1),若a 与b 的夹角为锐角,则实数k 的取值范围是( ) A. (0, +∞) B. (0, 1) ∪ (1, +∞) C. (-∞, 0) ∪ (0, +∞) D. (-∞, 0) ∪(1, +∞)10.已知向量a = (-2, 4),b = (-1, 2),若向量a - λb 与b 共线,则实数λ 的值为_______.11.已知向量a = (-2, 3),b = (λ, 2),若a 与b 的夹角为锐角,则λ 的取值范围是_______.12.已知向量a = (-2, 3),b = (-4, 1),若a 与b 的夹角为锐角,则实数m的取值范围是_______.13.已知向量a = (-2, 1),b = (λ, 2),若a 与b 的夹角为锐角,则λ 的取值范围是_______.14.在△ABC中,AB = (-1, 1),AC = (2, 3),则∠BAC = _______(用反三角函数的值表示)15.在△ABC中,AB = (-4, 3),AC = (1, 2),则BC = _______16.在△ABC中,AB = (-4, 3),AC = (-1, 2),且AB⊥AC,则BC = _______17.在△ABC中,AB = (2, -1),AC = (-4, 3),则BC = _______18.在△ABC中,AB = (3, -4),AC = (-2, 3),则BC = _______19.若点P 在直线l₁:x - 2y - 3 = 0 和直线l₂:3x + y - 1 = 0 的夹角平分线上,则点P 到直线l₃:x + 2y - 5 = 0 的距离为_______.20.已知等差数列{an} 中,a₁ = -1,且a₁,a₂,a₃ 三项及格率为5/4,若an= λ(n为正整数),则实数λ 的取值集合为_______.二、填空题21.已知|→a| = 3, |→b| = 4, 向量→a 与→b 的夹角为π/4,则→a · _______ = 9√2.22.已知|→a| = 2, |→b| = 4, 向量→a 与→b 的夹角为π/6,则_______ =(√3 + 1)/4.23.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,若_______ =(-√5)/5,则实数λ 的值为_______.24.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,则_______ =_______.25.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,则_______ =_______.三、解答题26.若|→a| = 3, |→b| = 5, 向量→a 与→b 的夹角为π/6,求向量→a 在向量→b 上的投影.27.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/3,求(→a +→b) · (→a - λ→b).28.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,求(→a +λ→b) · (→a - λ→b).29.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/6,求(→a +λ→b) · (→a - λ→b).30.已知|a| = 1, |b| = 2, a与b的夹角为π/3, 若a - λb与b垂直,求实数λ的值.31.在△ABC中,AD为BC边上的中线,G为AD上靠近D的三等分点,若(1/2AB) · (AC - GC) = 0 ( ·表示向量的数量积),求AG与BC边的夹角.32.在△ABC中,AB = AC = 2, 点D在BC上,且BD = DC, E,F分别是AB,AC上的点,且AE/EB = AF/FC = 1/2, AD与EF交于点G, 求向量EF ·向量AD 的值.33.若点A(x,y)在圆x²+y²=4上运动时,点B(x-3,y-4)也在圆上运动,求线段AB中点M的轨迹方程.34.在△ABC中,D是BC的中点,E、F分别在AB、AC上,且EF平行于BC,AD与EF交于点M,BD=CD=1,AD=3,求向量EF ·向量BC.。

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09平面向量考点三年考情(2022-2024)命题趋势考点1:平面向量线性运算2022年新高考全国I 卷数学真题平面向量数量积的运算、化简、证明及数量积的应用问题,如证明垂直、距离等是每年必考的内容,单独命题时,一般以选择、填空形式出现.交汇命题时,向量一般与解析几何、三角函数、平面几何等相结合考查,而此时向量作为工具出现.向量的应用是跨学科知识的一个交汇点,务必引起重视.预测命题时考查平面向量数量积的几何意义及坐标运算,同时与三角函数及解析几何相结合的解答题也是热点.考点2:数量积运算2022年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题2024年北京高考数学真题考点3:求模问题2023年新课标全国Ⅱ卷数学真题2024年新课标全国Ⅱ卷数学真题2023年北京高考数学真题2022年高考全国乙卷数学(文)真题考点4:求夹角问题2023年高考全国甲卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国II 卷数学真题考点5:平行垂直问题2024年上海夏季高考数学真题2024年新课标全国Ⅰ卷数学真题2022年高考全国甲卷数学(文)真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(理)真题考点6:平面向量取值与范围问题2024年天津高考数学真题2023年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2022年新高考天津数学高考真题2022年新高考浙江数学高考真题2023年天津高考数学真题考点1:平面向量线性运算1.(2022年新高考全国I 卷数学真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【解析】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .考点2:数量积运算2.(2022年高考全国甲卷数学(理)真题)设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= .【答案】11【解析】设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.3.(2023年高考全国乙卷数学(文)真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A 5B .3C .25D .5【答案】B【解析】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:5,2ED EC CD ===,在CDE 中,由余弦定理可得2223cos 25255DE CE DC DEC DE CE +-∠==⋅⨯⨯,所以3cos 5535EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.4.(2022年高考全国乙卷数学(理)真题)已知向量,a b 满足||1,||3,|2|3a b a b ==-= ,则a b ⋅=()A .2-B .1-C .1D .2【答案】C【解析】∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,∴1a b ⋅= 故选:C.5.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.考点3:求模问题6.(2023年新课标全国Ⅱ卷数学真题)已知向量a ,b满足3a b -= ,2a b a b +=- ,则b = .3【解析】法一:因为2a b a b +=- ,即()()222a ba b +=-,则2222244a a b b a a b b +⋅+=-⋅+r r r r r r r r ,整理得220a a b -⋅= ,又因为3a b -= ()23a b -= ,则22223a a b b b -⋅+==r r r r r ,所以3b = 法二:设c a b =-r rr ,则3,2,22c a b c b a b c b =+=+-=+r r r r r r r r r ,由题意可得:()()2222c b c b +=+r r r r ,则22224444c c b b c c b b +⋅+=+⋅+r r r r r r r r ,整理得:22c b =r r ,即3b c ==r r 37.(2024年新课标全国Ⅱ卷数学真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .22C .32D .1【答案】B【解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.8.(2023年北京高考数学真题)已知向量a b,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A .2-B .1-C .0D .1【答案】B【解析】向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B9.(2022年高考全国乙卷数学(文)真题)已知向量(2,1)(2,4)a b ==-,,则a b -r r ()A .2B .3C .4D .5【答案】D【解析】因为()()()2,12,44,3a b -=--=- ,所以()22435-=+-a b .故选:D考点4:求夹角问题10.(2023年高考全国甲卷数学(文)真题)已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A .117B .1717C 55D 255【答案】B【解析】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则225334,112a b a b +=+-=+= ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,342a b a b a b a b a b a b+⋅-+-==⨯+-.故选:B.11.(2023年高考全国甲卷数学(理)真题)已知向量,,a b c 满足1,2a b c === 0a b c ++=,则cos ,a c b c 〈--〉=()A .45-B .25-C .25D .45【答案】D【解析】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c ===,由题知,1,2,OA OB OC OAB === 是等腰直角三角形,AB 边上的高2222OD AD =所以22222CD CO OD =+=,1tan ,cos 310AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-2421510=⨯-=.故选:D.12.(2022年新高考全国II 卷数学真题)已知向量(3,4),(1,0),t ===+ a b c a b ,若,,<>=<>a cbc ,则t =()A .6-B .5-C .5D .6【答案】C【解析】()3,4c t =+ ,cos ,cos ,a c b c =,即931635t t c c+++= ,解得5t =,故选:C考点5:平行垂直问题13.(2024年上海夏季高考数学真题))已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为.【答案】15【解析】//a b,256k ∴=⨯,解得15k =.故答案为:15.14.(2024年新课标全国Ⅰ卷数学真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .2【答案】D【解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.15.(2022年高考全国甲卷数学(文)真题)已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =.【答案】34-/0.75-【解析】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.16.(2023年新课标全国Ⅰ卷数学真题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .17.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件【答案】C【解析】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得13x =,即必要性不成立,故B 错误;对D ,当13x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.考点6:平面向量取值与范围问题18.(2024年天津高考数学真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.【答案】43518-【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.19.(2023年高考全国乙卷数学(理)真题)已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO =,则PA PD ⋅的最大值为()A .122+B .1222+C .12+D .22+【答案】A【解析】如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-122224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+122224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅有最大值122.综上可得,PA PD ⋅的最大值为122.故选:A.20.(2022年新高考北京数学高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- ,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈- ;故选:D21.(2022年新高考天津数学高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为,若AB DE ⊥ ,则ACB ∠的最大值为【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-= ,2234b a a b +=⋅ 222333cos 244a b a b b a ACB a b a b a b⋅+⇒∠==≥= 3a b = 时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x y DE AB x y +=--=-- ,23()(1)022x y DE AB x +⊥⇒-+ 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.22.(2022年新高考浙江数学高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是.【答案】[122,16]+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,82222A ⎛⎫ ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[1222,16]+.故答案为:[1222,16]+.23.(2023年天津高考数学真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b == ,用,a b 表示AE = ;若13BF BC = ,则AE AF ⋅ 的最大值为.【答案】1142a b + 1324【解析】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC⎧+=⎪⎨+=⎪⎩ ,两式相加,可得到2AE AD AC =+ ,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB ⎧+=⎪⎨+=⎪⎩,得到()22AF FC AF FB AC AB +++=+ ,即32AF a b =+ ,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭ .记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅ 有最大值1324.故答案为:1142a b + ;1324.。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。

高中 平面向量高考真题

高中 平面向量高考真题

平面向量高考真题1、(2020全国Ⅰ理14)设,a b 为单位向量,且||1a b += ,则||a b -= ______________.32、(2020全国Ⅱ理13)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.223、(2020全国Ⅲ理6)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ()A.3135-B.1935-C.1735D.19354、(2020北京13)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.(1).5(2).1-5、(2020天津理15)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.(1).16(2).1326、(2020浙江17)17.设1e ,2e 为单位向量,满足21|22|-≤e e 12a e e =+ ,123b e e =+ ,设a ,b的夹角为θ,则2cos θ的最小值为_______.28297、(2020全国新高考山东卷7)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是()AA.()2,6-B.(6,2)-C.(2,4)- D.(4,6)-8、(2020江苏13)13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.1859、(2019全国Ⅰ理7)已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为BA .π6B .π3C .2π3D .5π610、(2019全国Ⅱ理3)已知AB=(2,3),AC =(3,t ),BC =1,则AB BC ⋅ =CA .-3B .-2C .2D .311、(2019全国Ⅲ理13)已知a ,b 为单位向量,且a ·b =0,若2=-c a ,则cos ,<>=a c ___________.2312、(2019北京7)设点A ,B ,C 不共线,则”是的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件13、(2019天津14)在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=.1-14、(2019浙江17)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.0,15、(2019江苏12)如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,=2BE EA ,AD 与CE 交于O ,若=6AB AC AO EC ⋅⋅ ,则ABAC的值是______.。

平面向量高考试题精选(含详细答案)

平面向量高考试题精选(含详细答案)

) 2=| ) ?(
| 2; )= 2﹣ 2.
6.( 2015?重庆)若非零向量 , 满足 | |=
夹角为(

A.
B.
C.
D. π
| | ,且( ﹣ )⊥( 3 +2 ),则 与 的
7欢迎。下载
解: ∵ ( ﹣ ) ⊥( 3 +2 ),
∴( ﹣ ) ?( 3 +2 ) =0,
即 3 2﹣ 2 2﹣ ? =0,
( 1≤λ2≤, 0≤μ1≤)的点 P 组成,则 D 的面积为

17.( 2012?湖南)如图,在平行四边形 ABCD中, AP⊥BD,垂足为 P,且 AP=3,则
=

18.( 2012?北京)己知正方形 ABCD的边长为 1,点 E 是 AB 边上的动点.则
的值


19.( 2011?天津)已知直角梯形 ABCD中, AD∥ BC,∠ADC=90°,AD=2,BC=1,P 是腰 DC上的
2
2
2
即 ? =3 ﹣2 = ,
精品文档
∴cos < , > =
=
=,
即< , > = ,
故选: A
7.( 2015?重庆)已知非零向量
角为(

A.
B.
C.
D.
满足 | |=4| | ,且 ⊥(
)则
的夹
解:由已知非零向量 的夹角为 θ,
满足 | |=4| | ,且 ⊥(
),设两个非零向量
所以 (?
)=0,即 2
,求点 P 的作标;
(Ⅱ )设过定点 M(0, 2)的直线 l 与椭圆交于不同的两点 A、 B,且 ∠ AOB为锐角(其中 O 为坐标原点) ,求直线 l 的斜率 k 的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量测试题
一、选择题:
1。

已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→
−BE =( ) (A ) →b +→a 2
1
(B ) →b -→a 2
1 (C ) →a +→b 2
1 (D ) →a -→
b 2
1
2.已知B 是线段AC 的中点,则下列各式正确的是( )
−→−−→−−→−−→−
−→−−→−−→−−→

(A ) ⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛→
→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→
1e 与→
2e 是不共线的非零向量,且k →
1e +→
2e 与→
1e +k →
2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数
8.在四边形ABCD 中,−→
−AB =−→
−DC ,且−→−AC ·−→
−BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形
9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→
−PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)
10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →
b 垂直,则k =( ) (A ) 21±-(B ) 12±(C ) 32±(D ) 23±



A )
) =16.设两非零向量a 和b 不共线,如果AB =a +b ,CD =3(a -b ),

→−→
−+=b a BC 82,求证:A 、B 、D 三点共线。

平面向量高考经典试题
一、选择题
1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与b
A .垂直
B .不垂直也不平行
C .平行且同向
D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1
B
C .2
D .4
( )
B.[4,8]
,1]-∞
(山东理11)在直角∆中,CD 是斜边AB 上的高,则下列等式不成立的是2
AC AC AB =⋅ (B )2
BC BA BC =⋅ 2AB AC CD =⋅ (D 2
2
()()
AC AB BA BC CD AB
⋅⨯⋅=
边上一点,若AD =2DB ,
CD 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若1
23
AD DB CD CA CB λ==+,,则λ=( ) A .
23
B .
13
C .13
-
D .23
-
9(全国2文9)把函数e x
y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则
()f x =( )A .e 2x +
B .e 2x
-
C .2
e
x -
D .2
e
x +
10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且
2OA OB OC ++=0,那么( )
A.AO OD = B.2AO OD =
C.3AO OD = D.2AO OD =
11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有
13)()x -a b 的图象是一条直线,A |||≠a b
14是不共线的任意三点,则以下各式中成立的是 . EF OF OE =- . EF OF OE =--
15(湖北理2)将2cos y ⎛= π2⎛⎫
-- ⎪,
平移,则平移后所得图象的解析式为( )
16 A.(2,14)
B.(2,-
7
)
C.(-2,
7
) D.(2,8)
17、(浙江理7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a b
D. 22<+b a b
18、(浙江文9) 若非零向量,a b 满足-=a b b ,则( )
A.22>-b a b B.22<-b a b C.2>-2a a b D.2<-2a a b
19、(海、宁理2文4)已知平面向量(11)(11)==-,,,a b ,则向量13
22
-=a b ( ) A.(21)--,B.(21)-, C.(10)-, D.(12)-, 20
、(
重庆
理10



,在
四边

ABCD
中,
||||||4,0,AB BD DC AB BD BD DC →






++=⋅=⋅=→



=⋅+⋅4||||||||DC BD BD AB ,则( C.4 D.24
21且,//,OC OA AC OB ⊥则向量等于
(B )⎪⎭
⎝-21,7
(C ⎪⎭
-7,7
(D )⎪⎭
⎝-21,7220≠a b ,且⎫
⎪⎭
a a c
b a b ,则向量的A .
π2
23A 24A .
B .
C .
D .
25、(四川理7文8)设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )
(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 26、(全国2理9)把函数y =e x 的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )= (A) e x -3+2
(B) e x +3-2
(C) e x -2+3
(D) e x +2-3
二、填空题
2、(安徽文理13) 在四面体O-ABC 中,,,,OA a OB b OC c D ===为BC 的中点,E 为
AD 的中点,则= (用a ,b ,c 表示)
3、(北京文11)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是
4、(上海文6)若向量a b ,
的夹角为
60,1a b ==,则(
a 5的中点,过点O 的直,若AB mAM =,
6的对角线OB 的
,则AB AC = 3
40AB AC =,求(2)若5c =,求sin ∠A 的值
M。

相关文档
最新文档