双闭环次同步串级调速系统设计

合集下载

晶闸管串级调速双闭环系统方案

晶闸管串级调速双闭环系统方案

晶闸管串级调速双闭环系统方案晶闸管串级调速双闭环系统是一种常用的电力传动系统,广泛应用于工业生产中。

它通过晶闸管的调速和闭环控制,能够实现对电机转速的精确控制,提高系统的稳定性和可靠性。

下面将详细介绍晶闸管串级调速双闭环系统的方案。

1.系统结构2.系统原理(1)速度闭环:系统首先通过速度传感器测量电机的转速,将实际转速与给定转速进行比较,得到速度误差信号。

然后将速度误差信号通过比例积分控制器进行处理,得到电机的转速控制信号。

最后,转速控制信号经过PWM调制器和晶闸管触发控制电路,实现对晶闸管的控制,从而控制电机的转速。

(2)电流闭环:系统通过电流传感器测量电机的输出电流,将实际电流与给定电流进行比较,得到电流误差信号。

然后将电流误差信号通过比例积分控制器进行处理,得到电机的电流控制信号。

最后,电流控制信号经过PWM调制器和晶闸管触发控制电路,实现对晶闸管的控制,从而控制电机的输出电流。

3.系统参数设计为了保证系统的稳定性和可靠性,需要根据实际需求对系统的参数进行设计。

主要设计参数包括速度闭环的比例系数Kp1和积分时间常数Ti1,以及电流闭环的比例系数Kp2和积分时间常数Ti2(1)速度闭环参数设计:根据实际需求确定速度闭环的比例系数Kp1和积分时间常数Ti1、一般情况下,比例系数Kp1的值越大,系统的响应速度越快但稳定性越差;积分时间常数Ti1的值越大,系统对于长期速度误差的补偿能力越强但抗干扰能力越差。

因此,需要在速度响应速度和稳定性之间进行权衡,选择合适的参数。

(2)电流闭环参数设计:根据实际需求确定电流闭环的比例系数Kp2和积分时间常数Ti2、一般情况下,比例系数Kp2的值越大,系统的响应速度越快但稳定性越差;积分时间常数Ti2的值越大,系统对于长期电流误差的补偿能力越强但抗干扰能力越差。

因此,需要在电流响应速度和稳定性之间进行权衡,选择合适的参数。

4.系统优化设计为了进一步提高系统的性能和可靠性,可以对晶闸管串级调速双闭环系统进行优化设计。

晶闸管串级调速双闭环系统设计【范本模板】

晶闸管串级调速双闭环系统设计【范本模板】

第一章 方案的选择与确定1。

1 设计方案的确定与设计思路设计电路,根据不同的要求有不同的设计思路,根据我们现有的水平和设计能力,我们选择了比较简单的设计方案:绕线异步电动机在转子回路中串接一个与转子电动势2s E 同频率的附加电动add E 通过改变add E 值大小和相位可实现调速。

这样,电动机在低速运行时,转子中的转差率只有小部分被转子绕组本身电阻所消耗,而其余大部分被附加电动势add E 所吸收,利用产生E 的装置可以把这部分转差功率回馈到电网,使电动机在低速运行时仍具有较高的效率。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的.与转子串电阻的方式不同,串级调速能实现无级平滑调速,低速时机械特性也比较硬,它完全克服了转子串电阻调速的缺点,具有无级平滑调速、较硬的低速机械特性等优点,是一种经济、高效的调速方法。

第二章 串级调速原理与主电路设计2。

1串级调速原理:异步电动机运行时其转子相电动势为: 0r r E sE = (2-1) 式中 s —————异步电机的转差率;0r E —--—绕线转子异步电机在转子不动时的相电动势,或称转子开路电动势,也就是转子额定相电压值。

式(1—1)表明,绕线转子异步电机工作时,其转子电动势Er 值与转差率s 成正比。

此外,转子频率2f 也与s 成正比,21f sf =.在转子短路情况下,转子相电流Ir 的表达式为:r I =(2—2)式中r R -——-转子绕组每相电阻;0r X —-——s=1时的转子绕组每相漏抗。

如在转子绕组回路中引入一个可控的交流附加电动势,此附加附加电动势与转子电动势r E 有相同的频率,并与r E 同相(或反相)串接,如图2-1所示.此时转子回路的相电流表达式为: (2-3)Ir =图2-1当电机处于电动状态时,其转子电流Ir 与负载大小有直接关系.当电动机带有恒定负载转矩TL 时,可近似地认为不论转速高低转子电流都不会变,这时,在不同s 值下的式(2-2)和式(2-3)应相等。

基于Matlab的双闭环串级调速系统设计毕业论文

基于Matlab的双闭环串级调速系统设计毕业论文

n
转 负 馈 速 反
β
1+Tois
电 反 滤 器 流 馈 波
α
1+Tons
转 反 滤 器 速 馈 波
上图为双闭环串级调速系统的动态结构图
4、仿真结果
(1)给定输入为阶跃响应 从右图仿真结果可以 看出,稳态时仿真系 统的实际转速能够实 现对给定转速的良好 跟随,且稳态无静差。
(2)给定输入为斜坡信号 从右图的仿真波形 可以看出,仿真系 统对斜坡信号的稳 态和动态跟踪性都 比较好。
M
if
Id
二、串级调速系统的机械特性与最大转矩 因转子整流器有第一和第二工作状态, 因转子整流器有第一和第二工作状态,所以串调系统机 械特性也有第一和第二两个工作区。 械特性也有第一和第二两个工作区。 串调系统的额定工作点位于机械特性第一工作区; 串调系统的额定工作点位于机械特性第一工作区;串调 系统在该区的过载能力比绕线式异步电机固有特性的过载 能力降低了17%左右。而最大转矩发生在第二工作区。 能力降低了 %左右。而最大转矩发生在第二工作区。
第二章绕线式异步电动机串级调速 第二章绕线式异步电动机串级调速 原理及特性分析
一、串级调速系统原理分析 1、交流调速系统的分类 、 从交流电机转速表达式: 从交流电机转速表达式: n =
60 f 1 (1 − s ) p
可归纳出三类调速方法: 可归纳出三类调速方法: 变极对数p的调速、变转差率 调速及变电源频率 调速。 调速及变电源频率f 变极对数 的调速、变转差率s调速及变电源频率 1调速。 的调速
2、串级调速原理 、 在转子回路中串入与转子电势同频率的附加电势, 在转子回路中串入与转子电势同频率的附加电势, 通过改变附加电势的幅值和相位实现调速。 通过改变附加电势的幅值和相位实现调速。如在转 子回路中引入一个频率与转子电势相同, 子回路中引入一个频率与转子电势相同,而相位相 反的附加电动势时, 反的附加电动势时,由 sE 20 − Ef I2 = r 2 2 + (sX 20) 2 可见,改变 的大小 的大小, 可见,改变Ef的大小,可使电动机在同步转速以下 调速,即得到低于同步转速的速度, 调速,即得到低于同步转速的速度,故称为次同步 串级调速。 串级调速。

双闭环串级

双闭环串级

双闭环控制的串级调速系统3. 调节器参数的设计双闭环控制串级调速系统的动态校正一般主要按抗扰性能考虑,即应使系统在负载扰动时有良好的动态响应。

在采用工程设计方法进行动态设计时,可以像直流调速系统那样,电流环按典型I型系统设计,转速环按典型Ⅱ型系统设计。

但是串级调速系统中转子直流回路的时间常数 T Lr及放大系数 K Lr 都是转速的函数,而异步电动机的机电时间常数 T M又是转速和电流的函数,这就给调节器的设计带来一定的困难。

具体设计时,可以先在确定的转速 n 和负载电流 I d的前提下,求出各传递函数中的参数。

例如,按照要求的最大转差率S m ax或平均转差率1/2S m ax来确定转速,按额定负载或常用的实际负载来选定电流,然后按定常系统进行设计。

如果用模拟控制系统实现,则当实际转速或电流改变时,系统的动态性能就要变坏。

如果采用微机数字控制,可以按照不同的转速和电流事先计算好参数的变化,用表格的方式存入微机,实时控制时可根据检测得到的转速和电流查表调用,就可以得到满意的动态特性。

4. 串级调速系统的起动方式串级调速系统是依靠逆变器提供附加电动势而工作的,为了使系统工作正常,对系统的起动与停车控制必须有合理的措施予以保证。

总的原则是在起动时必须使逆变器先于电机接上电网,停车时则比电机后脱离电网,以防止逆变器交流侧断电,而使晶闸管无法关断,造成逆变器的短路事故。

串级调速系统的起动方式通常有间接起动和直接起动两种。

(1) 间接起动大部分采用串级调速的设备是不需要从零速到额定转速作全范围调速的,特别对于风机、泵、压缩机等机械,其调速范围本来就不大,串级调速装置的容量可以选择比电动机小得多。

为了使串级调速装置不受过电压损坏,须采用间接起动方式,即将电动机转子先接入电阻或频敏变阻器起动,待转速升高到串级调速系统的设计最低转速时,才把串级调速装置投人运行。

由于这类机械不经常起动,所用的起动电阻等都可按短时工作制选用,容量与体积都较小。

基于PLC的双闭环串级调速系统的设计_毕业设计

基于PLC的双闭环串级调速系统的设计_毕业设计

基于PLC的双闭环串级调速系统的设计摘要本文用电源反相序和动力制动的方法设计了双闭环串级调速系统的可逆和制动控制线路。

双闭环调速系统的性能很好,具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。

本设计报告首先根据设计要求确定调速方案和主电路的结构型式,直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。

接着详细介绍了电流调节器和转速调节器的设计以及一些参数的选择和计算,使其满足工程设计参数指标。

并阐述了串接附加电阻在切换过程中的重要性。

对其电气操作线路用可编程序控制器予以实现。

关键词:可编程序控制器、调速系统、程序控制器、异步电动机第1章:引言 (3)第2章:双闭环串级调速系统的可逆和制动方案 (4)第3章:串级调速系统的动态数学模型 (6)3.1转子直流回路的传递函数 (6)3.2异步电动机的传递函数 (8)3.3串级调速系统的动态结构框图 (9)第4章:调节器参数的设计 (10)4.1电流环的设计 (10)4.2转速环的设计 (12)第5章串级调速系统的起动方式 (15)5.1间接起动 (15)5.2直接启动 (17)第6章:操作控制电路 (18)6.1PLC的选择 (18)6.2可编程序控制器的I/O接口 (18)6.3操作线路图的梯形图 (19)6.4可编程序控制器程序清单 (21)结束语 (24)参考文献 (25)第1章:引言由于串级调速系统机械特性的静差率较大,所以开环控制系统只能用于对调速精度要求不高的场合。

为了提高静态调速精度,并获得较好的动态特性,须采用闭环控制,通常采用具有电流反馈与转速反馈的双闭环控制方式。

由于串级调速系统的转子整流器是不可控的,系统本身不能产生电气制动作用,所谓动态性能的改善只是指起动与加速过程性能的改善,减速过程只能靠负载作用自由降速。

第2章:双闭环串级调速系统的可逆和制动方案系统组成方框图如图所示图1 双闭环控制串级调速系统主电路图图1 所示为双闭环控制的串级调速系统原理图。

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

摘要本毕业论文所研究的是双闭环三相异步电动机的串级调速的基本原理与实现方法。

对于绕线式异步电动机来说,由于改变其转子绕组控制变量以实现调速,转子侧的控制变量有电流、电动势、电阻等。

通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势,这也是本文所要研究的重点之一。

利用串级调速系统,就是使绕线式异步电动机实现高性能调速的有效办法。

用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。

把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

这是本文所必须研究的,也是本文的核心所在。

并通过利用MATLAB 软件对双闭环串级调速系统进行仿真,仿真结果表明通过双闭环串级调速系统能及时地对给定速度进行反馈,提高调速的准确性。

关键词:双闭环;串级;调速;MATLAB.AbstractThe graduation thesis studies three-phase asynchronous motor is double loop bunch_rank speed-control of the basic principle and implement method. With wound rotor series, asynchronous motors can adjust speeds through control variables, which include electric current, electromotive force and resistance, etc. on the rotor side. Typically, the rotor current is determined by the load and cannot be adjusted freely. In contrast, adjusting rotor’s return circuit impedance tends to consume more power along with other disadvantages. Therefore, electromotive force should be the only control variable on the rotor side, which is also one of the major points research in this paper.In summary, concatenation control system is one effective means to realize high control ability in series-wound asynchronous motors. Specifically, it is used to replace resistance with rotor’s electromotive force and absorb slip power; and to enhance the static and dynamic capabilities of the system using double closed loop. We refer to this method of utilizing additional electromotive force to recycle slip power as concatenation control with double close loop, which is also the focus of this paper. And through the use of MATLAB software on the double closed loop bunch_rank speed- control system, and simulation draw simulation diagram,the results show that by double closed loop bunch_rank speed-control system can timely given speed feedback, to improve the accuracy of speedKeywords: double-loop;cascade;governor;MATLAB.目录摘要 (I)Abstract (II)1绪论 (1)2串级调速的原理 (3)2.1异步电动机转子附加电动势时的工作情况 (3)2.2串级调速的功率传递关系 (4)2.3串级调速系统及其附加电动势的获得 (5)3双闭环三相异步电机的静态特性和动态特性 (9)3.1三相异步电动机串级调速开环工作机械特性 (9)3.2三相异步电动机单闭环ASR 系统静特性 (11)3.3双闭环调速系统的静态和动态特性 (13)4总体设计方案 (17)4.1双闭环三相异步电机串级调速各个模块的功能 (17)4.2串级调速系统设计 (23)4.3双闭环系统设计 (24)4.4总电路图的设计 (25)5系统仿真 (27)5.1仿真软件的简介 (27)5.2具体的软件仿真设计 (27)5.3系统的仿真、仿真结果的输出及结果分析 (36)总结 (37)参考文献 (38)致谢 (39)1绪论电力传动自动控制系统是把电能转换成机械能的装置。

双闭环调速系统课程设计

双闭环调速系统课程设计

双闭环调速系统课程设计一、课程目标知识目标:1. 学生能理解双闭环调速系统的基本原理和组成部分;2. 学生能掌握双闭环调速系统中速度环和电流环的工作原理及其相互关系;3. 学生能了解双闭环调速系统在工业生产中的应用。

技能目标:1. 学生能运用所学知识,分析并设计简单的双闭环调速系统;2. 学生能通过实际操作,完成双闭环调速系统的调试和优化;3. 学生能运用相关软件或工具,对双闭环调速系统进行仿真和分析。

情感态度价值观目标:1. 学生对双闭环调速系统产生兴趣,培养主动学习和探究的精神;2. 学生认识到双闭环调速系统在工程技术领域的重要性,增强对相关职业的认同感;3. 学生在团队协作中,培养沟通、合作和解决问题的能力。

课程性质:本课程为电气工程及其自动化专业核心课程,旨在使学生掌握双闭环调速系统的基本原理和设计方法。

学生特点:学生具备一定的电路基础和自动控制理论,具有较强的动手能力和探究精神。

教学要求:结合理论教学和实践操作,注重培养学生的实际应用能力和创新意识。

通过分解课程目标为具体学习成果,使学生在掌握知识的同时,提高技能和情感态度价值观。

后续教学设计和评估将以此为基础,确保课程目标的实现。

二、教学内容1. 双闭环调速系统基本原理- 介绍双闭环调速系统的定义、分类及其在工业生产中的应用;- 分析双闭环调速系统的结构及工作原理。

2. 速度环和电流环的工作原理- 详细讲解速度环和电流环的组成、功能及相互关系;- 分析速度环和电流环的参数整定方法及其对系统性能的影响。

3. 双闭环调速系统设计- 介绍双闭环调速系统的设计步骤和方法;- 结合实际案例,分析并设计双闭环调速系统。

4. 双闭环调速系统的调试与优化- 讲解双闭环调速系统调试的原理和方法;- 介绍优化双闭环调速系统性能的途径。

5. 双闭环调速系统的仿真与分析- 介绍常用仿真软件及其在双闭环调速系统中的应用;- 结合实际案例,进行双闭环调速系统的仿真分析。

双闭环串级调速系统设计

双闭环串级调速系统设计

2.1串级调速系统设计全面比较单闭环和双闭环调速系统,把握系统要求实现的功能,选择最适合设计要求的虚拟控制电路。

根据系统实际,选择转速,电流双闭环调速系统。

对于交流异步电动机转差功率消耗型调速系统,当转速较低时转差功率消耗较大,从而限制了调速范围。

如果要设法回收转差功率,就需要在异步电动机的转子侧施加控制,此时可以采用绕线转子异步电动机。

常见的绕线转子异步电动机用转子回路串电阻调速,这种调速方法简单、操作方便且价格便宜,但在电阻上将消耗大量的能量,效率低,经济性差,同时由于转子回路附加电阻的容量大,可调的级数有限,不能实现平滑调速。

为了克服上述缺点,必须寻求一种效率较高、性能较好的绕线转子异步电动机转差功率同馈型调速方法,串级调速系统就是一个很好的解决方案。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的转差功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。

它能实现无级平滑调速,低速时机械特性也比较硬。

特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。

根据串级调速原理及资料查询,设计出串级调速系统主电路(如图2-1)图2-12.2双闭环系统设计说到双闭环系统的调速,我们得首先来简要认识一下单闭环系统调速,单闭环调速系统是指只有一个转速负反馈构成的闭环控制系统。

在电动机轴上装一台直流测速发电机TG,引出与转速成正比的电压U f,与给定电压U gd比较后,得偏差电压ΔU,经过放大器FD,产生触发装置CF的控制电压U k,用以控制电动机的转速。

因为这里只有一个环,所以成为单闭环系统。

采用PI调节器的单闭环调速系统,既保证了动态稳定性,又能做到无静差,很好地解决了系统中动、静态之间的矛盾。

然而系统中只靠电流截止环节来限制启动和升速的冲击电流,其性能仍然不能令人满意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
poe h ttesh m c nica dpa t a l i rc c。 rvd ta ce i si t n rci be npa te h e s e f i c i
K e r s:a c d p e e u ain;d u l ls d lo ;e gie rn ei y wo d c s a es ed rg lto o be co e op n n eig d sgn
0 引 言
流双闭环的感应 电机调速控 制系统 , 通过 试验 调试参
风机 、 水泵是我 国国民经 济发展 中重要的用 电设
数, 满足系统 的动 、 静态性能 指标 . 1 串级调 速 基本 原理 三相感应 电机从 定 子传人 转子 的 电磁功率 一部 分用 于拖 动负载为机械功率 ; 另一部分传输 给转 子 电
双 闭环 次 同步 串级 调 速 系统 设 计
李运辉 李 萍 刘 国 忠 , ,
( .西安鑫 隆铁路科技 有限责任公 司, 1 西安 7 0 4 ;. 10 82 北京信息科技大学 , 北京
10 9 )Biblioteka 0 12 誊 萎 誊要 曩 卑级讽逸是电机辕差功率馈迭 键遵曝 式 . 逸 绱 丧 控 可奄祷0 挺蔼 l 哇 n 速的静≮ 周 动态性能 堋扬需求 Ⅱ罐嘲计_案设计双闭环次同 方 i j 甥 目 速系统的控制器参数, 并结合嘲 £ } 器参数 t 匕 该方案可 激 现系统聪l J f 生 I 蕞 ' 畿 球 粥诵 镯侉 融 漪 ’ 砖 辩吕 察 学 行・ I l 毪 jl。 踅鼠 : 关 卑镪 爵遵 虱环 麓 殴诗 罄 誊毫 蠹 臻 薯警 。 | 蘩 Ii 誊 誊 | 嚣 警 毒 薯 袭 摹| | 鼍 啐阻 分獒 号: s * 文 橡标 鹤A l 章编 号 s s 3麓 ; 文 鹄 4 Q 姒 毫 羹 誊 3 奄 薯 |
U i r t, e ig10 9 C ia n esy B in 0 12, hn ) v i j
A s atC s d e g l i nee ysv gs l b ei akte l o e t pw r yt . b t c: ac e pe r u t nia nr — i y y e n bc ip w ro o e ss m r a s d e ao s g a n te f d g h sp e
Do becoe o dpe m rv o t ln yt s t n y a cp r r n e o eurme tf u l lsdl p i a o t t i poecnr l g ss m t i a dd n mi e oma c rr i n o s do oi e ac f f q e o
De i n o s a e S e d Re u a i n S s e fDo b e sg f Ca c d p e g l to y t m o u l Cl s d Lo p u d r S b-y c r n u p e o e o n e u s n h o o sS e d
LIYu — u ,LIP n nh i i g ,L U o z o g I Gu — h n
( . inXn o gri a c nl yC . Ld ,X 10 8 hn ; . e i f r t nSi c n eh o g 1 X h iLn aw yt h o g o ,t. in7 04 ,C ia 2 B in h o i c neadT cn l l e o h jg ma o e o y
路为转差 功率 , 与转差率 s 正 比. 成 转差 功率 的大小 ,
备, 其耗 电量 占发 电量 的 2 % 以上 …. 5 使用 中若不 能
根据负荷调节转速 , 则会 造成 电能极 大 的浪 费. 为实
现可持续发展 , 建设 节 约型社 会 , 国大 力倡 导节 约 我 能源 、 降低 消耗 , 高能 源 、 源利用效 率 , 提 资 因此急需
w r n e .Se n ur teu t rm t s d e g l i s m o ob l e o ok g l pe adcr n r l o p a e o c c es e r u t ns t dul c s l p i f d i d e g a r a e rf a a p d e a o y e f e od o udr u— nhoospe eg e i hm gnen eg ,hnaj t n t i db n e sb y crnu edids ndb u n s e o e i r gds n t d e a do i z s s s i ys g c e f n e i i e s u d pm e y
调 速 节 能 产 品 . 低 压 小 容 量 电 机 系 统 中 , 频 调 速 在 变
装 置得到了较广泛 的应 用 , 而高压 大容量 调速 系统 ,
变频器应用 上存 在成 本 高 , 体积 大等 诸多 问题 , 于 难 推广 . 串级调 速技 术能 够有 效实 现节 能. 于调 而 对
e e m n.Ss mp ̄ r a c cnbf lldadds n eo nb ot e s gtis e .hi x r t y e eCm ne a e u l n ei r dc e hr ndb ui s c m pi e t o f e i gp i a s e y n h he s
相关文档
最新文档