数值分析试题及答案
数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析版试题及答案

例1、已知函数表求()f x的Lagrange二次插值多项式和Newton二次插值多项式。
解:(1)由题可知插值基函数分别为故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为均差表为故所求Newton 二次插值多项式为例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有 所以,法方程为解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。
解:(1)用4n =的复合梯形公式由于2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式由于2h =,()f x =,()121,2,3k x k k =+=,()12220,1,2,3k xk k +=+=,所以,有例5、 用列主元消去法求解下列线性方程组的解。
解:先消元再回代,得到33x =,22x =,11x =所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武理数值分析考试试题纸(A 卷)
课程名称 数值分析 专业年纪 一、计算题(本题满分100分,共5小题,每小题20分) 1. 已知函数表
(1) 求f(x)的三次Lagrange 型插值多项式及其插值余项(要求化成最简形式). (2) 求f(x)的Newton 插值多项式(要求化成最简形式). 2. 已知A=[212
013612
],求‖A ‖1,‖A ‖∞,A 的LU 分解.
3. 叙述m 阶代数精度的定义,写出求∫f (x )dx b
a 的Simpson 公式,并验证Simpson 公式的代数精度为3阶.
4. 设矩阵A=012
α11,求当α为何值时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛.
5. 叙述最小二乘法的基本原理,并举例说明其应用.
参考答案
一、计算题
1、
解:(1)L 3(x )=l 0(x )y 0+l 1(x )y 0+l 2(x )y 2+l 3(x )y 3
=
(x−0)(x−2)(x−2)(−1−0)(−1−1)(−1−2
)
×0+(x+1)(x−1)(x−2)(
0+1)(0−1)(0−2)
×(−1)+
(x+1)(x−0)(x−2)(
1+1)(1−0)(1−2)
×2+(x+1)(x−0)(x−1)(2+1)(2−0)(2−1)
×15
=
x 3+2x 2−1
R 3(x )
=f (x )−L 3(x )=f (4)(ε)4!
ω4(x )
(2) 均差表如下:
N (x )=f (x 0)+f ,x 0,x 1-(x −x 0)+f ,x 0,x 1,x 2-(x −x 0)(x −x 1)
+f ,x 0,x 1,x 2,x 3-(x −x 0)(x −x 1)(x −x 2)
=0+(−1)(x +1)+2×(x +1)(x −0)+1×(x +1)(x −0)(x −1) =x 3+x 2−1
2、 解: ‖A ‖1
=max 1≤j≤3∑|a ij |3i=1=2+0+6=8
‖A ‖∞=max 1≤i≤3∑|a ij |3j=1=6+1+2=9
A =LU =[1
l 21
1l 31
l 32
1][
u 11
u 12
u 13u 22
u 23u 33]=[212013612
] 由u 11
=2 u 12=1 u 13=2
l 21=0 u 22=1 u 23=3 l 31=3 l 32=−2 u 33=2
所以 A =LU =[1
01
3−2
1
][2
121
32
] 3. 解:定义:如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m 次代数精度。
∫f (x )dx b
a 的Simpson 公式: S =
b−a 6
0f (a )+4f.
a+b 2
/+f (b )1
验证代数精度: 当f (x )=1时,
左边积分=∫1dx b
a =
b −a ,右边S =b−a 6
,1+4+1-=b −a =左边
当f (x )=x 时,
左边积分∫xdx b
a =1
2(b 2−a 2)右边S =b−a 6
0a +4×
a+b 2
+b1=1
2(b 2−a 2)=左边
当f (x )=x 2时,
左边积分∫x 2dx b
a =1
3(b 3−a 3)右边S =
b−a 6
[a 2+4×.
a+b 2
/2+b 2]=1
3(b 3−a 3)=左边
当f (x )=x 3时,
左边积分∫x 3dx
b
a =1
4
(b 4
−a 4)
右边S =
b−a 6
[a 3
+4×.
a+b 2
/3+b 3]=1
4(b 4−a 4)=左边
当f (x )=x 4时,
左边积分∫x 4dx b
a =1
4(b 5−a 5)右边S =
b−a 6
[a 4+4×.
a+b 2
/4+b 4]≠左边
故Simpson 公式对次数不超过三次的多项式均能准确成立,而对四次多项式不成立,所以Simpson 公式具有三次代数精度。
4. 解; Ax=b ⇔ {x 1+2x 2=b 1
2x 1+x 2=b 2
其Gauss-Seidel 迭代格式为 {x 1
(k+1)
=b 1−2x 2(k )
x 2
(
k+1)
=b 2−
2x 1
(k ) (k =0,1,2…)
∴ 迭代矩阵 B =00−2
−20
1
该迭代发收敛的充要条件是矩阵B 的谱半径ρ(B )<1 |λI −B |=|λ2
2λ|=λ2−2λ=0, 特征根λ1,2=±√2α
∴ ρ(B )=√2α>1⇒α>1
2
∴ 当α>1
2
时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛。
5. 答: 在函数的最佳平方逼近中f (x )∈C ,a,b -,如果f (x )只在一组离散点集 {x i ,i =0,1,…,m}上给定,这就是科学实验中经常见到的实验数据{(x i ,y i ),i =0,1,…,m}的曲线拟合,这里y i =f (x i ),i =0,1,…,m ,要求一个函数y =S ∗(x )与所给数据{(x i ,y i ),i =0,1,…,m}拟合,若记φ0(x ), φ1(x ),…,φn (x )是C ,a,b -上线性无关函数族,在φ=span *φ0(x ),φ1(x ),…,φn (x )+中找一函数S ∗(x ),使误差平方和
‖δ‖22=∑δi 2=m i=0∑,S ∗(x i )−y i -2m i=0=min S (x )∈φ∑,S (x i )−y i -2m i=0
这里 S (x )
=a 0φ0(x )+a 1φ1(x )+⋯+a n φn (x ) (n <m ).
这就是一般的最小二乘逼近,用几何语言说,就成为曲线拟合的最小二乘法。
举例说明:
测得铜导线在温度(℃)时的电阻
如表6-1,求电阻R 与温度 T 的近
i 0(℃)
19.1
76.30解 画出散点图如下图所示,可见测得的数据接近一条直线,
故取n=1,拟合函数为
列表如下
19.176.30364.811457.330
650.0
245.3
正规方程组为
解方程组得
故得R与T的拟合直线为
利用上述关系式,可以预测不同温度时铜导线的电阻值。
例如,由R=0得T=-242.5,
即预测温度T=-242.5℃时,铜导线无电阻。