陶瓷烧结过程
陶瓷烧结

目前,微波烧结技术已经被广泛用于多种陶瓷复合 材料的试验研究材料直接耦合导致整体加热。
(2)微波烧结升温速度快,烧结时间短。 (3)安全无污染。 (4)能实现空间选择性烧结。
材料与微波场的作用类型
材料与微波的作用方式示意图
微波烧结系统
5 )反应烧结
反应烧结(reaction-bonded sintering)是让原料混合 物发生固相反应或原料混合物与外加气(液)体发生 围—气(液)反应,以合成材料,或者对反应后的反应 体施加其它处理工艺以加工成所需材料的一种技术 。
是将粉末压坯或装入包套的粉料装入高压容器中,使粉 料经受高温和均衡压力的作用,被烧结成致密件。
其基本原理是:以气体作为压力介质,使材料(粉 料、坯体或烧结体)在加热过程中经受各向均衡的压力, 借助高温和高压的共同作用促进材料的致密化。 目前,热等静压技术的主要应用有:金属和陶瓷的 固结,金刚石刀具的烧结,铸件质量的修复和改善,高 性能磁性材料及靶材的致密化。
(2)具备快熔快冷性,有利于保持粉末的优异特性;
(3)可以使 Si3N4,SiC 等非热熔性陶瓷在无需添加
烧结助剂的情况下 发生烧结。
间接法爆炸烧结装置(a.单面飞片; b.单活塞;c.双活塞)
直接法爆炸烧结装置
谢谢大家!
1)热压烧结
热压烧结(hot pressing)是在烧结过程中同时对
坯料施加压力,加速了致密化的过程。所以热压 烧结的温度更低,烧结时间更短。
热压技术已有70年历史,最早用于碳化钨和钨粉致密件的 制备。现在已广泛应用于陶瓷、粉末冶金和复合材料的生 产。
热压烧结的优点
(1)所需的成型压力仅为冷压法的1/10
烧结装置
烧结系统大致由 四个部分组成:真空 烧结腔(图中6), 加压系统(图中3), 测温系统(图中7) 和控制反馈系统。图 中1示意石墨模具,2 代表用于电流传导的 石墨板,4是石墨模 具中的压头,5是烧 结样品。
陶瓷烧结的三个阶段

陶瓷烧结的三个阶段
陶瓷烧结是一种制造陶瓷制品的重要工艺,通常可以分为三个阶段。
第一阶段是加热阶段。
在这个阶段,原料陶瓷粉末被放置在热处理炉中,然后逐渐加热。
温度通常在700到900摄氏度之间,这样可以使陶瓷粉末中的有机物挥发出来,使其成为一个稳定的坚硬物质。
第二阶段是烧结阶段。
在这个阶段,温度逐渐升高到1200到1400摄氏度,这样可以使陶瓷颗粒之间发生化学反应,形成一种新的结晶物质,并且增加了材料的密度和重量。
最后,第三阶段是冷却阶段。
在这个阶段,烧结的陶瓷制品被逐渐冷却到室温。
在冷却的过程中,陶瓷制品中的结晶物质会逐渐形成更加稳定和坚固的结构。
总之,陶瓷烧结是一个非常重要的工艺,可以制造出高质量和坚固的陶瓷制品。
- 1 -。
第五章 烧结-1

2. 中温阶段(300~950℃)
• 任务:脱水、分解、氧化、晶型转变
• 结构水排除(高岭土) Al2O3 . 2SiO2 . 2H2O
Al2O3 . 2SiO2+2H2O
• 碳酸盐分解
✓由原料中带入
✓分解反应
500~850℃
MgCO3
MgO+CO2
CaCO3 850~1050℃CaO+CO2
MgCO3 . CaCO3 730~950℃ CaO+MgO+2CO2
研究表明,较小的颗粒尺寸分布范围是获取高烧结密度的必要条件。
二、影响陶瓷材料烧结的工艺参数
(1)烧成温度对产品性能的影响
烧成温度是指陶瓷坯体烧成时获得最优性质时的相应温度,即操作 时的止火温度。
烧成温度的高低直接影响晶粒尺寸和数量。对固相扩散或液相重结 晶来说,提高烧成温度是有益的。然而过高的烧成温度对特瓷来说,会因总 体晶粒过大或少数晶粒猛增,破坏组织结构的均匀性,因而产品的机电性能 变差。
颗粒间由点接触转变为面接触,孔隙缩小,连通孔 隙变得封闭,并孤立分布。 ③ 小颗粒间率先出现晶界,晶界移动,晶粒长大。
2)烧结后期阶段 ① 孔隙的消除:晶界上的物质不断扩散到孔隙处, 使孔隙逐渐消除。 ② 晶粒长大:晶界移动,晶粒长大。
➢ 烧结的分类:
烧结
固相烧结(只有固相传质) 液相烧结(出现液相) 气相烧结(蒸汽压较高)
颗粒形状和液相体积含量对颗粒之间作用力的影响 只有在大量液相存在的情况下,才能使这些具有一定棱角形状 的陶瓷粉体之间形成较高的结合强度。
(4)颗粒尺寸分布对烧结的影响
颗粒尺寸分布对最终烧结样品密度的影响可以通过分析有关的动力学 过程来研究,即分析由不同尺寸分布的坯体内部,在烧结过程中“拉出气孔” (pore drag)和晶粒生长驱动力之间力的平衡作用。
《陶瓷材料的烧结》课件

对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装
陶瓷材料的烧结与晶粒生长

陶瓷材料的烧结与晶粒生长烧结和晶粒生长是陶瓷材料制备过程中非常重要的步骤。
通过烧结和晶粒生长的控制,可以改善材料的性能、提高其致密性和强度。
本文将就陶瓷材料的烧结和晶粒生长进行探讨,并介绍一些常见的烧结方法和晶粒生长机制。
1. 烧结方法烧结是指将陶瓷粉末在一定的温度和压力下进行加热处理,使粒子间发生相互结合和扩散,形成致密的块体材料。
常见的烧结方法有以下几种:(1)热压烧结:将陶瓷粉末放入模具中,在高温和高压的条件下进行烧结。
热压烧结可以获得致密的陶瓷材料,具有较高的强度和硬度。
(2)微波烧结:通过微波加热的方式进行烧结。
微波烧结的优点是加热速度快,能够在较短的时间内完成烧结过程,适用于一些高温敏感的材料。
(3)等离子体烧结:通过等离子体的作用,加快粒子之间的扩散和结合,从而实现快速烧结。
等离子体烧结可以得到致密度较高的陶瓷材料,并能够控制晶粒尺寸和分布。
2. 晶粒生长机制晶粒生长是指陶瓷材料在烧结过程中晶粒尺寸的增大。
晶粒尺寸的大小和分布对陶瓷材料的性能有着重要的影响。
常见的晶粒生长机制包括以下几种:(1)一维生长:晶粒沿着某个方向生长,呈现出棒状或柱状的形态。
一维生长机制适用于一些具有纤维状结构的陶瓷材料。
(2)表面扩散:晶粒表面发生扩散,并与周围的颗粒结合。
表面扩散是晶粒生长的主要机制之一,通过控制晶粒表面的扩散速率,可以调控晶粒尺寸和形态。
(3)体内扩散:晶粒内部的原子通过扩散运动,使晶粒尺寸增大。
体内扩散主要取决于材料的化学成分和温度条件。
3. 影响烧结和晶粒生长的因素烧结和晶粒生长受到多种因素的影响,下面介绍其中几个重要的因素:(1)温度:温度是烧结和晶粒生长的关键因素之一。
适当的温度可以促进晶粒的结合和生长,但过高的温度可能引起过烧,导致晶粒长大过快。
(2)压力:压力可以提高粒子的结合程度和致密性,对烧结效果有重要影响。
不同材料和形状的陶瓷,适宜的压力范围也有所不同。
(3)时间:烧结时间影响烧结程度和晶粒生长的速率。
陶瓷的烧结工艺流程

陶瓷的烧结工艺流程嘿,咱今儿来聊聊陶瓷的烧结工艺流程呀!你可别小瞧这陶瓷,那可是咱老祖宗留下来的宝贝呢!先来说说原料准备吧,这就好比是要做一顿大餐,得先把食材准备好呀!各种黏土、石英啥的,都得精挑细选,就跟咱买菜得挑新鲜的一样。
然后把它们按照一定的比例混合在一起,这可是个技术活,多一点少一点都可能影响最后的效果。
接下来就是成型啦!就像是捏泥巴,不过这可比咱小时候玩的高级多了。
可以用各种方法,什么拉坯呀、注浆呀,把那一堆原料变成各种各样好看的形状。
想象一下,一块泥巴在师傅的巧手下慢慢变成了一个精美的花瓶,是不是很神奇?然后呢,就该干燥啦!这就好比洗完衣服要晾干一样。
把成型的陶瓷放在合适的地方,让水分慢慢跑掉。
可不能着急哦,要是没干好,后面可就麻烦啦!终于到了最重要的烧结环节啦!这就像是陶瓷的一场大考。
把陶瓷放进高温的炉子里,那温度高得吓人,就像夏天里的大太阳。
在里面经过一番“烤验”,陶瓷才能变得坚硬、漂亮。
这过程可不简单,火候得掌握好,时间也得恰到好处,不然不是没烧好就是烧过头啦,那不就前功尽弃了嘛!你说这陶瓷的烧结工艺流程是不是很有意思?从一堆普通的原料,经过这么多道工序,最后变成了让人爱不释手的艺术品。
这就像我们的人生呀,要经过各种磨练才能变得更加精彩。
咱再想想,要是没有这精细的烧结工艺流程,哪来那些精美的陶瓷呢?那些摆在博物馆里的珍贵瓷器,可都是经过了无数人的心血和努力才诞生的呀!所以说呀,做什么事都得认真对待,就像对待陶瓷的烧结一样,不能马虎。
咱平时用的碗呀、杯子呀,看着普通,可背后都有着这么复杂的工艺呢!咱可得好好珍惜这些陶瓷制品,它们可都是来之不易的呀!你说是不是这个理儿?反正我觉得是这么回事儿!这陶瓷的烧结工艺流程,真的是充满了智慧和魅力,让人不得不佩服咱老祖宗的厉害呀!。
mlcc烧结工艺

mlcc烧结工艺MLCC(多层陶瓷电容器)烧结工艺多层陶瓷电容器(MLCC)是一种常见的电子元件,用于储存和释放电能。
它由一系列陶瓷层和金属电极组成,通过烧结工艺将它们牢固地结合在一起。
MLCC烧结工艺是生产高质量电容器的关键步骤之一,下面将介绍MLCC烧结工艺的过程和特点。
1. 烧结工艺概述烧结是将陶瓷层和金属电极在高温下热处理,使其结合成一体的工艺过程。
MLCC烧结工艺通常包括以下几个步骤:(1)混合和制备瓷浆:将陶瓷粉末与有机物混合,形成瓷浆,用于制备陶瓷层。
(2)制备电极浆料:将金属粉末与有机物混合,形成电极浆料,用于制备金属电极。
(3)涂覆:将瓷浆和电极浆料分别涂覆在基板上,形成多层结构。
(4)干燥:将涂覆的基板在低温下进行干燥,以去除有机物。
(5)烧结:将干燥后的基板在高温下进行烧结,使陶瓷层和金属电极结合成一体。
(6)金属化:在烧结后的基板上进行金属化处理,形成电极的连接端子。
2. MLCC烧结工艺的特点MLCC烧结工艺具有以下几个特点:(1)高温烧结:MLCC烧结工艺需要在高温下进行,通常在1000摄氏度以上,以确保陶瓷层和金属电极能够充分结合。
高温烧结还有助于提高电容器的稳定性和可靠性。
(2)层与层之间的结合:烧结过程中,陶瓷层和金属电极之间会发生化学反应和物理结合,使它们紧密结合在一起。
这种结合力强大,能够确保电容器的结构稳定。
(3)均匀性和一致性:烧结过程中,需要保证瓷浆和电极浆料均匀涂覆在基板上,并且烧结温度和时间要控制得精确一致,以保证电容器的性能稳定。
(4)烧结气氛控制:烧结过程中需要控制烧结气氛,以防止陶瓷层和金属电极受到污染或氧化。
通常使用惰性气体或还原气氛来保护电容器。
3. MLCC烧结工艺的影响因素MLCC烧结工艺的质量和性能受到多种因素的影响,包括:(1)瓷浆和电极浆料的配方:瓷浆和电极浆料的成分和配比会影响烧结过程中的粘度、流动性和烧结性能。
(2)烧结温度和时间:烧结温度和时间的选择会影响陶瓷层和金属电极的结合程度和电容器的性能。
陶瓷烧结过程中的物理化学变化

陶瓷烧结过程中的物理化学变化陶瓷烧结过程和物理变化:随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图回向降低表面能答的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。
烧结的推动力为表面能。
烧结可分为有液相参加的烧结和纯固相烧结两类。
烧结过程对陶瓷生产具有很重要的意义。
为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。
如添加少量二氧化硅促进钛酸钡陶瓷烧结;又如添加少量氧化镁、氧化钙、二氧化硅促进氧化铝陶瓷烧结。
陶瓷烧结过程和化学变化:陶瓷的主要成分的化学式是SiO2 在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。
这个过程中包含有物理变化和化学变化瓷是由粘土、石英及长石等天然矿物原料按不同配方配制,经加工、成型及烧成而得,其化学组成取决于所用天然原料及配方,不同地区不同窑口的古陶瓷由于所用原料的不同,配方的不同以及烧制工艺的不同,其胎釉化学组成、显微结构及物理性能就会有各自的特点。
如果收集不同窑口发掘时有可靠地层年代的陶瓷标本进行系统地研究,把积累的数据资料如化学组成数据(包括主次量元素含量以及微量元素含量)建立数据库,并用适当的处理方法,譬如多元统计分析等方法对数据进行处理,找出具有特征意义的规律。
对要鉴定的陶瓷的化学组成、显微结构、物理性能以及烧制工艺等方面进行研究,并将其化学组成数据与已知窑口和年代的古陶瓷的化学组成数据进行比较处理,再综合显微结构、物理性能以及烧制工艺等方面的信息就可能对陶瓷作出鉴定。
陶瓷是混合物,成分特别多而复杂,而且根据陶瓷的产地不同成分也不同。
其主要成分是二氧化硅和硅酸盐(硅酸铝,硅酸钙等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 降低烧成温度、缩短烧成时间 – 减少或不用烧结助剂 – 提高陶瓷性能及可靠性 – 便于制造复杂形状产品
微波烧结
• 利用微波与材料的相互作用,其介电损 耗导致陶瓷坯体自身发热而烧结
• 加热快 • 整体均匀加热 • 无热惯性,烧成周期短 • 可实现局部加热修复等 • 能效高 • 无热源污染
材料与微波的相互作用
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
• 以高压气体作为压力介质作用于陶 瓷材料(包封的粉体和素坯,或烧 结体),使其在高温环境下受到等 静压而达到高致密化
• 一般用玻璃封装 • HIP的特点:
氮化硅陶瓷的无压烧结
• 氮化硅无熔点、高温分解(1900C) • 能形成液相的氧化物烧结助剂(Y2O3-Al2O3,
MgO-Al2O3-SiO2) • 采用α氮化硅为原料,1420C相变为β相,有利烧
结,且该β相为柱状晶,力学性能好。 • 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分
解
钟罩窑、梭式窑
辊道窑、推板窑
隧道窑
促进烧结的方法
• 高密度、高均匀性的成形体 • 烧结助剂
– 产生低温液相 – 形成固溶体 – 钉扎界面,抑制晶粒生长
真空烧结、气氛烧结
• 真空电阻炉:钨丝或石墨发热体(<2000 、2300C、可高真空、可通惰性保护气体 N2、Ar)
• 管式气氛炉:电热丝、硅碳、硅钼 • 非氧化物陶瓷烧结
• 微波透过材料(无吸收):石英玻璃、 云母、聚四氟乙烯
• 微波反射材料:金属 • 微波吸收材料(损耗介质):
– 低温吸收小,高于某温度急剧增加:Al2O3 、MgO、ZrO2、Si3N4等
– 室温就高吸收:CaCO3、Fe2O3、Cr2O3、 SiC等
材料与微波的相互作用
• 吸收功率: • 穿透深度: • 升温速率:
• 粉体表面能与界面能的差 • 传质过程
– 扩散传质 – 溶解析出传质 – 蒸发凝聚传质 – 粘性流动
烧结过程
• 粉体颗粒间的粘接、致密化 • 晶粒长大 • 晶界相
• 影响烧结的因素
– 温度、气氛、压力 – 粉体活性 – 烧结助剂
烧结方法
• 常压烧结 • 热压烧结 • 热等静压烧结 • 电弧等离子放电烧结 • 微波烧结 • 自蔓延烧结
P 2 f 0r tan E 2
D
0
2 tan ( r / 0 ) 2
dT P dt Cp
放电等离子烧结 (Spark Plasma Sintering, SPS)
• 对模具或样品直接施加大 脉冲电流,通过热效应或 其他场效应,使试样烧结
• 压力500t,脉冲电流25kA • 数分钟完成陶瓷烧结
放电等离子烧结原理
其他烧结方法
• 自蔓延烧结:SHS合成+压力
陶瓷的烧结过程
• 陶瓷成形体(素坯)是由陶瓷粉体聚合 而成的多孔体,气孔率一般为35-60%。
• 在高温条件下(熔点的0.5-0.7),由于 物质迁移,素坯体积收缩,气孔排除, 形成致密的多晶陶瓷体——烧结
• 烧结伴随气孔形状变化、气孔率下降、 密度提高(致密陶瓷相对密度>98%)、 晶粒长大
烧结的驱动力
常压烧结
• 在大气环境下,仅通过加热使陶瓷烧结 的方法。
• 用于制备氧化物陶瓷 • 烧成制度:各阶段温度点、升温速度、
保温时间、降温速度 • 裸烧、匣钵
窑炉类型
• 间歇式:
– 箱式电炉 – 钟罩窑、梭式窑
• 连续式:
– 推板窑、辊道窑 – 隧道窑
电炉发热体
• 马弗炉:金属合金丝(<1100C) • 硅碳棒,SiC(<1400C) • 硅钼棒,MoSi2(<1700C) • 氧化锆,(<2000C)