Fermions on half-quantum vortex
非对称半导体双量子阱中的双电磁感应透明现象

非对称半导体双量子阱中的双电磁感应透明现象张蔚曦;张愉;金慧【摘要】The characteristics of optical absorption in an asymmetric four-level N-type semiconductor quantum well with the cross-coupling longitude-optical phonons (CCLOP) relaxation were studied. In the linear range, it shows that the electromagnetically induced transparency (EIT) relies on the coherence control of the optical fields and the CCLOP relaxation. Especially, there exhibits a double-EIT when the transition frequency between the hole and anti-bonding states is rather large. Interestingly, there appears a near-perfect double-EIT phenomenon when increasing the CCLOP relaxation. It is expected that these results may exhibit some potential applications in the all-optical switching and other optical information engineering related issues.%对在交叉耦合纵波光学声子(Cross-coupling Longitude-optical Phonons,简称CCLOP)弛豫时四能级非对称N型半导体量子阱系统的光吸收特性进行了研究。
Science:英国科学家揭示神经干细胞重回静默状态的重要机制

Science:英国科学家揭示神经干细胞重回静默状态的重要机制2016年7月18日讯/生物谷BIOON/ --近日,著名国际学术期刊Science刊登了英国弗朗西斯克里克研究所-米尔希尔实验室研究人员的一项最新研究进展,在这篇文章中他们发现了增殖状态下的神经干细胞如何重新回到静默状态,从而维持神经干细胞池的平衡。
海马体是大脑中负责调节记忆和情绪的重要区域,其中的神经干细胞能够产生新的神经元,即使在成年阶段也具有这样的能力。
形成多少个新的神经元以及何时形成新的神经元取决于神经干细胞池的静默和增殖之间的平衡。
那么什么样的信号能够让处于增殖状态的神经干细胞回到静默状态引起了研究人员的兴趣。
研究人员发现一个促进细胞增殖的关键转录因子发生泛素化降解,就能调节神经干细胞回到静默状态,但是这种静默状态与神经干细胞的原始状态并不相同,这种处于静默但又活化状态的神经干细胞维持了神经干细胞池的平衡。
研究人员表示,神经干细胞的静默对于成体神经干细胞的长期维持非常重要,微环境信号能够调节神经干细胞从静默状态变成激活状态,但是增殖状态的神经干细胞如何重新回到静默状态仍未可知。
在这项研究中,研究人员发现E3连接酶Huwe1是增殖状态下的成年小鼠海马体神经干细胞回到静默状态的一个必要分子。
Huwe1能够通过泛素化降解系统使增殖状态下的海马体神经干细胞中促进细胞增殖的转录因子Ascl1变得不稳定,进而阻止细胞周期蛋白D的积累促进增殖细胞回到静默状态。
当神经干细胞回到静默状态,增殖的神经干细胞池会逐渐耗竭。
研究人员认为长期维持海马体神经元生成需要依赖于快速降解这种关键的促激活因子使神经干细胞回到一种暂时性的静默状态。
这项研究发现了促进增殖的神经干细胞回到静默状态的一条重要分子机制,机体通过这种静默状态和增殖状态的神经干细胞池平衡维持正常的神经元生成,该研究对于神经疾病研究和治疗甚至癌症研究都有重要提示意义。
美国开发出纳米磁性材料

美国开发出纳米磁性材料
佚名
【期刊名称】《新材料产业》
【年(卷),期】2002(000)012
【总页数】1页(P45)
【正文语种】中文
【中图分类】TM27
【相关文献】
1.美国钼公司与Arnold磁性材料科技公司欲建磁性材料合资公司 [J], 赵文静
2.水热法合成锰锌铁氧体纳米球包覆的碳纳米管磁性材料的研究 [J], 张欣鹏;曹慧群;张安祥;罗仲宽
3.反应型纳米级磁核聚烯烃类磁性材料的研究——(Ⅰ)纳米级Fe_3O_4磁性超微粒的制备和性能研究 [J], 韩志萍;王立;谢涛;封麟先
4.美国德克萨斯大学研制出一种高密度的含能材料——五氧化二碘纳米棒 [J],
5.反应型纳米级磁核聚烯烃类磁性材料的研究——(Ⅳ)纳米级NdxFe_(3-x)O_4磁性载体的制备和性能研究 [J], 韩志萍;王立;封麟先
因版权原因,仅展示原文概要,查看原文内容请购买。
Singularity of the density of states in the two-dimensional Hubbard model from finite size

a r X i v :c o n d -m a t /9503139v 1 27 M a r 1995Singularity of the density of states in the two-dimensional Hubbard model from finitesize scaling of Yang-Lee zerosE.Abraham 1,I.M.Barbour 2,P.H.Cullen 1,E.G.Klepfish 3,E.R.Pike 3and Sarben Sarkar 31Department of Physics,Heriot-Watt University,Edinburgh EH144AS,UK 2Department of Physics,University of Glasgow,Glasgow G128QQ,UK 3Department of Physics,King’s College London,London WC2R 2LS,UK(February 6,2008)A finite size scaling is applied to the Yang-Lee zeros of the grand canonical partition function for the 2-D Hubbard model in the complex chemical potential plane.The logarithmic scaling of the imaginary part of the zeros with the system size indicates a singular dependence of the carrier density on the chemical potential.Our analysis points to a second-order phase transition with critical exponent 12±1transition controlled by the chemical potential.As in order-disorder transitions,one would expect a symmetry breaking signalled by an order parameter.In this model,the particle-hole symmetry is broken by introducing an “external field”which causes the particle density to be-come non-zero.Furthermore,the possibility of the free energy having a singularity at some finite value of the chemical potential is not excluded:in fact it can be a transition indicated by a divergence of the correlation length.A singularity of the free energy at finite “exter-nal field”was found in finite-temperature lattice QCD by using theYang-Leeanalysisforthechiral phase tran-sition [14].A possible scenario for such a transition at finite chemical potential,is one in which the particle den-sity consists of two components derived from the regular and singular parts of the free energy.Since we are dealing with a grand canonical ensemble,the particle number can be calculated for a given chem-ical potential as opposed to constraining the chemical potential by a fixed particle number.Hence the chem-ical potential can be thought of as an external field for exploring the behaviour of the free energy.From the mi-croscopic point of view,the critical values of the chemical potential are associated with singularities of the density of states.Transitions related to the singularity of the density of states are known as Lifshitz transitions [15].In metals these transitions only take place at zero tem-perature,while at finite temperatures the singularities are rounded.However,for a small ratio of temperature to the deviation from the critical values of the chemical potential,the singularity can be traced even at finite tem-perature.Lifshitz transitions may result from topological changes of the Fermi surface,and may occur inside the Brillouin zone as well as on its boundaries [16].In the case of strongly correlated electron systems the shape of the Fermi surface is indeed affected,which in turn may lead to an extension of the Lifshitz-type singularities into the finite-temperature regime.In relating the macroscopic quantity of the carrier den-sity to the density of quasiparticle states,we assumed the validity of a single particle excitation picture.Whether strong correlations completely distort this description is beyond the scope of the current study.However,the iden-tification of the criticality using the Yang-Lee analysis,remains valid even if collective excitations prevail.The paper is organised as follows.In Section 2we out-line the essentials of the computational technique used to simulate the grand canonical partition function and present its expansion as a polynomial in the fugacity vari-able.In Section 3we present the Yang-Lee zeros of the partition function calculated on 62–102lattices and high-light their qualitative differences from the 42lattice.In Section 4we analyse the finite size scaling of the Yang-Lee zeros and compare it to the real-space renormaliza-tion group prediction for a second-order phase transition.Finally,in Section 5we present a summary of our resultsand an outlook for future work.II.SIMULATION ALGORITHM AND FUGACITY EXPANSION OF THE GRAND CANONICALPARTITION FUNCTIONThe model we are studying in this work is a two-dimensional single-band Hubbard HamiltonianˆH=−t <i,j>,σc †i,σc j,σ+U i n i +−12 −µi(n i ++n i −)(1)where the i,j denote the nearest neighbour spatial lat-tice sites,σis the spin degree of freedom and n iσis theelectron number operator c †iσc iσ.The constants t and U correspond to the hopping parameter and the on-site Coulomb repulsion respectively.The chemical potential µis introduced such that µ=0corresponds to half-filling,i.e.the actual chemical potential is shifted from µto µ−U412.(5)This transformation enables one to integrate out the fermionic degrees of freedom and the resulting partition function is written as an ensemble average of a product of two determinantsZ ={s i,l =±1}˜z = {s i,l =±1}det(M +)det(M −)(6)such thatM ±=I +P ± =I +n τ l =1B ±l(7)where the matrices B ±l are defined asB ±l =e −(±dtV )e −dtK e dtµ(8)with V ij =δij s i,l and K ij =1if i,j are nearestneigh-boursand Kij=0otherwise.The matrices in (7)and (8)are of size (n x n y )×(n x n y ),corresponding to the spatial size of the lattice.The expectation value of a physical observable at chemical potential µ,<O >µ,is given by<O >µ=O ˜z (µ){s i,l =±1}˜z (µ,{s i,l })(9)where the sum over the configurations of Ising fields isdenoted by an integral.Since ˜z (µ)is not positive definite for Re(µ)=0we weight the ensemble of configurations by the absolute value of ˜z (µ)at some µ=µ0.Thus<O >µ= O ˜z (µ)˜z (µ)|˜z (µ0)|µ0|˜z (µ0)|µ0(10)The partition function Z (µ)is given byZ (µ)∝˜z (µ)N c˜z (µ0)|˜z (µ0)|×e µβ+e −µβ−e µ0β−e −µ0βn (16)When the average sign is near unity,it is safe to as-sume that the lattice configurations reflect accurately thequantum degrees of freedom.Following Blankenbecler et al.[1]the diagonal matrix elements of the equal-time Green’s operator G ±=(I +P ±)−1accurately describe the fermion density on a given configuration.In this regime the adiabatic approximation,which is the basis of the finite-temperature algorithm,is valid.The situa-tion differs strongly when the average sign becomes small.We are in this case sampling positive and negative ˜z (µ0)configurations with almost equal probability since the ac-ceptance criterion depends only on the absolute value of ˜z (µ0).In the simulations of the HSfields the situation is dif-ferent from the case of fermions interacting with dynam-ical bosonfields presented in Ref.[1].The auxilary HS fields do not have a kinetic energy term in the bosonic action which would suppress their rapidfluctuations and hence recover the adiabaticity.From the previous sim-ulations on a42lattice[3]we know that avoiding the sign problem,by updating at half-filling,results in high uncontrolledfluctuations of the expansion coefficients for the statistical weight,thus severely limiting the range of validity of the expansion.It is therefore important to obtain the partition function for the widest range ofµ0 and observe the persistence of the hierarchy of the ex-pansion coefficients of Z.An error analysis is required to establish the Gaussian distribution of the simulated observables.We present in the following section results of the bootstrap analysis[17]performed on our data for several values ofµ0.III.TEMPERATURE AND LATTICE-SIZEDEPENDENCE OF THE YANG-LEE ZEROS The simulations were performed in the intermediate on-site repulsion regime U=4t forβ=5,6,7.5on lat-tices42,62,82and forβ=5,6on a102lattice.The ex-pansion coefficients given by eqn.(14)are obtained with relatively small errors and exhibit clear Gaussian distri-bution over the ensemble.This behaviour was recorded for a wide range ofµ0which makes our simulations reli-able in spite of the sign problem.In Fig.1(a-c)we present typical distributions of thefirst coefficients correspond-ing to n=1−7in eqn.(14)(normalized with respect to the zeroth power coefficient)forβ=5−7.5for differ-entµ0.The coefficients are obtained using the bootstrap method on over10000configurations forβ=5increasing to over30000forβ=7.5.In spite of different values of the average sign in these simulations,the coefficients of the expansion(16)indicate good correspondence between coefficients obtained with different values of the update chemical potentialµ0:the normalized coefficients taken from differentµ0values and equal power of the expansion variable correspond within the statistical error estimated using the bootstrap analysis.(To compare these coeffi-cients we had to shift the expansion by2coshµ0β.)We also performed a bootstrap analysis of the zeros in theµplane which shows clear Gaussian distribution of their real and imaginary parts(see Fig.2).In addition, we observe overlapping results(i.e.same zeros)obtained with different values ofµ0.The distribution of Yang-Lee zeros in the complexµ-plane is presented in Fig.3(a-c)for the zeros nearest to the real axis.We observe a gradual decrease of the imaginary part as the lattice size increases.The quantitative analysis of this behaviour is discussed in the next section.The critical domain can be identified by the behaviour of the density of Yang-Lee zeros’in the positive half-plane of the fugacity.We expect tofind that this density is tem-perature and volume dependent as the system approaches the phase transition.If the temperature is much higher than the critical temperature,the zeros stay far from the positive real axis as it happens in the high-temperature limit of the one-dimensional Ising model(T c=0)in which,forβ=0,the points of singularity of the free energy lie at fugacity value−1.As the temperature de-creases we expect the zeros to migrate to the positive half-plane with their density,in this region,increasing with the system’s volume.Figures4(a-c)show the number N(θ)of zeros in the sector(0,θ)as a function of the angleθ.The zeros shown in thesefigures are those presented in Fig.3(a-c)in the chemical potential plane with other zeros lying further from the positive real half-axis added in.We included only the zeros having absolute value less than one which we are able to do because if y i is a zero in the fugacity plane,so is1/y i.The errors are shown where they were estimated using the bootstrap analysis(see Fig.2).Forβ=5,even for the largest simulated lattice102, all the zeros are in the negative half-plane.We notice a gradual movement of the pattern of the zeros towards the smallerθvalues with an increasing density of the zeros nearθ=πIV.FINITE SIZE SCALING AND THESINGULARITY OF THE DENSITY OF STATESAs a starting point for thefinite size analysis of theYang-Lee singularities we recall the scaling hypothesis forthe partition function singularities in the critical domain[11].Following this hypothesis,for a change of scale ofthe linear dimension LLL→−1),˜µ=(1−µT cδ(23)Following the real-space renormalization group treatmentof Ref.[11]and assuming that the change of scaleλisa continuous parameter,the exponentαθis related tothe critical exponentνof the correlation length asαθ=1ξ(θλ)=ξ(θ)αθwe obtain ξ∼|θ|−1|θ|ναµ)(26)where θλhas been scaled to ±1and ˜µλexpressed in terms of ˜µand θ.Differentiating this equation with respect to ˜µyields:<n >sing =(−θ)ν(d −αµ)∂F sing (X,Y )ν(d −αµ)singinto the ar-gument Y =˜µαµ(28)which defines the critical exponent 1αµin terms of the scaling exponent αµof the Yang-Lee zeros.Fig.5presents the scaling of the imaginary part of the µzeros for different values of the temperature.The linear regression slope of the logarithm of the imaginary part of the zeros plotted against the logarithm of the inverse lin-ear dimension of the simulation volume,increases when the temperature decreases from β=5to β=6.The re-sults of β=7.5correspond to αµ=1.3within the errors of the zeros as the simulation volume increases from 62to 82.As it is seen from Fig.3,we can trace zeros with similar real part (Re (µ1)≈0.7which is also consistentwith the critical value of the chemical potential given in Ref.[22])as the lattice size increases,which allows us to examine only the scaling of the imaginary part.Table 1presents the values of αµand 1αµδ0.5±0.0560.5±0.21.3±0.3∂µ,as a function ofthe chemical potential on an 82lattice.The location of the peaks of the susceptibility,rounded by the finite size effects,is in good agreement with the distribution of the real part of the Yang-Lee zeros in the complex µ-plane (see Fig.3)which is particularly evident in the β=7.5simulations (Fig.4(c)).The contribution of each zero to the susceptibility can be singled out by expressing the free energy as:F =2n x n yi =1(y −y i )(29)where y is the fugacity variable and y i is the correspond-ing zero of the partition function.The dotted lines on these plots correspond to the contribution of the nearby zeros while the full polynomial contribution is given by the solid lines.We see that the developing singularities are indeed governed by the zeros closest to the real axis.The sharpening of the singularity as the temperature de-creases is also in accordance with the dependence of the distribution of the zeros on the temperature.The singularities of the free energy and its derivative with respect to the chemical potential,can be related to the quasiparticle density of states.To do this we assume that single particle excitations accurately represent the spectrum of the system.The relationship between the average particle density and the density of states ρ(ω)is given by<n >=∞dω1dµ=ρsing (µ)∝1δ−1(32)and hence the rate of divergence of the density of states.As in the case of Lifshitz transitions the singularity of the particle number is rounded at finite temperature.However,for sufficiently low temperatures,the singular-ity of the density of states remains manifest in the free energy,the average particle density,and particle suscep-tibility [15].The regular part of the density of states does not contribute to the criticality,so we can concentrate on the singular part only.Consider a behaviour of the typedensity of states diverging as the−1ρsing(ω)∝(ω−µc)1δ.(33)with the valueδfor the particle number governed by thedivergence of the density of states(at low temperatures)in spite of thefinite-temperature rounding of the singu-larity itself.This rounding of the singularity is indeedreflected in the difference between the values ofαµatβ=5andβ=6.V.DISCUSSION AND OUTLOOKWe note that in ourfinite size scaling analysis we donot include logarithmic corrections.In particular,thesecorrections may prove significant when taking into ac-count the fact that we are dealing with a two-dimensionalsystem in which the pattern of the phase transition islikely to be of Kosterlitz-Thouless type[23].The loga-rithmic corrections to the scaling laws have been provenessential in a recent work of Kenna and Irving[24].In-clusion of these corrections would allow us to obtain thecritical exponents with higher accuracy.However,suchanalysis would require simulations on even larger lattices.The linearfits for the logarithmic scaling and the criti-cal exponents obtained,are to be viewed as approximatevalues reflecting the general behaviour of the Yang-Leezeros as the temperature and lattice size are varied.Al-though the bootstrap analysis provided us with accurateestimates of the statistical error on the values of the ex-pansion coefficients and the Yang-Lee zeros,the smallnumber of zeros obtained with sufficient accuracy doesnot allow us to claim higher precision for the critical ex-ponents on the basis of more elaboratefittings of the scal-ing behaviour.Thefinite-size effects may still be signifi-cant,especially as the simulation temperature decreases,thus affecting the scaling of the Yang-Lee zeros with thesystem rger lattice simulations will therefore berequired for an accurate evaluation of the critical expo-nent for the particle density and the density of states.Nevertheless,the onset of a singularity atfinite temper-ature,and its persistence as the lattice size increases,areevident.The estimate of the critical exponent for the diver-gence rate of the density of states of the quasiparticleexcitation spectrum is particularly relevant to the highT c superconductivity scenario based on the van Hove sin-gularities[25],[26],[27].It is emphasized in Ref.[25]thatthe logarithmic singularity of a two-dimensional electrongas can,due to electronic correlations,turn into a power-law divergence resulting in an extended saddle point atthe lattice momenta(π,0)and(0,π).In the case of the14.I.M.Barbour,A.J.Bell and E.G.Klepfish,Nucl.Phys.B389,285(1993).15.I.M.Lifshitz,JETP38,1569(1960).16.A.A.Abrikosov,Fundamentals of the Theory ofMetals North-Holland(1988).17.P.Hall,The Bootstrap and Edgeworth expansion,Springer(1992).18.S.R.White et al.,Phys.Rev.B40,506(1989).19.J.E.Hirsch,Phys.Rev.B28,4059(1983).20.M.Suzuki,Prog.Theor.Phys.56,1454(1976).21.A.Moreo, D.Scalapino and E.Dagotto,Phys.Rev.B43,11442(1991).22.N.Furukawa and M.Imada,J.Phys.Soc.Japan61,3331(1992).23.J.Kosterlitz and D.Thouless,J.Phys.C6,1181(1973);J.Kosterlitz,J.Phys.C7,1046(1974).24.R.Kenna and A.C.Irving,unpublished.25.K.Gofron et al.,Phys.Rev.Lett.73,3302(1994).26.D.M.Newns,P.C.Pattnaik and C.C.Tsuei,Phys.Rev.B43,3075(1991);D.M.Newns et al.,Phys.Rev.Lett.24,1264(1992);D.M.Newns et al.,Phys.Rev.Lett.73,1264(1994).27.E.Dagotto,A.Nazarenko and A.Moreo,Phys.Rev.Lett.74,310(1995).28.A.A.Abrikosov,J.C.Campuzano and K.Gofron,Physica(Amsterdam)214C,73(1993).29.D.S.Dessau et al.,Phys.Rev.Lett.71,2781(1993);D.M.King et al.,Phys.Rev.Lett.73,3298(1994);P.Aebi et al.,Phys.Rev.Lett.72,2757(1994).30.E.Dagotto, A.Nazarenko and M.Boninsegni,Phys.Rev.Lett.73,728(1994).31.N.Bulut,D.J.Scalapino and S.R.White,Phys.Rev.Lett.73,748(1994).32.S.R.White,Phys.Rev.B44,4670(1991);M.Veki´c and S.R.White,Phys.Rev.B47,1160 (1993).33.C.E.Creffield,E.G.Klepfish,E.R.Pike and SarbenSarkar,unpublished.Figure CaptionsFigure1Bootstrap distribution of normalized coefficients for ex-pansion(14)at different update chemical potentialµ0for an82lattice.The corresponding power of expansion is indicated in the topfigure.(a)β=5,(b)β=6,(c)β=7.5.Figure2Bootstrap distributions for the Yang-Lee zeros in the complexµplane closest to the real axis.(a)102lat-tice atβ=5,(b)102lattice atβ=6,(c)82lattice at β=7.5.Figure3Yang-Lee zeros in the complexµplane closest to the real axis.(a)β=5,(b)β=6,(c)β=7.5.The correspond-ing lattice size is shown in the top right-hand corner. Figure4Angular distribution of the Yang-Lee zeros in the com-plex fugacity plane Error bars are drawn where esti-mated.(a)β=5,(b)β=6,(c)β=7.5.Figure5Scaling of the imaginary part ofµ1(Re(µ1)≈=0.7)as a function of lattice size.αm u indicates the thefit of the logarithmic scaling.Figure6Electronic susceptibility as a function of chemical poten-tial for an82lattice.The solid line represents the con-tribution of all the2n x n y zeros and the dotted line the contribution of the six zeros nearest to the real-µaxis.(a)β=5,(b)β=6,(c)β=7.5.。
材料科学50年中的10项重要突破之一一文了解超材料

材料科学50年中的10项重要突破之一一文了解超材料什么是超材料?中学时老师告诉我们,当一束光从空气斜射入水中,入射光与折射光应该在法线两侧㊂那么,是否存在这样一种介质,当光入射其中,入射光与折射光位居法线同侧?1968年,前苏联理论物理学家菲斯拉格(Ve⁃selago)发现,介电常数和磁导率都为负值物质的电磁学性质,与常规材料不同,从而在理论上预测了上述 反常 现象㊂超材料的概念便源于此㊂Metamaterial,其中拉丁语词根 meta- 表示 超出㊁另类 等含义,因此一般文献中给出超材料的定义是 具有天然材料所不具备的超常物理性质的人工复合结构或复合材料㊂ 但实际上,到目前超材料还没有统一定义㊂那超材料到底是什么?我们从其特征就能做出判断:具有新奇人工结构的复合材料;具有常规(或传统)材料不具备的超常物理性质;超常物理性质主要由新奇的人工结构决定;新奇的人工结构包括单元结构(人工原子和人工分子)和单元结构集合而成的复合结构两个层次㊂隐身衣是近年来出镜率最高的超材料应用,电磁超材料是迄今为止超材料技术研究最为集中的方向,典型的超材料还包括左手材料㊁光子晶体和非正定介质等,听起来都非常 科幻 ㊂由于20世纪60年代没有实验验证,加之时值功能材料处于发展初期,立足于原子㊁分子层次结构设计与调控的传统材料设计思想,在新型功能材料研发中仍有强大的生命力,因此,人们对菲斯拉格的发现未予以高度重视㊂随着传统材料设计思想的局限性日渐暴露,显著提高材料综合性能的难度越来越大,材料高性能化对稀缺资源的依赖程度越来越高,发展超越常规材料性能极限的材料设计新思路,成为新材料研发的重要任务㊂菲斯拉格的发现重新回到人们视线㊂超材料是材料设计思想上的重大创新,对新一代信息技术㊁国防工业㊁新能源技术㊁微细加工技术等领域可能产生的深远影响,发达国家的政府㊁学术界㊁产业界对超材料技术的研发给予高度重视,制定了相关计划,投入了大量人力和物力㊂从负折射率到电磁黑洞2001年,美国加州大学圣迭戈分校的史密斯教授等人在实验室制造出世界上第一个负折射率的超材料样品,并实验证明了负折射现象与负折射率㊂翌年,美国加州大学Itoh教授和加拿大多伦多大学Eleftheriades教授领导的研究组几乎同时提出一种基于周期性LC网络的实现超材料的新方法㊂2002年底,麻省理工学院的孔金瓯教授也从理论上证明了 左手 材料存在的合理性,并称之为 导向介质 ,他预言了这种人工材料在高指向性的天线㊁聚焦微波波束㊁ 完美透镜 ㊁电磁波隐身等方面的应用前景㊂2006年,史密斯教授及其在杜克大学的科研小组设计㊁制造了著名的 隐身大衣 ,并成功地进行了实验证明㊂2009年又出现了宽频带的隐身衣㊂2010年科学家发现了电磁黑㊀ │2019年第1期洞㊂光子晶体㊁左手材料㊁隐身衣等超材料研究成果被美国‘科学“杂志先后于2000年㊁2003年㊁2006年选为年度10项重大进展之一㊂‘MaterialsToday“杂志在2008年将超材料评为材料科学50年中的10项重要突破之一㊂2010年,‘科学“杂志又将超材料列入本世纪前十年的10项重要科学进展之一㊂目前,美国国防部专门启动了关于超材料的研究计划,美国最大的6家半导体公司英特尔㊁AMD和IBM等也成立了联合基金资助这方面的研究㊂欧盟组织了50多位相关领域最顶尖的科学家聚焦这一领域的研究,并给予高额的经费支持㊂日本在经济低迷之际出台了一项研究计划,支持了至少有两个关于超材料技术的研究项目,每个项目约为30亿日元㊂重大创新将产生重大效益近10年来,超材料研究之所以能引起全世界的高度关注,源自于超材料所体现的材料设计思想的重大创新,以及这一创新将产生的重大效益㊂首先,通过材料结构的创新设计,实现全新的物理现象,产生具有重大军用㊁民用价值的新技术㊁新材料,促进甚至引领新兴产业发展;然后利用超材料设计思想,提升传统材料性能,突破稀缺资源瓶颈,实现传统材料产业的技术升级和结构调整㊂电磁超材料实现,使我们继利用半导体自由调控电子传输之后,首次具备了自由调控电磁波的能力㊂这对未来的新一代通信㊁光电子/微电子㊁先进制造产业以及隐身㊁探测㊁核磁㊁强磁场㊁太阳能及微波能利用等技术将产生深远的影响㊂隐身衣是一种以开口谐振环为单元结构㊁非均匀方式排列成圆环结构的超材料,其应用大家不言自明㊂电磁黑洞 是一种能够全向捕捉电磁波的电磁超材料,能引导电磁波在壳层内螺旋式地行进,直至被有耗内核完全吸收,使基于引力场的黑洞很难在实验室里模拟和验证的难题迎刃而解㊂这一现象的发现,不仅将为太阳能利用技术增加新的途径,产生全新的光热太阳能电池,还能应用于红外热成像技术,大幅度提高红外信号探测能力,因而在飞机㊁导弹㊁舰船㊁卫星等方面获得广泛的应用㊂慢波结构是一种能使电磁波减速甚至停止的电磁超材料,不仅可应用于太阳能发电㊁高分辨红外热成像技术,还可应用于光缓存和深亚波长光波导,极大增强非线性效应,促进光电技术的发展㊂超材料透镜是一种可实现高定向性辐射的电磁超材料,可用于制造先进的透镜天线㊁新型龙伯透镜㊁小型化相控阵天线㊁超分辨率成像系统等㊂此外,如将超材料设计思想应用于常规材料,可在显著提高材料综合性能的同时,大幅度减少稀缺元素用量,为提升传统材料产业提供了新的技术途径㊂例如,常规软磁与硬磁材料按特定的空间排布方式复合㊁普通碳钢与高硬度陶瓷或其他高硬度材料按特定的空间排布方式复合,可在不使用钕㊁铬㊁镍等稀缺金属的情况下,使磁性材料的磁能级成倍提高,而耐磨钢的耐磨性与强韧性矛盾得到很好解决㊂我国超材料技术发展现状我国政府对超材料技术予以了高度关注,分别在863计划㊁973计划㊁国家自然科学基金等科技计划中予以立项支持㊂在电磁黑洞㊁超材料隐身技术介质基超材料,以及声波负折射等基础研究方面,已取得原创性成果㊂浙江大学在光波和超低频超材料领域取得了一系列有影响的成果,发展出了基于慢波来设计2019年第1期│㊀ ㊀超薄㊁宽吸收角度的完美吸波材料,提出了超材料在成像㊁隐身㊁磁共振成像和静磁场增强方面的应用㊂东南大学研究了均匀和非均匀超材料对电磁波的调控作用,提出了电磁黑洞和新型超材料隐身器件,发展出了雷达幻觉器件㊁远场超分辨率成像透镜㊁新型天线罩㊁极化转换器等新型超材料器件㊂清华大学研究介质基和本征型超材料,提出了通过超材料与自然材料融合构造新型功能材料思想,发展出了基于铁磁共振㊁极性晶格共振㊁稀土离子电磁偶极跃迁以及Mie谐振的超常电磁介质超材料㊂深圳光启研究院则在国际上率先推进了超材料产业化,研发出超材料平板式卫星天线,在22个省市进行了测试,并在北京㊁天津等地得到了实际应用㊂超材料的未来发展方向超材料将有可能成为一种前途不可限量的新型材料,但是目前距离真正大规模的产业化还有一定距离,有许多的难题有待克服,这也将成为未来超材料研究的主流方向,并可能出现因技术的进一步突破取得更多成果的领域㊂笔者认为,超材料的研发要注重以下一些方向:①对超材料的工作频段和方向控制的研究㊂从工作频段来说,超材料的频段还只能达到红外层次,同时大多数负折射率材料仅能在某些角度上实现负折射现象㊂对于实现更好隐身功能需要来说,其工作波段最少应覆盖整个可见光波段,同时也需要实现具有各向同性的特性,即从更宽的光波波段和不同方向上实现对光的控制㊂这将是未来超材料发展的重要课题㊂②超材料的产业化发展㊂超材料技术目前还处于实验室到产品中试阶段,如果要进行更大规模的产业化,还需要研究大规模制造大体积超材料的方法㊂目前实验室仅掌握在平面上的超材料的制造工艺,具有三维空间的立体超材料还未实现㊂同时表面工艺也仅仅局限在很小的面积上,这距大规模地使用还有很长的距离㊂如何实现大规模地制造超材料是实现超材料广泛使用的重要前提㊂③新型超材料及其功能的设计㊁性能优化及相关模拟仿真方法㊂④不同超材料之间相互作用的研究㊂这一方向的研究主要包括对超材料进场波与超材料自由空间电磁波的耦合研究,以及对超材料内部的传播性质的研究㊂而对其规律性的研究又不断提出新的理论㊁技术㊁方法的需求,从而推动与此相关的新理论概念㊁分析方法和实验测量技术的发展㊂最新研究成果超材料超透镜 有望检测早期癌细胞超材料光学特性的研究者㊁纽约州立大学布法罗分校(UniversityofBuffalo)的NataliaLitchinit⁃ser教授近日在她的论文中介绍了由她的团队设计的一款可进行单个分子成像和癌细胞检测的透镜 超材料超透镜㊂这种由微小的黄金薄片和透明聚合体超材料制成的透镜能在可见光下工作,并解决传统光学透镜的折射问题㊂受量子力学的测不准原理的制约,光学设备存在衍射极限,为半波长量级,衍射会导致 消逝波 ,即光波逐渐消散在传统透镜中㊂为了能看到更精细的尺度,需要突破衍射极限㊂提高成像分辨率是近场光学的一个热门领域,达到这些超高分辨率需配合昂贵的高精度仪器设备,而利用超材料来实现超高分辨率无疑是一种低成本的办法㊂这种微结构的尺度小于它作用的波长,因此得以对波施加影响,实现让光波㊁雷达波㊁无线电㊀ │2019年第1期波㊁声波甚至地震波弯曲的梦想,这是传统材料无法实现的㊂超材料超透镜能将渐散的光波转化成能被标准设备收集传播的光线,继而突破散射的限制㊂传统透镜由银和隔绝材料按照环形间隔排列制成㊂Litchinitser教授带领他的团队摒弃传统方法,将黄金和聚甲基丙烯酸甲脂(PMMA)超材料按照放射型排列制成了一种新型的超透镜㊂在‘自然通讯“杂志(‘Nature“子刊,SCI一区,影响因子高达10.742)的一篇论文中,Litchinitser教授的团队阐述了使用光刻和电镀来制作这种超透镜的方法,并提供了光学试验的波导㊂实验显示,在可见光下,光学内视镜仅能成像1万纳米左右的物体,而使用超透镜后,分辨率可提高至250纳米或更好㊂医疗技术的发展急需我们提高观测微小物体的能力,而超材料超透镜的研发或许会帮助我们跨出一大步 ,Litchinitser教授举例道, 超材料超透镜能用于观察卵巢或腺体肿瘤活体切片组织中的单个癌细胞,而现有医疗条件下这两种癌细胞还难以在早期被检测㊂对于超材料在生物医疗领域的应用,国内研究者和研究机构也已在展开探索,如2011年,深圳光启高等理工研究院揭牌成立了 超材料技术生物医疗应用工程实验室 ㊂随着超材料领域研究和应用的深化,超材料能否引领生物医疗领域的颠覆性变革,让我们拭目以待㊂Nature评出需要关注的7大技术生命科学仪器前景可期㊀㊀7位专家预测了2019年将推动他们各自所在的领域向前发展的技术进展,包括高分辨率成像和从头构建基因组大小的DNA分子等㊂对生命科学技术来说,2019年看起来非常令人期待㊂而对于分析仪器来说,上榜的测序系统㊁显微镜和冷冻电镜亦是前景可期㊂1.SarahTeichmann:扩展单细胞生物学SarahTeichmann是英国韦尔科姆基金会桑格研究所细胞遗传学负责人㊂在过去十年中,我们已观察到研究人员一次能够分析的单细胞数量大幅增加㊂这将继续增加下去,这主要归因于细胞捕获技术的改进㊁使用条形码对细胞进行标记的方法以及将现有技术结合在一起的更智能方法㊂这种增加可能听起来很平凡,但是它允许我们进行不同类型的实验和在更高的分辨率下研究更复杂的样品㊂比如,研究人员将能够同时研究20或100个人的样本,而不是仅能分析一个人的样本㊂这意味着我们将能够更好地控制人群多样性㊂我们还将能够分析更多的发育时间点㊁组织和个体,从而能够增加我们的分析的统计学意义㊂我们的实验室刚刚参与了一项分析来自6个物种的25万个细胞的研究工作,结果表明负责先天免疫反应的基因快速地进化,而且在不同物种之间存在着较大的细胞间差异---这两种特征有助于免疫系统产生有效的和微调的反应㊂我们还将看到我们在单细胞水平中同时观察不同基因组模式的能力取得进展㊂比如,我们将能够观察到称为染色质的蛋白-DNA复合物是开2019年第1期│㊀ ㊀。
形状记忆合金人造括约肌

形状记忆合金人造括约肌
启明
【期刊名称】《金属功能材料》
【年(卷),期】2002(9)6
【总页数】1页(P46-46)
【关键词】形状记忆合金;人造括约肌;温度控制
【作者】启明
【作者单位】
【正文语种】中文
【中图分类】R318.08;TG13
【相关文献】
1.形状记忆合金研究,开发现状:中日双连形状记忆合金研讨会见闻 [J], 张小明;杨冠军
2.铜铝锰钛形状记忆合金的微观组织、超弹性和形状记忆效应 [J], 陈信任;张帆;池梦媛;张积勋;刘兴军;王翠萍;杨水源
3.Ni50.1Mn2
4.1Ga20.3Fe
5.5形状记忆合金多晶纤维的双程形状记忆效应 [J], 刘艳芬;张学习;沈红先;孙剑飞;温亚芹;王欢;任晓辉;阴爽
4.梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟 [J], 徐波;康国政
5.Ni_2MnGa和CuGaMn磁性形状记忆合金及Ti-Nb形状记忆合金 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
美国威莎显微消融

美国威莎显微消融术一、技术概述美国威莎显微消融术集微创整形手术、“三镜四维”技术、消融COS技术三大国际前沿技术于一体。
首先,利用国际微创整形技术,按照腋下皮纹走向,仅在腋下褶皱处,切3毫米的创口。
其次,采用“三镜四维”技术(0-2100倍成像自由缩放),对人体腋下组织进行定向探测,准确定位分离每一个病变大汗腺。
最后通过独创消融COS 技术,深入直达病变大汗腺组织层,将腋下异常大汗腺完全消融稀释后,将其稀释后排出体外,并不伤害其他正常组织。
手术中无任何痛苦,整个手术仅需15-30分钟,术后不留疤痕,自然美观,真正做到快速彻底、无痛无痕祛除狐臭。
二、三大技术相结合美国威莎显微消融术,是一种超微创手术,集结微创整形手术、“三镜四维”技术、消融COS技术三大国际前沿技术于一体。
其根据腋臭的发病原理以及传统技术的治疗难点,结合亚洲人人体结构研制而成,能够深入直达病变大汗腺组织层,迅速使病变细胞失去活性,全面彻底破坏大汗腺,从而达到15-30分钟彻底清除臭汗腺的作用。
微创整形技术 3毫米间的艺术传统的祛除腋臭手术切口大,愈合慢,需要住院,瘢痕明显,往往会在腋下留下一条明显的疤痕,甚至会影响肩部的活动。
而美国威莎技术利用的国际前沿微创整形手术,按照皮层“黄金分割”比例切2-3mm大小的微小创口,手术时间短,不影响肢体功能。
自由缩放技术 2100倍精确定位美国威莎技术特有的0-2100倍成像自由缩放技术,突破传统狐臭手术盲目切除造成的切除不彻底和损伤正常组织两大弊端。
该技术能对腋下组织进行定向探测,并可达到2100倍精确定位,可准确读取腋下大汗腺的分布和数量,能精确定位每一个病变大汗腺,不损伤其它正常组织。
消融COS技术 15-30分钟彻底根除狐臭独创消融COS技术,深入直达病变大汗腺组织层,将腋下异常大汗腺完全消融稀释后,将其稀释后排出体外,并不伤害其他正常组织。
手术中无任何痛苦,整个手术仅需15分钟,术后不留疤痕,自然美观,真正做到快速彻底、无痛无痕祛除狐臭。
科学家发现脑细胞中调节线粒体运动的蛋白

学 家 可 更 好 地 厘清 高温 超 导 产 生 的 内在 机 制 碳基 高温 超 导物质或将 成为 未来 的主
流。
以让 它 能够 提 取 高 达 2 米 深 的 样 本 以便 使用 探 测 器 内的 实 验室进行数据分析 。 来 自莱斯特 大学 和克兰 菲尔德 以及伦敦 帝国学 院的三 所 高 校 主 持 这 项 探 测 器 的研 发 。 在 马 拉 德 空 间 科 学 实 验 室 , 我 们 见 到 了这 款 火 星 探 测 器 的全 景 照 片 。 测 器 的 名 称 叫 做 探 “ 孚 ” 利 用 探 测 器 本 身 携 带 的 工 具 ,会 对 火 星 的成 分 进 罗 , 行 化 学 分 析 ,进 而 推 算 出这 颗 星球 的演 变 历 史 。
利 物 浦 大 学 的 无机 化 学 教 授 马 修 ・ 塞斯 基 称 , 是 人 罗 这 们 首 次 证 明 , 制 一 个 高 温 超 导 体 中 的 分 子 的排 列 方 式 可 控 控 制 其 属 性 , 比如 C 0就 可 以做 到 这 一 点 。 6 英 国杜伦大学化学 系教授科 斯马斯 ・ 普拉斯德斯表示 , 新 研 究 对 高 温 超 导 领 域 的发 展 非 常 重 要 , 为 它 让 人 们 看 到 因 了超 导 性 在 何 时 突 破 绝 缘 状 态 “ 土 而 出 ” 而 不 用 考 虑 原 破 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:c ond-ma t/96446v221Apr1996FERMIONS ON HALF-QUANTUM VORTEX G.E.Volovik Low Temperature Laboratory Helsinki University of Technology Otakaari 3A,02150Espoo,Finland and ndau Institute for Theoretical Physics,Kosygin Str.2,117940Moscow,Russia February 1,2008Abstract The spectrum of the fermion zero modes in the vicinity of the vortex with fractional winding number is discussed.This is inspired by the observation of the 1/2vortex in high-temperature superconductors [1].The fractional value of the winding number leads to the fractional value of the invariant,which describes the topology of the energy spectrum of fermions.This results in the phenomenon of the ”half-crossing”:the spectrum approaches zero but does not cross it,being captured at the zero energy level.The similarity with the phenomenon of the fermion condensation is discussed.11IntroductionRecently a new topological object in high-temperature superconductor–the vortex with the fractional winding number N=1/2–has been observed[1]. This1/2-vortex was predicted in Ref.[2].As a rule,the fractional vortices are coupled to the topological or non-topological surfaces:In3He-A where such vortices should exist[3]but still have not been identified,they represent the termination lines of the topo-logical Z2-solitons.The same occurs for the1/2vortices discussed in heavy fermionic systems[4].In high-temperature superconductors the observed1/2 vortex is attached to the tricrystal line,which is the junction of three grain boundaries[2,1].In3He-B a pair of1/2vortices,connected by the non-topological wall,forms a nonaxisymmetric N=1vortex[5,6,7],the latter vortex has been experimentally identified in Ref.[8].In Ref.[9]even the1/4 quantum vortices were predicted to exist in3He-A2,they are connected by the nontopological walls discussed in[10].The N=1/2vortex observed in high-temperature superconductor carries 1/2of the magneticflux quantumΦ0=h/2e[1].In principle theflux number does not necessarily coincide with the winding number N,thus the objects with the fractionalflux belowΦ0/2are also possible[11].They can arise if the time inversion symmetry is broken[12,13].One may expect different interesting phenomena related to the behavior of the quasiparticles(fermions and bosons)in the presence of fractional vortices. These vortices are the counterpart of Alice strings,which appear in some models of particle physics:the particle travelling around some type of the Alice string changes its electric charge to the opposite[14].In3He-A,the analogous effect is the reversal of the spin of the quasiparticle upon circling the1/2vortex.This behavior results also in the peculiar Aharonov-Bohm effect,which has been discussed for1/2vortices in3He-A[15,6]and has been modified for the cosmic Alice strings in[16,17].Here we discuss the behavior of the fermion zero modes–Caroli-de Gennes-Matricon(CGM)bound states[18]in the core of vortices.As was found in Ref.[19]there is some kind of the index theorem for the CGM levels. It states that the number of branches of the quasiparticle spectrum,which as function of the angular momentum Q cross the zero energy,equals the wind-ing number N per each of two spin projections.For the conventional N=1 vortex in s-wave superconductors this results in two branches of fermion zero2modes corresponding to two spin projections.The problem is what happens if the winding number per spin is fractional.This is the relevant case for the N=1/2vortices in heavy fermionic and high-T superconductors and for the N=1/4vortices in3He-A2.(This is not related to the1/2vortex in 3He-A,because3He-A can be effectively represented as an equal mixture of spin-up and spin-down components,and the1/2vortex corresponds to the N=1vortex in one component with N=0for another component.Thus the winding number per spin appears to be integer for each component.) Here we shall use the model of1/2vortex discussed in[4].The result is schematically presented in Fig.1.While for the N=1vortex the spectrum E(Q)crosses zero(Fig.1a),for the N=1/2vortex the spectrum instead of crossing asymptotically approaches zero(Fig.1b).The Fig.1c shows the spectrum for the case when two1/2vortices together form the N=1vortex. 2”Half-crossing”.Let us consider the unconventional superconductivity of the E1g representa-tion,which corresponds to the d-wave pairing.The symmetry class which gives rise to the1/2vortex is characterized by the following gap function:∆(k,r)=∆0(r)e iΦ(r)ˆk zˆk·ˆd(r),(1) whereˆk is the unit vector along the linear momentum k of the quasiparticle; the unit real vectorˆd of the spontaneous anisotropy,the condensate phase Φand the gap amplitude∆0are coordinated dependent in the presence of the1/2vortex.We assume the simplest form for the1/2vortex with∆0(r)=∆0(r),Φ(r)=φ2+ˆy sinφwhereˆτa are the Pauli matrices,p=−i ∇,ε(p)=(p2−p2F)/2m.In quasiclassical approximation(p Fξ≫1whereξis the core size)the relevant variables are the transverse momentum q of the incident quasipartice with q2=p2F−p2z and its impact parameter b.The angular momentum of the quasipartice is Q=qb.For the Ansatz(2)there is an important difference between positive and negative values of the impact parameter b,see Fig.2. For one sign of b the quasiparticle trajectory always crosses the surface at which the classical energy takes zero value:E(k,r)=m ∇y+qk z4bp2Fy2.(5)The third term averaged over this wave function gives the following energy spectrum:E(q,b)∼qQ,b>0,b≫ξ,(7)where E F=p2F/2m is the Fermi-energy.At large b this spectrum approaches the zero energy level:these asymptotic midgap states far from the half-quantum vortex reflect the property of the fermionic bound states in the π-soliton or in the Josephson junction with the phase differenceπ,which emanates from the1/2vortex.4If b<0the trajectory does not cross the zero value of the classical energy and the behavior of the spectrum follows that for the conventional vortex. This can be seen on the model example of the large core size compared with ξ.In this case the Hamiltonian in Eq.(4)can be expanded near the point r=|b|,φ=0:H=−iˆτ3q2p2F∆0(b)(ˆτ1yp2F∆0(b),b<0,(9)and for small b,when∆0(b)=|b|∆′the ordinary linear dependence on the angular momentum is obtainedE q=qˆy(Q)∼−Q∆20m p y+qk zwhich can be written in terms of the unit vectorˆm( s)in the3-d space of parameters s=(p y,x,y):H class( s)= τ· m( s).(12) The components ofˆm( s)areEˆm3( s)=qp y/m,Eˆm1( s)=qk zry,Eˆm2( s)=−qk zr(r−x),(12)where E is the classical energy:E2( s)=H2class( s).Theˆm( s)vectorfield, shown schematically in Fig.3,corresponds to the hedgehog with theπ2topo-logical charge1/2:N zm=1∂s k×∂ˆm(see also[21]),in the absence of impurities and if the time inversion symmetry is not violated.The situation with the zero-energy manifold is similar to the phenomenon of the fermionic condensate discussed in[22,23](the extended Van Hove singularity observed in oxide superconductors[24]can be the manifestation of this phenomenon,which is favourable just in the vicinity of the saddle point of spectrum[25]).It is interesting that the existence of the fermionic condensate is also related to the splitting of the N=1vortex into two N=1/2vortices but in the momentum k space[26].The N=1vortex corresponds to the Fermi-surface in the momentum space.Its splitting results in the Fermi-band with zero energy,which appears between the N=1/2vortices in the momentum space.In both cases the Fermi-condensate is characterized by a large density of states.This work was supported through the ROTA co-operation plan of the Finnish Academy and the Russian Academy of Sciences and by the Russian Foundation for Fundamental Sciences.References[1]J.R.Kirtley,C.C.Tsuei,M.Rupp,et al.,1996,Phys.Rev.Lett.,76,1336.[2]V.Geshkenbein,rkin,and A.Barone,1987,Phys.Rev.,B36,235.[3]G.E.Volovik,and V.P.Mineev,Pis’ma Zh.Eksp.Teor.Fiz.24,605(1976)[JETP Lett.24,561(1976)].[4]M.E.Zhitomirsky,J.Phys.Soc.Jap.,64,913(1995).[5]E.V.Thuneberg,Phys.Rev.Lett.56,359(1986).[6]M.M.Salomaa and G.E.Volovik,Rev.Mod.Phys.,59,533(1987).[7]G.E.Volovik,Pis’ma Zh.Eksp.Teor.Fiz.52,972(1990)[JETP Lett.52,358(1990)].[8]Y.Kondo,J.S.Korhonen,M.Krusius,V.V.Dmitriev,Yu.M.Mukharskiy, E.B.Sonin and G.E.Volovik,Phys.Rev.Lett.67,81 (1991).7[9]G.Kharadze,and G.Vachnadze,Physica,B210,334(1995).[10]M.M.Salomaa,G.E.Volovik,J.Low Temp.Phys.74,319(1989).[11]G.E.Volovik,and L.P.Gor‘kov,1984,Pis’ma Zh.Eksp.Teor.Fiz.39,550[JETP Lett.39,674].[12]M.Sigrist,T.M.Rice,and K.Ueda,1989,Phys.Rev.Lett.63,1727.[13]M.Sigrist,D.B.Bailey,and ughlin,1995,Phys.Rev.Lett.74,3249.[14]A.S.Schwarz,Nucl.Phys.B208,141(1982).[15]M.V.Khazan,Pis’ma Zh.Eksp.Teor.Fiz.41,396(1985)[JETP Lett.41,486(1985)].[16]J.March-Russel,J.Preskill,and F.Wilczek,1992,Phys.Rev.D50,2567.[17]A.C.Davis,and A.P.Martin,1994,Nucl.Phys.,B419,341.[18]C.Caroli,P.G.de Gennes,and J.Matricon,Phys.Lett.,9,307(1964).[19]G.E.Volovik,Pis’ma ZhETF,57,233(1993);[JETP Lett.,57,244(1993)];ZhETF,104,3070(1993);[JETP,77,435(1993)].[20]Yu.G.Makhlin,and G.E.Volovik,Pis’ma ZhETF62,719(1995)[JETPLett.62,737(1995)].[21]J.Yang,and C.-R.Hu,Phys.Rev.,B50,16766(1994).[22]V.A.Khodel,and V.R.Shaginyan,Pis’ma Zh.Eksp.Teor.Fiz.,51,488(1990);[JETP Lett.,51,553(1990)].[23]V.A.Khodel,V.R.Shaginyan,and V.V.Khodel,Phys.Rep.,249,1(1994).[24]T.Yokoya,A.Chainani,T.Takahashi,et al,Phys.Rev.Lett.,76,3009(1996).8[25]G.E.Volovik,Pis’ma ZhETF59,798(1994)[JETP Lett.59,830(1994)].[26]G.E.Volovik,Pis’ma Zh.Eksp.Teor.Fiz.53,208(1991)[JETP Lett.53,222(1991)].Figure1:Topology of the fermion zero modes in vortices with winding num-ber N.(a)In N=1vortex there is one branch of the spectrum,which as a function of the angular momentum Q crosses zero energy.(b)For the vortex with fractional winding number N=1/2the spectrum approaches zero but does not cross it,being captured at the zero energy level.(c)The topology of the spectrum in the case of a pair of N=1/2vortices,which forms the N=1vortex,is the same as in Fig.1a.Figure2:Demonstration of the origin of the spectral asymmetry in the N=1/2vortex.If the impact parameter b is positive the quasiparticle trajectory always crosses the surface at which the classical energy takes zero value.For the opposite sign of b the classical energy is always nonzero.9Figure3:Index theorem for the N=1/2vortex.In the3D space of the parameters s=(p y,y,x)there is a line of zeroes of the classical energy, which terminates on the monopole in thefield of the unit vectorˆm,which characterizes the Hamiltonian.Theπ2topological charge of the monopole is fractional and equals N=1/2.This is the topological origin of the”half-crossing”of the spectrum in Fig.1b.10。