陶瓷材料制备与烧结过程

合集下载

工业陶瓷的工艺流程

工业陶瓷的工艺流程

工业陶瓷的工艺流程
《工业陶瓷的制作工艺流程》
工业陶瓷是一种非金属材料,其制作工艺需要经过多道工序才能完成。

一般来说,工业陶瓷的制作流程可以分为原料制备、成型、烧结和加工等几个主要步骤。

首先是原料制备阶段。

工业陶瓷的原料主要包括粘土、石英砂、长石粉等无机物质。

这些原料需要经过混合、研磨和筛分等处理,以保证陶瓷制品的成品质量。

接下来是成型阶段。

成型是将原料按照一定的比例混合,并经过模压、注射成型等工艺形成陶瓷坯体的过程。

这一步骤的关键是控制成型工艺参数,确保陶瓷坯体的成型精度和表面光滑度。

然后是烧结阶段。

烧结是将陶瓷坯体置于特定温度下进行高温煅烧,使其成为具有一定硬度和耐磨性的陶瓷制品。

在烧结过程中,需要控制好温度、时间和气氛,以避免产生裂纹和变形等缺陷。

最后是加工阶段。

加工是指对烧结后的陶瓷制品进行切割、磨削、抛光等工序,以满足客户的具体要求。

这些加工工序需要精密的设备和技术,可以有效提高陶瓷制品的加工精度和表面质量。

总的来说,工业陶瓷的制作工艺流程包括原料制备、成型、烧
结和加工等几个主要步骤。

通过精心设计和严格控制每个工艺环节,可以生产出具有高强度、高硬度和耐高温性能的工业陶瓷制品,广泛应用于机械、化工、电子等多个领域。

sic陶瓷常压烧结

sic陶瓷常压烧结

sic陶瓷常压烧结以"SIC陶瓷常压烧结"为题,本文将介绍SIC陶瓷的常压烧结工艺和特点。

1. 引言SIC(碳化硅)陶瓷是一种具有优异性能的工程陶瓷材料,其主要特点包括高硬度、高强度、耐高温、耐腐蚀等。

而常压烧结是一种常用的SIC陶瓷制备工艺,本文将从工艺流程、工艺条件以及材料特性等方面介绍SIC陶瓷常压烧结的相关内容。

2. 工艺流程SIC陶瓷常压烧结的工艺流程主要包括原料制备、成型、烧结和表面处理等步骤。

首先,将SIC粉末与其他添加剂按一定比例混合,并经过球磨等工艺进行均匀混合,以提高材料的致密性。

然后,将混合料进行成型,常见的成型方法有压制、注塑和挤出等。

成型后的坯体需要经过干燥处理,以去除水分和有机物。

接下来,将干燥后的坯体进行烧结,烧结温度一般在1900~2200摄氏度之间,烧结时间根据陶瓷的要求而定。

最后,通过机械加工和表面处理,得到符合要求的SIC陶瓷制品。

3. 工艺条件SIC陶瓷常压烧结的工艺条件对于制备高质量的陶瓷制品非常重要。

其中,烧结温度是影响陶瓷致密性和晶粒尺寸的关键因素,过低或过高的温度都会影响烧结效果。

此外,烧结时间也会对陶瓷的性能产生影响,过短的时间可能导致烧结不完全,而过长的时间则会导致晶粒长大。

此外,压制力和添加剂的选择也会对烧结效果产生影响。

4. 材料特性SIC陶瓷常压烧结后,具有许多优异的特性。

首先,SIC陶瓷的硬度非常高,仅次于金刚石和立方氮化硼。

其次,SIC陶瓷具有优异的耐高温性能,可在高达1600摄氏度的温度下长时间稳定工作。

此外,SIC陶瓷还具有良好的耐腐蚀性能,可在酸、碱等恶劣环境下使用。

而且,SIC陶瓷的导热性能也非常好,可用于高温传热领域。

此外,SIC陶瓷还具有良好的机械性能和尺寸稳定性,可用于制备精密零部件。

5. 应用领域SIC陶瓷常压烧结后,可以应用于众多领域。

在机械工程领域,SIC 陶瓷常用于制造轴承、密封件、喷嘴等零部件。

《陶瓷材料的烧结》课件

《陶瓷材料的烧结》课件
资源循环利用
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装

工程陶瓷烧结

工程陶瓷烧结

工程陶瓷烧结工程陶瓷烧结是一种重要的制备工艺,广泛应用于陶瓷材料的生产过程中。

烧结是指在一定温度下,通过晶粒的扩散运动使陶瓷粉末颗粒相互结合,形成致密的陶瓷坯体的过程。

这一过程不仅可以提高陶瓷材料的机械性能和化学稳定性,还可以改善其导热性能和电学性能,从而满足不同工程领域的需求。

工程陶瓷烧结的过程主要包括原料的制备、成型、烧结和表面处理等环节。

首先是原料的制备,通过将各种陶瓷粉末按照一定的配方比例混合均匀,制备成均匀的陶瓷浆料。

然后通过成型工艺,将陶瓷浆料进行压制、注塑或模压等方式,制备成具有一定形状和尺寸的陶瓷坯体。

接下来是烧结工艺,将陶瓷坯体置于烧结炉中,在一定的温度和气氛条件下进行烧结,使陶瓷颗粒发生颗粒间的扩散和结合,最终形成致密的陶瓷制品。

最后是表面处理,通过打磨、抛光、涂层等工艺,提高陶瓷制品的表面光洁度和机械性能。

工程陶瓷烧结的关键是控制烧结过程中的温度、时间、气氛和压力等参数。

不同的陶瓷材料具有不同的烧结特性,需要根据具体材料的性质和要求来确定合适的烧结工艺。

在烧结过程中,温度是最关键的参数,它直接影响着陶瓷颗粒的扩散速率和结合程度。

过高或过低的温度都会影响陶瓷制品的致密性和性能。

工程陶瓷烧结的优点在于可以制备出具有优异性能的陶瓷制品,如高温陶瓷、氧化铝陶瓷、氮化硅陶瓷等。

这些陶瓷制品具有高强度、高硬度、耐高温、耐腐蚀等优良性能,广泛应用于航空航天、汽车、电子、医疗器械等领域。

工程陶瓷烧结技术的发展不仅推动了陶瓷材料的创新和应用,也为工程领域的发展提供了重要支撑。

总的来说,工程陶瓷烧结是一项重要的制备工艺,对于提高陶瓷材料的性能和应用具有重要意义。

通过合理控制烧结工艺,可以制备出高性能的陶瓷制品,满足不同工程领域的需求。

随着科技的不断发展,工程陶瓷烧结技术将会得到进一步的提升和应用,为人类的生活和工作带来更多的便利和可能。

烧结工艺流程

烧结工艺流程

烧结工艺流程烧结工艺是一种常用的粉体冶金工艺,用于制备高密度和高强度的金属、陶瓷和复合材料。

下面是一个关于烧结工艺流程的详细说明,总计约2000字。

1. 原料准备烧结工艺的第一步是原料的准备。

原料可以是金属粉末、陶瓷粉末或者复合材料的混合物。

原料通过不同的方法确定粒度大小、化学组成和性质。

2. 粉末制备粉末制备是将原料转化为粉末的过程。

最常用的方法是粉碎和研磨。

粉碎是将原料通过机械力破碎成粉末,而研磨是用球磨机将原料研磨成更加细微的颗粒。

3. 混合和制粒将不同的原料按照一定的配比进行混合,并加入一定量的粘结剂。

混合的目的是使不同的原料均匀分布,粘结剂的目的是在烧结过程中提供足够的粘结力。

混合后的原料可以通过压制成型机进行制粒,形成颗粒状的原料。

4. 制备模具在烧结工艺中,通常使用模具将原料进行成型。

模具的形状和尺寸根据最终产品的要求确定。

常用的模具形状有圆柱形、方形、筒形等。

5. 压制成形将制粒后的原料放入模具中,在一定的压力下进行压制成形。

压制的目的是将原料粒子紧密地排列成一定形状,并消除空隙和孔隙,提高成品的密度和强度。

6. 除脱模剂处理在压制成形后,经过一定时间的固化,模具可以打开取出已成型的原料。

然而,由于模具表面和原料之间存在摩擦力,可能会损坏原料的表面。

为了防止这种情况发生,通常会在模具中涂上脱模剂,以减少摩擦力,使原料更容易从模具中取出。

7. 预烧处理在烧结工艺中,预烧是指在烧结之前对原料进行一定的热处理。

预烧的目的是去除粘结剂和其他有机物质,以及消除内部应力和小孔的产生。

预烧的温度和时间取决于原料的特性和所需的最终产品。

8. 烧结烧结是烧结工艺的核心步骤,通过高温下的加热和压力处理,使原料颗粒在接触面上结合成坚固的整体。

烧结温度和时间取决于原料的特性和所需的最终产品。

随着温度的升高,原料颗粒之间的结合力增强,形成致密的结构。

9. 冷却和清洁在烧结完成后,成品需要经过一定的冷却时间。

陶瓷材料的制备工艺

陶瓷材料的制备工艺

陶瓷材料的制备工艺陶瓷是一种非金属材料,通常由粘土、瓷石和石英等原料经过加工而成。

其制备工艺可以分为原料处理、成型、干燥、烧结和表面处理等环节。

以下将详细介绍陶瓷材料的制备工艺。

一、原料处理陶瓷材料的制备首先需要对原料进行处理,确保其质量和性能满足生产要求。

原料主要有粘土、瓷石和石英等。

粘土是制备陶瓷的主要原料,其含水量要合适,过高过低都会影响成型和烧结的效果。

瓷石和石英主要用于增加陶瓷的硬度和耐磨性。

二、成型成型是将原料加工成所需形状的过程。

常见的成型方法有浇铸、注塑、压制和手工成型等。

浇铸和注塑是利用液态陶瓷浆料借助模具制作成型,可以批量生产。

压制是将湿陶瓷坯料经过压力机进行成型,适用于生产复杂形状的陶瓷制品。

手工成型则是通过手工捏塑、切割等方式进行成型,适用于少量生产和个性化需求。

三、干燥成型后的湿陶瓷坯料需要进行干燥处理。

干燥的目的是去除水分,防止成型品在烧结过程中产生裂纹。

常用的干燥方法有自然干燥和热风干燥。

自然干燥是将湿陶瓷坯料放置在通风良好的环境下,让其自然风干,时间较长。

热风干燥则是利用热风对湿陶瓷坯料进行加热和干燥,时间较短。

四、烧结烧结是将干燥后的陶瓷坯料进行高温处理,使其质地致密,获得所需的物理和化学性能。

烧结温度和时间根据所制备的陶瓷种类和要求而定。

常见的烧结设备有电窑、煤气窑和气体窑等。

在烧结过程中,陶瓷坯料会发生物理和化学变化,最终形成成品陶瓷材料。

五、表面处理表面处理是对烧结后的陶瓷进行修整和装饰。

修整是指对陶瓷表面进行打磨、抛光等处理,使其光滑平整。

装饰则是通过上釉、绘画等方式增加陶瓷的装饰性和艺术性。

上釉是将特殊材料涂在陶瓷表面,经过再次烧结,形成釉面的一种处理方法。

综上所述,陶瓷材料的制备工艺包括原料处理、成型、干燥、烧结和表面处理等环节。

通过合理的工艺流程,可以制备出质量良好、性能稳定的陶瓷制品。

陶瓷在日常生活、建筑、工业和艺术等领域都有广泛的应用,其制备工艺的优化和创新对于提升陶瓷制品的质量和价值具有重要意义。

陶瓷烧结四个过程

陶瓷烧结四个过程

陶瓷烧结四个过程陶瓷烧结是一种重要的陶瓷加工方法,通过高温下的压制和烧结将陶瓷原料转变为致密的陶瓷制品。

它主要包括四个过程:原料制备、成型、烧结和后处理。

一、原料制备陶瓷烧结的第一个过程是原料制备。

通常,陶瓷烧结所用的原料主要包括粉末、添加剂和溶剂。

粉末是陶瓷的主要成分,可以是氧化物、硝酸盐、碳酸盐等,根据不同的陶瓷材料选择合适的粉末。

添加剂用于改善陶瓷的性能,如增加强度、改善导电性等。

溶剂用于调节陶瓷糊料的流动性和粘度。

二、成型成型是陶瓷烧结的第二个过程,它将原料制备好的糊料通过成型工艺转变为成型体。

常见的成型方法有压制、注塑、挤出等。

其中,压制是最常用的方法之一,通过将糊料放入模具中,施加一定的压力使其成型。

注塑则是将糊料注入模具中,通过模具的空腔形状使其成型。

挤出则是将糊料通过挤出机挤出成型。

三、烧结烧结是陶瓷烧结的核心过程,通过高温下的加热和压制使成型体中的颗粒结合成致密的陶瓷制品。

烧结过程中需要控制温度、时间和压力等参数,以确保陶瓷制品的质量。

烧结温度一般高于原料的熔点,但低于熔融温度,使得陶瓷颗粒能够粘结在一起。

烧结压力可以提高陶瓷的致密度和强度,但过高的压力会导致产品变形或开裂。

四、后处理烧结后的陶瓷制品还需要进行后处理,以提高其性能和外观质量。

后处理的方法包括抛光、研磨、清洗等。

抛光和研磨可以去除陶瓷制品表面的粗糙度,使其更加光滑。

清洗则是去除烧结过程中产生的灰尘和残留物,以保证产品的纯净度。

陶瓷烧结的四个过程分别是原料制备、成型、烧结和后处理。

每个过程都起着重要的作用,相互关联,缺一不可。

只有在严格控制每个过程的参数和工艺条件下,才能生产出优质的陶瓷制品。

陶瓷烧结技术的不断发展和改进,使得陶瓷制品在各个领域得到了广泛的应用,如电子、化工、航空等。

陶瓷制备方法

陶瓷制备方法

陶瓷制备方法一、概述陶瓷是一种非金属材料,具有多种优良的物理和化学性质,如高温稳定性、耐腐蚀性、硬度高等。

陶瓷材料在日常生活和工业生产中有广泛应用,例如制作陶瓷器皿、建筑材料、电子元器件等。

本文将介绍几种常见的陶瓷制备方法。

二、干法制备方法1. 烧结法烧结法是将陶瓷原材料粉末在高温下进行烧结,使其颗粒间相互结合形成固体块材料。

该方法可分为普通烧结法和压电烧结法两种。

普通烧结法是将粉末制成坯体,然后在高温下烧结。

而压电烧结法是将陶瓷粉末与有机高分子混合后,压制成形,再在高温下进行烧结。

该方法具有成本低、制备周期短等优点,但制备出来的陶瓷材料致密度较低,有一定的气孔。

2. 真空压制法真空压制法是一种将陶瓷原材料粉末加热到熔点后,在真空环境下进行压缩成型的方法。

该方法制备出来的陶瓷材料致密度高、强度大,但成本较高。

3. 溶胶-凝胶法溶胶-凝胶法是将金属化合物或有机酸与其他化合物混合后,在加热和干燥后形成凝胶,然后再进行烧结。

该方法制备的陶瓷材料致密度高、粒度小,具有高温稳定性、耐腐蚀性等优点。

1. 凝胶注模法凝胶注模法是将陶瓷粉末与有机化合物混合后形成凝胶,然后放入注模机内注模,再进行热处理得到陶瓷制品。

该方法制备的陶瓷制品精度高、致密度好,表面光滑。

2. 喷雾干燥法喷雾干燥法是将含有陶瓷材料的溶液通过高压喷雾器雾化成微小颗粒,然后在气流中进行干燥得到陶瓷粉末。

该方法制备出来的陶瓷粉末粒度小、均匀,但成本较高。

3. 溶液浸渍法溶液浸渍法是将陶瓷原材料粉末加入到化学制剂的溶液中,使其渐渐凝结成凝胶,然后进行烧结制品。

该方法操作简单,成本低,但制备的陶瓷制品致密度不够。

坩埚法是一种古老的陶瓷制备方法,用于制作瓷器和陶器。

制作方法是将陶瓷原材料经过处理后,按一定比例混合后磨成均匀的陶瓷泥,放入坩埚内,在高温下进行烧制得到制品。

该方法适用于制作小型陶瓷制品。

2. 电化学制备法电化学制备法是一种利用电化学反应制备陶瓷材料的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 粉体成型原理
4. 粉 料 的 堆 积 ( 填 充 ) 特 性 (Packing Property)
单一颗粒(即纯粗颗粒或细颗粒)堆积时的 空隙率约40%。若用二种粒度(如平均粒径比为 10:1)配合则其堆积密度增大;而采用三级粒度 的颗粒配合则可得到更大的堆积密度。
5. 粉料的流动性(Flowing Property)
第三章 陶瓷材料制备与烧结过程
粉末冶金(Powder Metallurgy)与陶瓷(Ceramic) 的主要制备工艺过程包括粉末制备、成型和烧结。其生产 工艺过程可简单地表示为:粉末制备坯料制备成型干燥烧 结后处理热压或热等静压烧结成品
粉末制备
坯料制备
成型
干燥
烧结
后处理
成品
热压或热等静压烧结
本章将讨论粉末冶金与陶瓷的成型原理、粉体制备技术 、粉末冶金的成型工艺和陶瓷材料的成型工艺,最后介绍 快速生产都要经过三个阶段:坯料制 备、成型、烧结
❖ 坯料制备 通过机械或物理或化学方法制备粉料,在制备坯料时,
要控制坯料粉的粒度、形状、纯度及脱水脱气,以及配料比 例和混料均匀等质量要求。按不同的成型工艺要求,坯料可 以是粉料、浆料或可塑泥团。
❖ 成型
将坯料用一定工具或模具制成一定形状、 尺寸、密度和强度的制品坯型(亦称生坯)。
耗压力。 压制过程中的总压力P=P1+P2,即成型压力。
(2)加压方式 图3-4为加压方式和压力分布关系图。 (3)加压速度 (4)添加剂的选用
第一节 粉体成型原理
3. 对压制用粉料的工艺性能要求
由于压制成型时粉料颗粒必须能充满模 型的各个角落,因此要求粉料具有良好的 流动性。为了得到较高的素坯密度,粉料 中包含的气体越少越好,粉料的堆积密度 越高越好。
2.注浆成型对泥浆的工艺性能的要求
制备出的泥浆应能够满足下列基本要求 :流动性好,稳定性好,适当的触变性, 含水量少,滤过性好,坯体强度高,脱模 容易,不含气泡。
第二节 粉体制备技术
第一节 粉体成型原理
3. 对可塑坯料的工艺性能要求
可塑性好,含水量适当,干燥强度高,收 缩率小,颗粒细度适当,空气含量低。
第一节 粉体成型原理
四、 泥浆/粉浆的成型原理
1. 泥浆的流变特性
(1)泥浆的流动曲线 图3-8为一些陶瓷原料泥浆的流动曲线。
(2)影响泥浆流变性能的因素 1)泥浆的浓度 图3-9为不同浓度的可塑泥浆的流动曲线。 2)固相的颗粒大小 一定浓度的泥浆中,固相颗粒越细、颗粒间平
均距离越小,吸引力增大,位移时所需克服的阻 力增大,流动性减少。
第一节 粉体成型原理
3)电解质的作用 向泥浆中加入电解质是改善其流动性和稳
定性的有效方法。 4)泥浆的pH值
pH值影响其解离程度,又会引起胶粒ζ电位发生变化,导致改变胶粒表面的吸力与 斥力的平衡,最终使这类氧化物胶溶或絮凝 。
第一节 粉体成型原理
第一节 粉体成型原理
2. 颗粒的形态与拱桥效应
人们一般用针状、多面体状、柱状、球状等来 描述颗粒的形态。
粉料自由堆积的空隙率往往比理论计算值大得 多,就是因为实际粉料不是球形,加上表面粗糙 图表,以及附着和凝聚的作用,结果颗粒互相交 错咬合,形成拱桥型空间,增大了空隙率。这种 现象称为拱桥效应(见图3-1)。
塑性时所需的水分愈少,最大可塑性愈低;颗 粒愈细则比表面愈大,每个颗粒表面形成水膜 所需的水分愈多,由细颗粒堆积而成的毛细管 半径越小,产生的毛细管力越大,可塑性也高 。不同形状颗粒的比表面是不同的,因而对可 塑性的影响也有差异。 (2)液相的数量和性质
水分是泥团出现可塑性的必要条件。泥团中 水分适当时才能呈现最大的可塑性,如图3-7所 示。
❖ 烧结
生坯经初步干燥后,进行涂釉烧结或直接 烧结。高温烧结时,陶瓷内部会发生一系列物 理化学变化及相变,如体积减小,密度增加, 强度、硬度提高,晶粒发生相变等,使陶瓷制 品达到所要求的物理性能和力学性能。
二、陶瓷材料的结构与性能特点
陶瓷材料是多相多 晶材料,陶瓷结构中同 时存在 晶体相 玻璃相 气相
第一节 粉体成型原理
三、 可塑泥团的成型原理
1. 可 塑 泥 团 的 流 变 特 性 (Rheological Behavior)
图3-5为粘土泥团的应力-应变曲线。 图3-6表示了粘土的含水量与其应力-应变 -曲线的关系。
第一节 粉体成型原理
2. 影响泥团可塑性的因素
(1)固相颗粒大小和形状 一般地说,泥团中固相颗粒愈粗,呈现最大
第一节 粉体成型原理
3. 粉体的表面特性
(1)粉体颗粒的表面能(surface energy)和表面 状态
粉体颗粒表面的“过剩能量”称为粉体颗粒的表 面能。
表3-1是当粒径发生变化时,一般物质颗粒其原 子数与表面原子数之间的比例变化。
(2)粉体颗粒的吸附与凝聚(Coagulation) 一个颗粒依附于其它物体表面上的现象称之为附 着。而凝聚则是指颗粒间在各种引力作用下的团聚 。
粉料虽然由固体小颗粒组成,但由于其分散 度较高,具有一定的流动性。当堆积到一定高度 后,粉料会向四周流动,始终保持为圆锥体(图 3-2),其自然安息角(偏角)α保持不变。
第一节 粉体成型原理
二、 压制成型原理
压制成型是基于较大的压力,将粉状坯料在 模型中压成块状坯体的。
1. 压制成型过程中坯体的变化
(1)密度的变化 (2)强度的变化 (3)坯体中压力的分布 图3-3为单面加压是坯体内部压力分布情况 。
第一节 粉体成型原理
2. 影响坯体密度(Density)的因素
(1)成型压力 压制过程中,施加于粉料上的压力主要消耗在以下二
方面: 1)克服粉料的阻力P1,称为净压力。 2)克服粉料颗粒对模壁摩擦所消耗的力P2,称为消
各组成相的结构、 数量、形态、大小及分 布决定了陶瓷的性能。
第一节 粉体成型原理
第一节 粉体成型原理
一、 粉料的基本物理性能
1.粒度(Particle Size)和粒度分布(Particle Size Distribution)
粒度是指粉料的颗粒大小,通常以颗粒半径r 或直径d表示。粒度分布是指多分散体系中各种 不同大小颗粒所占的百分比。
相关文档
最新文档