纳米陶瓷材料制备技术

合集下载

纳米材料制备工艺详解

纳米材料制备工艺详解

纳米材料制备工艺详解纳米材料是指在纳米尺度下具有特殊物理、化学和生物性能的材料。

纳米材料制备工艺是指通过特定的方法和工艺将原材料转变为纳米级别的材料。

本文将详细介绍纳米材料制备工艺的几种常见方法和工艺。

一、化学合成法化学合成法是一种常见的纳米材料制备工艺,它通过控制反应条件和添加特定的试剂来控制纳米颗粒的尺寸和形态。

其中最常见的方法是溶胶-凝胶法、气相合成法和水热合成法。

溶胶-凝胶法是利用溶胶在适当的温度下形成凝胶,并通过热处理和其他后续工艺步骤得到纳米颗粒。

这种方法适用于制备氧化物、金属和半导体纳米材料。

气相合成法是通过控制气相反应条件和反应物浓度来制备纳米颗粒。

常见的气相合成方法包括化学气相沉积和气相凝胶法。

这种方法适用于制备纳米粉体、纳米线和纳米薄膜等。

水热合成法利用高温高压的水环境下进行合成反应,通过溶液中的离子交换和沉淀来制备纳米颗粒。

这种方法适用于制备金属氧化物、碳化物和磷化物等纳米材料。

二、物理制备法物理制备法主要是利用物理性能的改变从宏观材料中得到纳米尺度的材料。

常见的物理制备法包括磁控溅射法、高能球磨法和激光烧结法。

磁控溅射法是通过在真空环境下,利用磁场控制离子轰击靶材溅射出材料颗粒来制备纳米材料。

这种方法适用于制备金属、合金和氧化物等纳米材料。

高能球磨法是通过使用高能的机械能,在球磨罐中将原料粉末进行碰撞、摩擦和剧烈混合,使材料粉末粒径不断减小到纳米尺度。

这种方法适用于制备金属和合金纳米材料。

激光烧结法是通过使用高功率激光束将材料粉末快速加热熔结,然后迅速冷却形成纳米颗粒。

这种方法适用于制备高熔点金属和陶瓷纳米材料。

三、生物制备法生物制备法是利用生物体内的特定酶或微生物来制备纳米材料。

这种方法具有环境友好、低成本和高度可控性的优点。

目前最常用的方法是利用微生物和植物来制备纳米材料。

微生物制备法通过利用微生物的代谢活性来合成纳米颗粒。

其中最常见的是利用细菌、酵母菌和藻类来制备金属和半导体纳米颗粒。

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术邱安宁5990519118 F9905104陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的 1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达 2 0 0~ 1 0 0g/h[1 1 ].高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

纳米结构陶瓷涂层的制备技术

纳米结构陶瓷涂层的制备技术

2 . 3 超音速火焰喷涂 ( HVOF ) 超音速火焰喷涂 是利用燃料燃烧膨胀形成 的热气流使喷涂粒子加热并达到极高的飞行速 度后沉积成涂层。由 于喷涂粒子飞行速度高且 火焰温度低 ( 一般约 3000 ∃ ) , 粉末在火焰中受
图 5 溶液先驱体等离子喷涂示意图
热时间比较短 , 目前在制备易于发生相变、 氧 化或分解的材料涂层方面获得广泛应用 , 特别适 合于制备碳化物、 硼化物等纳 米金属陶瓷涂层。 由于碳化物大小影响喷涂过程中的反应过程 , 当 碳化物尺寸下降 至纳 米尺度 时, 其 活性明 显增 强, 易于发生氧化、 还原、 脱碳等反 应, 使涂层中 碳化物的含量降低 , 影响涂层的耐磨性。 HVOF 的火焰速度高、 热能低 , 可有效抑制喷涂过程中 纳米碳化物的分解 , 因此成为制备纳米碳化物涂 层的重要方法。 2 . 4 冷喷涂 冷喷涂是利用高 压气体将粉末粒子高速撞 击并沉积于基 体表面 上形成 涂层的 一种 方法。 在冷喷涂过程中, 压缩气体通常是 H e 、 N 2、 空气 或者它们的混合物 , 在出口处压 力可达到 3 ~ 4 M Pa , 流速可达到超音速。纳米喷涂粉末被输送 到喷嘴前端的气流中, 立即被快速膨胀的气体所 加速 , 以强大的冲击力撞击基材后 , 产生塑性变 形并形成涂层。由于采用较低的喷涂温度 (一般
图 3 微米 /纳 米包覆法主要流程图
如何克服纳米颗粒的团聚是制备包覆粉的 一个难点。粘合剂根据粉料成分及粘性要求 , 一 般选用有机聚合物或溶胶类物质, 但要求其不给 包覆粉带来新的杂 质。该方法所制备的纳米喂 料具有包覆率高、 结合紧密、 流动性好等优点 , 目 前已用于制备纳米 微米复合改性陶瓷涂层
众所周知, 陶瓷涂层的脆性在很多场合制约 了其推广应用。与传统微米结构陶瓷涂层相比 , 纳米陶瓷涂 层由于晶 粒的 细化, 其界面 结合强 度、 断裂韧性等力学性能大为提高 , 而耐高温、 耐 磨损、 电绝缘、 抗腐蚀等性能也会有所改善。 纳米结构陶瓷涂层的制备存在一定的特殊 性。目前的 制备方法主要 有溶胶 凝胶、 物理气 相沉积 ( PVD) 、 化学气相沉积 ( CVD) 、 磁控溅射、 激光融覆、 热喷涂、 冷喷涂等方法。其中, 通过喷 涂法制备纳米涂层成为促使纳米陶瓷涂层获得 工程应用的有效途径 , 因而最具发展前景。 但纳米粉体一般不能直接用于喷涂 , 其主要 [ 1] 原因有两个 : 一是纳米陶瓷粉末粒径小、 质量 轻、 表面能高, 在喷涂时易团聚, 而且因为动量小, 纳米颗粒很难在基材上沉积并形成致密涂层; 二 是粉体活性高, 在喷涂过程中晶粒容易长大。为 克服上述困难, 一般需对纳米颗粒进行造粒处理, 使纳米陶瓷颗粒重新组装成微米级的喷涂喂料。

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用在当今工业领域中,精密加工技术的发展已成为了提高生产效率和产品质量的重要手段之一。

而纳米B4C研磨陶瓷作为一种新型材料,因其硬度高、耐磨性好等特点,被广泛应用于精密加工领域。

本文将在从浅入深的方式探索精密加工用纳米B4C研磨陶瓷制备的关键技术和应用,旨在更好地理解这一主题。

1. 纳米B4C研磨陶瓷的基本性质Boron Carbide,化学式为B4C,是一种硬度极高的陶瓷材料。

其硬度仅次于金刚石和氮化硼,且具有良好的导热性、耐磨性和耐腐蚀性,因而被广泛应用于领域。

而纳米B4C由于具有更小的颗粒尺寸和更均匀的结构,使得其性能相较于传统B4C材料提升了许多。

2. 纳米B4C研磨陶瓷在精密加工中的应用精密加工工艺要求对材料的硬度和耐磨性有很高的要求,而纳米B4C研磨陶瓷正是满足了这一需求。

在电子、航空航天等领域,纳米B4C研磨陶瓷被广泛应用于磨削、抛光、切割等工序,提高了加工效率和加工质量。

3. 纳米B4C研磨陶瓷的制备关键技术纳米B4C研磨陶瓷的制备主要包括材料选择、粉末制备、成型和烧结等工艺。

在材料选择上,需要选择优质的硼和碳源材料,并通过物理或化学方法将其制备成纳米级别的B4C粉末。

成型和烧结工艺也是影响纳米B4C研磨陶瓷质量的重要因素。

4. 个人观点和总结精密加工用纳米B4C研磨陶瓷制备的关键技术与应用,对于提高工业生产效率、改善产品质量具有重要意义。

通过对纳米B4C研磨陶瓷的深入了解,可以更好地指导实际生产中的工艺和应用。

对于纳米材料研究领域也有着重要的推动作用。

以上是我对精密加工用纳米B4C研磨陶瓷制备关键技术与应用的一些认识和观点,希望能对您有所帮助。

精密加工用纳米B4C研磨陶瓷制备关键技术与应用是一个非常重要的课题,这种新型材料在精密加工领域具有巨大的潜力。

本文将继续探讨该主题,并深入分析纳米B4C 研磨陶瓷的制备关键技术和应用,以及对工业生产的影响。

纳米陶瓷颗粒生产流程详解

纳米陶瓷颗粒生产流程详解

纳米陶瓷颗粒生产流程详解
内容:
纳米陶瓷颗粒的生产流程主要可以分为以下几个步骤:
1. 原料准备
选择高纯度的氧化铝、氧化硅等作为原料,需要控制原料的纯度,确保颗粒的性能。

将各种原料按照一定比例称量混合,使用球磨机进行湿磨,使原料均匀混合。

2. 原料成型
将混合均匀的原料烘干后,使用喷雾干燥、滚压成型等方法制备成球形或不定形前驱体。

控制成型条件,获得适当大小和形态的前驱体。

3. 烧结
将前驱体放入高温炉中进行烧结,在一定温度下保温一定时间,使前驱体中的各组分生成所需的化合物和微观结构。

严格控制烧结温度和时间,是获得理想陶瓷颗粒的关键。

4. 后处理
经过烧结后的陶瓷颗粒需要进行各种后处理,比如球磨、分级等,去除烧结过程中的烧结助剂,获得规格均一的纳米陶瓷颗粒产品。

5. 包装
最后使用干燥空气对产品进行包装,防止产品吸湿。

严格控制生产过程中的温度、湿度和污染等参数,才能生产出高性能的纳米陶瓷颗粒。

以上是纳米陶瓷颗粒生产的基本流程,通过精心控制各个环节,可以获得均一、高纯度的纳米陶瓷颗粒产品。

不同用途的陶瓷颗粒,其组分和工艺会有所调整。

纳米陶瓷材料ppt课件

纳米陶瓷材料ppt课件

纳米陶瓷材料的应
04
用领域
航空航天领域
飞机发动机部件
纳米陶瓷材料具有优异的耐高温 性能,可用于制造飞机发动机的 部件,如涡轮叶片、燃烧室等。
轻量化结构材料
纳米陶瓷材料具有较低的密度和良 好的力学性能,可用于制造轻量化 的结构材料,如飞机框架、机身等 。
隐身材料
纳米陶瓷材料可以吸收电磁波,用 于制造隐身材料,如隐形飞机的外 壳、雷达吸收层等。
抗疲劳性
由于其纳米级的结构,使 得陶瓷材料在承受反复应 力时具有更高的抗疲劳性 。
热学性能
高热导率
纳米陶瓷材料具有很高的热导率 ,使其在高温环境下保持稳定的 热性能。
抗热冲击
由于其微小的热容量,使得纳米 陶瓷材料在经历快速温度变化时 不易破裂。
光学性能
透明性
某些纳米陶瓷材料具有优秀的透明性 ,可与玻璃相媲美。
汽车工业领域
发动机部件
纳米陶瓷材料可用于制造汽车发 动机的部件,如活塞、气缸套、
涡轮增压器等。
轻量化结构材料
纳米陶瓷材料可用于制造轻量化 的汽车结构材料,如刹车片、离
合器片等。
耐磨材料
纳米陶瓷材料具有较好的耐磨性 能,可用于制造汽车零部件,如
轴承、齿轮等。
能源领域
燃料电池
纳米陶瓷材料可以作为燃料电池的隔膜材料,提 高燃料电池的性能和寿命。
拓展应用领域及市场
总结词
纳米陶瓷材料具有广泛的应用前景,需要拓 展新的应用领域和市场。
详细描述
纳米陶瓷材料具有优异的物理、化学和机械 性能,使其在许多领域具有潜在的应用价值 。未来需要加强研究和开发,发掘新的应用 领域和市场,并推动纳米陶瓷材料的商业化 应用。
加强基础研究及理论探索

纳米材料的制备方法(液相法)

纳米材料的制备方法(液相法)

05
液相法制备纳米材料的前景与展 望
新材料开发与应用
液相法制备纳米材料在新型材料开发 中具有广泛应用,如高分子纳米复合 材料、金属氧化物纳米材料等。
随着科技的发展,液相法制备的纳米 材料在能源、环保、生物医学等领域 的应用前景广阔,如燃料电池、太阳 能电池、生物传感器等。
提高制备效率与质量
液相法制备纳米材料具有较高的生产效率和可控性,能够实 现规模化生产。
通过优化制备条件和工艺参数,可以进一步提高纳米材料的 性能和质量,如粒径分布、结晶度等。
降低制备成本与能耗
液相法制备纳米材料具有较低的成本和能耗,能够降低生 产成本,提高经济效益。
通过改进制备技术和设备,可以进一步降低液相法制备纳 米材料的成本和能耗,实现绿色可持续发展。
THANKS
感谢观看
微乳液法
总结词
通过将前驱体溶液包含在微小的水或油滴中来制备纳米材料的方法。
详细描述
微乳液法是一种制备纳米材料的有效方法。在微乳液法中,将前驱体溶液包含在微小的水或油滴中, 形成微乳液。通过控制微乳液的尺寸和前驱体的反应条件,可以制备出具有特定形貌和尺寸的纳米材 料。微乳液法可以用于制备有机或无机纳米材料,具有较高的应用价值。
液相法具有操作简便、成本低、 可大规模生产等优点,适用于制 备多种纳米材料,如金属、氧化 物、硫化物等。
液相法的分类
01
02
03
化学还原法
通过化学还原剂将金属盐 或氧化物还原成金属纳米 粒子。
沉淀法
通过控制溶液的pH值、温 度等条件,使金属离子或 化合物沉淀为纳米粒子。
微乳液法
利用微乳液作为反应介质, 通过控制微乳液的组成和 反应条件,合成纳米粒子。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法一、前言纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。

早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。

自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。

纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。

使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。

因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。

利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。

高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

二、纳米材料的制备方法(一)、机械法机械法有机械球磨法、机械粉碎法以及超重力技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米陶瓷材料制备技术邱安宁5990519118 F99051041.概述陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.加工中的理论问题2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].2.2扩散及烧结由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为 1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].2.3纳米陶瓷的超塑性所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].2.4纳米陶瓷增韧由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达2 0 0~ 1 0 0g/h[1 1 ].3.4高压水热法高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

后两者同时含有硅源和碳源。

碳源、氮源一般选用CH4,C2 H2 ,NH3 ,N2 等,反应一般需在还原性H2 条件下进行。

CVD法不仅可以制备Si C,Si3 N4等单相粉体,而且被广泛用来制备各种复合粉体。

Endo[1 2 ]等人,采用Si2 (CH3 )4H2 作为Si,C源制备Si C纳米粉体,在70 0~1 40 0℃条件下,获得粒径在5~2 0 0 nm范围,由βSi C微晶无序排列而成的Si C颗粒。

相关文档
最新文档