初一数学绝对值典型例题精讲

合集下载

初一数学绝对值知识点与例题

初一数学绝对值知识点与例题

绝对值的性质及化简【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号.② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0.③ 绝对值具有非负性,取绝对值的结果总是正数或0.④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负 号,绝对值是5.【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;(5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b|a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。

【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有两种方法:A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。

七年级上册数学绝对值题

七年级上册数学绝对值题

七年级上册数学绝对值题
一、绝对值的基本概念
1. 定义
绝对值的几何定义:一个数公式的绝对值就是数轴上表示数公式的点与原点的距离,记作公式。

例如,公式表示数轴上表示公式的点到原点的距离,所以公式;公式表示数轴上表示公式的点到原点的距离,所以公式。

绝对值的代数定义:当公式时,公式;当公式时,公式。

例如,当公式时,公式;当公式时,公式。

2. 性质
任何数的绝对值都是非负数,即公式。

若公式,则公式或公式。

例如,若公式,则公式或公式。

公式,例如公式。

二、典型例题
1. 求一个数的绝对值
例1:求公式的值。

解析:根据绝对值的定义,公式,当公式时,公式
,所以公式。

2. 已知绝对值求原数
例2:若公式,求公式的值。

解析:根据绝对值的性质,若公式,则公式或公式。

因为公式,所以公式或公式。

3. 绝对值的化简
例3:化简公式。

解析:因为公式,即公式。

当公式时,公式,所以公式。

4. 绝对值的运算
例4:计算公式。

解析:先分别求出绝对值,公式,公式,然后进行加法运算,公式。

例5:计算公式。

解析:先求绝对值,公式,公式,然后进行减法运算,公式。

初一数学绝对值典型例题精讲[最新]-10页精选文档

初一数学绝对值典型例题精讲[最新]-10页精选文档

第三讲 绝对值它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质绝对值 简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。

绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0)(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0); (7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|[例1](1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1) 结合数轴画图分析。

绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2) 答案C 不完善,选择D.在此注意复习巩固知识点3。

(3) 选择D 。

(4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?<分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!例题1、【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3||-6|+|3|>|-6+3||-2|+|-3|=|-2-3||0|+|-8|=|0-8|归纳:|a|+|b|_____|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.参考答案:(1)≥(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m-n=13,则n=m-13,|m+m -13|=1,m=7或6当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0 【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数、1个正数2个负数、1个0,1个正数和1个负数.例题2、已知:b是最小的正整数,且a、b满足(c-5)^2 +|a+b|=0(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,线段AB的中点为M,线段BC的中点为N,P为动点,其对应的数为x,点P在线段MN上运动(包括端点).①求x的取值范围.②化简式子|x+1|-|x-1|+2|x-4/9|(写出化简过程).详细解析考点:数轴的定义,绝对值的性质分析:本题考查了数轴与绝对值,需掌握绝对值的性质,正确理解AB,BC的变化情况是关键;第(1)题根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c 的值;第②题以①为分界点,根据x的范围分0≤x≤4/9、4/9<x≤1、1<x≤3确定x+1,x-1,x-4/9的符号,然后根据绝对值的意义即可化简.解答:(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5.(2)①(-1+1)÷2=0,(1+5)÷2=3,∴x的取值范围为:0≤x≤3.②当0≤x≤4/9时,x+1>0,x-1<0,x-4/9≤0,∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)-2(x-4/9)=x+1+x-1-2x+8/9=8/9;当4/9<x≤1时,x+1>0,x-1≤0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)+2(x-4/9)=x+1+x-1+2x-8/9=4x-8/9;当1<x≤3时,x+1>0,x-1>0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1-(x-1)+2(x-4/9)=x+1-x+1+2x-8/9=2x-10/9;例题3、数轴上从左到右的三个点A,B,C 所对应数的分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c 的值.(2)若原点O在A,B两点之间,求 |a|+|b|+ |b-c| 的值.(3)若O是原点,且OB=17,求a+b-c的值.参考答案(1)以B为原点,点A,C对应的数分别-2017,1000,a+b+c=-2017+0+1000=-1017.(2)当原点O在A,B两点之间时,|a|+|b|=2017,|b-c|=1000,∴ |a|+|b|+|b-c|2017 +1000 = 3017 .附另解:点 A,B,C 对应的数分别 b-2017,b,b+1000,∴ |a|+|b|+|b-c|=2017-b+b+1000= 3017 .(3)若原点O在点B的左边,则点A,B,C 所对应数分别是 a=-2000,b=17, c=1017,则 a+b-c=-2000+17-1017=-3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=-2034,b=-17, c=983,则 a+b-c=-2034+(-17)-983=-3034绝对值压轴题小结绝对值作为初一数学的重点和难点,解题时一定要注意分类讨论。

初一数学绝对值经典例题

初一数学绝对值经典例题

初一数学绝对值经典例题初一数学的绝对值问题,可能很多同学一开始都觉得有点迷糊,感觉好像是个“虚无缥缈”的概念,听起来就是不太懂,做起来也糊里糊涂的。

但是,别急,今天我们就来好好聊聊这个“绝对值”,让大家能轻松搞定,保证你以后遇到这类题目,头都不会疼了!咱们就像在讲故事一样,把它从头到尾讲明白,绝对不让你有半点疑问。

绝对值到底是什么?简单来说,绝对值就是“数值的大小”,不管这个数是正数还是负数,它的绝对值永远都是正数。

比如说,数轴上的0就是“起点”,正数向右走,负数向左走。

那绝对值其实就像一个量尺,量的是距离,无论是向右还是向左,都是正的。

你看看,正3的绝对值是3,负3的绝对值也是3,咱们把它说的简单点,绝对值就是“数值本身的大小”,不管它是不是带有负号,都会把负号给去掉,变成正数。

明白了吧?这就是绝对值的秘密。

举个例子,你平时如果走路,也许有时候走得很远,走到负数位置了,哈哈,没错,就像走到某个地方特别远,可能是负数的意思,但不管你怎么走,最终你走的这段距离,都是一个正的长度。

比如说你离家出走,走了5步,最后的绝对值就是5,说明你离家的距离就是5步。

再看一个例子:假设有一个小朋友站在0点上,他往前走了4步,那么4的绝对值就是4。

假如他转个弯走回去了,走了4步,负号表示他是往回走的,但他到底走了多少步,还是4步。

所以4和4的绝对值一样,都是4!你看,这不就是很简单嘛。

这时候可能有人会问了:那如果我碰到一个像7这样的负数,绝对值不是应该还是7吗?哈哈,这就是个误会啦!负数的绝对值肯定是正数,7的绝对值就是7,不管它长得多么“凶猛”,都得变得温顺,像个小猫一样,变成正7才对!所以说,绝对值永远都不带负号,大家记住了没有?有个小窍门,帮助你记住绝对值:它就像是一个“魔术师”,它能让所有的负数都“变脸”,让它们看起来都像正数一样。

它的工作就是消除负号,保留数值的大小。

有同学可能会觉得,这些数的绝对值,怎么看都是比较简单的,可是要是碰到像“|x5|”这种看起来有点复杂的东西怎么办?哈哈,别怕!其实这就像是一个谜题,看看它前面是什么,弄清楚它的“心思”就行了。

初一上册数学绝对值经典题

初一上册数学绝对值经典题

初一上册数学绝对值经典题经典题 1已知|x| = 3,|y| = 5,且x > y,求x + y的值。

解析:因为|x| = 3,所以x = ±3;因为|y| = 5,所以y = ±5。

又因为x > y,当x = 3时,y只能取-5,此时x + y = 3 + (-5) = -2;当x = -3时,y只能取-5,此时x + y = -3 + (-5) = -8。

综上,x + y的值为-2或-8。

经典题 2若|a - 2| + (b + 3)^2 = 0,求a + b的值。

解析:因为|a - 2|是非负数,(b + 3)^2也是非负数,两个非负数的和为0,则这两个非负数都为0。

所以a - 2 = 0,b + 3 = 0,解得a = 2,b = - 3。

则a + b = 2 + (-3) = -1。

经典题 3化简| -2| - | - 5|解析:| -2| = 2,| - 5| = 5所以| -2| - | - 5| = 2 - 5 = -3经典题 4已知a,b互为相反数,c,d互为倒数,m的绝对值为2,求|m| - cd + (a + b/m)的值。

解析:因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为|m| = 2,所以m = ±2。

当m = 2时,|m| - cd + (a + b/m) = 2 - 1 + (0/2) = 1;当m = -2时,|m| - cd + (a + b/m) = 2 - 1 + (0/-2) = 1。

综上,|m| - cd + (a + b/m)的值为1。

经典题 5比较-| -3|和-(-3)的大小。

解析:-| -3| = -3,-(-3) = 3因为-3 < 3,所以-| -3| < -(-3)。

七年级数学绝对值典型例题

七年级数学绝对值典型例题

七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

对于公式,因为公式是负数,所以公式。

对于公式,根据定义公式。

对于公式,因为3是正数,所以公式。

2. 例2:已知公式,求公式的值。

解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。

二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。

解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。

所以公式或公式。

2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。

解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。

这里公式,公式,则公式、公式两点间的距离公式。

三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。

例如公式,这里公式。

2. 例6:已知公式,求公式、公式的值。

解析:
因为绝对值是非负数,即公式,公式。

要使公式成立,则公式且公式。

当公式时,公式,解得公式;当公式时,公式,解得公式。

初中七年级数学上册-《绝对值》典型例题1

初中七年级数学上册-《绝对值》典型例题1

典型例题一
例题 计算7.10)323(3122.16-⎥⎦
⎤⎢⎣⎡--+-+- 分析 利用绝对值的概念可以去掉式子中的绝对值符号,利用在“相反数”一节学到的知识,可以将3
23-化简,这样,就可以利用小学知识完成本题了. 解 7.10)323(312
2.16-⎥⎦⎤⎢⎣⎡--+-+- .
5.116
5.5)3
23312()7.102.16(7.103
233122.16=+=++-=-++= 说明 本题出现在读者尚未学习有理数的运算之时,式子又比较长,不知读者刚刚见到这个题目时,心中是否有畏难情绪产生.而前面的“分析”是寻找使问题发生转化的途径,经过转化,题目就变容易了.这种情形在数学中极为常见,要特别注意学习怎样对题目特点,使问题由复杂变简单,由不熟悉的变为熟悉的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文档第三讲绝对值内容概述它其中相关的基本思想及数学方法是初中数学学绝对值是有理数中非常重要的组成部分,习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质简单的绝对值方程绝对值化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义及性质|a|。

绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作绝对值的性质:,这是绝对值非常重要的性质;绝对值的非负性,可以用下式表示:|a|≥0(1))(a>0 a(代数意义)a=0))(2|a|= 0 (0)<-a (a ≤0;≥0;若|a|=-a,则a若(3)|a|=a,则a a,)4任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥(-a;且|a|≥(几何意义)a=b或a=-b;)(5若|a|=|b|,则|a|a|=(b≠0)·6()|ab|=|a||b|;|;|b|b222;|=a)(7|a|=|a≥≥≥≤8()|a+b||a|+|b| |a-b|||a|-|b|| |a|+|b||a+b| |a|+|b||a-b|实用文档[例1](1)绝对值大于2.1而小于4.2的整数有多少个?(2)若ab<|ab|,则下列结论正确的是()A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab<0(3)下列各组判断中,正确的是()A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>b22 =(-b) |a|=b,则一定有ab|a|>,则一定有|a|>|b| D.若C. 若(4)设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1)结合数轴画图分析。

绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2)答案C不完善,选择D.在此注意复习巩固知识点3。

(3)选择D。

(4)根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?<分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。

[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确()A.a>bB.a=bC.a<bD.无法确定分析:选择D。

[巩固] 若|x-3|=3-x,则x的取值范围是____________分析:若|x-3|=3-x,则x-3≤0,即x≤3。

对知识点3的复习巩固[巩固] 若a>b,且|a|<|b|,则下面判断正确的是()A.a<0B.a>0C.b<0D.b>0分析:选择C[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?分析:|a-b|≥0,-8-|a-b|≤-8,所以有最大值-8[例2]y的值是多少?,则1)(竞赛题)若3|x-2|+|y+3|=0(x?4n2)(的值2()若,求|x+3|+(y-1)=0 y?x实用文档y3? =,x=2,y=-3,分析:(1)|x-2|=0,|y+3|=0x2?4?42=0,可得x=-3),y=1。

y-1==-1 (2)由|x+3|+(xy?31?n为偶数时,原式=1;n为奇数时,原式=-12≥0)|a|≥0 b 小知识点汇总:(本源22=0,则x-a=0且x-b=0;若(x-a) +(x-b)2=0,则x-a=0且x-b=0;若|x-a|+(x-b)若|x-a|+|x-b|=0,则x-a=0且x-b=0;当然各项前面存在正系数时仍然成立,非负项增加到多项时,每一项均为0,两个非负数互为相反数时,两者均为0简单的绝对值方程【例3】,那么x=____)已知x是有理数,且|x|=|-4|(1 ,那么x=____已知x是有理数,且-|x|=-|2|(2)x=____已知x是有理数,且-|-x|=-|2|,那么(3),那么,|x-y|=y-x满足条件|x|=5,|y|=2)如果x,y表示有理数,且x,y(4 的值是多少?x+y 分析:-2 ,3)2,2)2-2,()(14,-4 (≤0;±2,且|x-y|=y-x,x-y5 (4)x=±,y= y=-2时不满足题意;,x=5y=2时不满足题意;当x=5,当。

,y=-2时满足题意,x+y=-7x=-5 当x=-5,y=2时满足题意;x+y=-3;当的值|y|=6,求代数式|x+y||x|=4【巩固】巩固,6,所以y=±,所以x=±4,因为|y|=6|x|=4分析:因为|x+y|=|-2|=2; 时,x=4,y=-6当时,当x=4,y=6|x+y|=|10|=10;|x+y|=|10|=10 ,y=-6时,x=-4 |x+y|=|2|=2y=6x=-4 当,时,;当4【例】实用文档3|x?5|?5?0)(1解方程:2(2)|4x+8|=12(3)|3x+2|=-112x?xy?4y的值(4)已知|x-1|=2,|y|=3,且x与y互为相反数,求32510510 -;,进而可得:x=-,1)原方程可变形为:|x+5|=,所以有x+5=±分析:(3333(2)4x+8=±12,x=1,x=-5(3)此方程无解(4)|x-1|=2,x-1=±2,x=3,x=-1,|y|=3,y=±3,且x与y互为相反数,所以x=3,12x?xy?4y?24 y=-3,3a?ab?b的值【例5】若已知a与b互为相反数,且|a-b|=4,求21?a?ab 分析:a与b互为相反数,那么a+b=0。

0?aba?b?abb??aba???ab,|a?b|?4,a?b??4,=2a(a?b)?1a?0?11?a?ab当a-b=4时,且a+b=0,那么a=2,b=-2,-ab=4;当a-b=-4时,且a+b=0,那么a=-2,b=2,-ab=4;a?ab?b=4综上可得2?ab?1a化简绝对式】【例6|2a?4b|4211??,b=-,求的值已知(1)a=-2|a?2b||4b?3?|2a?3||(a?2b)32(2)若|a|=b,求|a+b|的值(3)化简:|a-b|4|?1?|42183???? =分析:(1)原式1212472|??||??3?|?1??(?)3||23233(2)|a|=b,我们可以知道b≥0,当a<0时,a=-b,|a+b|=0;当a≥0时,a=b,|a+b|=2b(3)分类讨论。

实用文档当a-b>0时,即a>b,|a-b|=a-b;当a-b=0时,即a=b,|a-b|=0;当a-b<0时,即a<b,|a-b|=b-a。

【巩固】化简:(1)|3.14-π| (2)|8-x|(x≥8)分析:(1)3.14<π,3.14-π<0,|3.14-π|=π-3.14(2)x≥8,8-x≤0,|8-x|=x-8。

【例7】有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|AB 0C=2b-2c)-(c-b分析:|b+a|+|a+c|+|c-b|=b+a-(a+c)|a|+|c-b|+|a-c|+|b-a| 在数轴上的位置如图所示,化简b,c【巩固】已知a, bca|a|+|c-b|+|a-c|+|b-a|=-a+b-c-a+c+b-a=2b-3a分析:|a+b|+|b-a|+|b|-|a-|a|| 在数轴上对应的点如图所示,是化简,b【巩固】数ab0 a=b )(-2a(b-a)+b-分析:|a+b|+|b-a|+|b|-|a-|a||=-(a+b)+a0?|a|-|b|+|a+b|+|ab| ,化简a<-b且】【例8(1)若b|a+2|+|a-2|0,化简≤a≤)若(2-2 |x+z|+|y+z|-|x-y|的值)已知x<0<z,xy>0,|y|>|z|>|x|,求(3a0?a<0,b<0,a+b<0,ab>0 ,分析:(1)若a<-b且b|a|-|b|+|a+b|+|ab|=-a+b-a-b+ab=ab-2a |a+2|+|a-2|=(a+2)-(a-2)=4,≤0a+2≥0,a-2因为(2)-2≤a≤0,所以=x+z-y-z-x+y=0 y<x<z;原式y<0<z,又|y|>|z|>|x|,可得:(3)由x<0<z,xy>0可得:|x-m|+|x-10|+|x-m-10| ,化简x≤≤10【巩固】如果0<m<10并且m|x-m|+|x-10|+|x-m-10|=x-m+10-x+m+10-x=20-x 分析:|3+|2-|1+x||| 化简)已知x<-3,【例9】(1|a?|32a,试化简)若(2a<0|a?||3a||3+|2-|1+x|||=|3+|2+1+x||=|3+|3+x||=|3-3-x|=|-x|=-x时,)当(分析:1x<-3实用文档2a?|3a|2a?3a5a5==)=- (2|?a3a||||?a?3a|4?a4abc??的所有可能值【例10】若abc≠0,则|c|a||b||分析:从整体考虑:abc??=3,c全正,则;1 ()a,b|a||b||c|abc??=1;(2)a,b,c 两正一负,则|c||b|||acba??(3)a,=-1;b,c一正两负,则|c|a||b||abc??=-3 c,全负,则(4)a,b|a||b||c||abcd||a||b||c||d|??1???,求b,c,d,满足的值【巩固】有理数a,abcdabcd|abcd|??1知abcd<0,所以a分析:有,b,c,d里含有1个负数或3个负数:abcd|a||b||c||d|???;若含有1个负数,则=2(1)abcd|a||b||c||d|???=-2 若含有3个负数,则(2)abcd【例11】化简|x+5|+|2x-3|3分析:先找零点。

x+5=0,x=-5;2x-3=0,x=,零点可以将数轴分成几段。

23,x+5>0,2x-3≥0,|x+5|+|2x-3|=3x+2;当x≥23当-5≤x<,x+5≥0,2x-3<0,|x+5|+|2x-3|=8-x;2当x<-5,x+5<0,2x-3,|x+5|+|2x-3|=-3x-2【巩固】化简:|2x-1|1,依次零点可以将数轴分成几段,x=2x-1=0分析:先找零点。

21,2x-1<0,|2x-1|=﹣(2x-1)=1﹣2x;x<)(121(2)x=,2x-1=0,|2x-1|=02实用文档1 1)合并写出结果。

相关文档
最新文档