初一数学绝对值难题解析
七年级上册数学绝对值难题类型

七年级上册数学绝对值难题类型七年级上册数学绝对值难题类型及解析一、绝对值的定义与性质1. 绝对值的定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作\vert a\vert。
2. 绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
二、绝对值的化简1. 已知字母的取值范围化简绝对值当a \geq 0时,\vert a\vert = a;当a 0时,\verta\vert = a。
例如:已知x 0,化简\vert x 2\vert。
因为x 0,所以x 2 0,则\vert x 2\vert = (x 2) = 2 x。
2. 多重绝对值的化简从内向外依次化简绝对值。
例如:化简\vert\vert 3 x\vert 1\vert,需要先求出\vert 3 x\vert的值,再进一步化简。
三、绝对值方程1. 形如\vert x\vert = a(a > 0)的方程方程的解为x = \pm a。
例如:\vert x\vert = 5,则x = \pm 5。
2. 形如\vert ax + b\vert = c(c > 0)的方程当ax + b \geq 0时,ax + b = c;当ax + b 0时,ax + b = c。
例如:\vert 2x 1\vert = 3,当2x 1 \geq 0,即x\geq \frac{1}{2}时,2x 1 = 3,解得x = 2;当2x 1 0,即x \frac{1}{2}时,2x 1 = 3,解得x = 1。
四、绝对值不等式1. 形如\vert x\vert a(a > 0)的不等式不等式的解集为a x a。
例如:\vert x\vert 2,则2 x 2。
2. 形如\vert x\vert > a(a > 0)的不等式不等式的解集为x a或x > a。
例如:\vert x\vert > 3,则x 3或x > 3。
2020初中数学课件上海初一数学绝对值难题解析

2020初中数学课件上海初一数学绝对值难题解析上海初1数学绝对值困难解析灵活利用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在甚么条件下成立? |a-b|=|a|-|b|,在甚么条件下成立?经常使用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)应用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
第1类:考察对绝对值代数意义的理解和分类讨论思想的应用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c 的点在原点左边,请化简以下式子:(1)|a-b|-|c-b| (2)|a-c|-|a+c| 2、设x<-1,化简2-|2-|x-2|| 。
3、设3<a<4,化简|a-3|+|a-6| 。
4、已知|a-b|=a+b,则以下说法:(1)a1定不是负数;(2)b多是负数;哪一个是正确的?第2类:考察对绝对值基本性质的应用5、已知2011|x-1|+2012|y+1|=0,求x +y+2012的值?6、设a、b同时满足: (1)|a-2b|+|b-1|=b-1; (2) |a-4|=0;那末ab等于多少?7、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0, 请化简:|b|-|a+b|-|c-b|+|a-c| 。
8、满足|a-b|+ab=1的非负整数(a,b)共有几对? 9、已知a、b、c、d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值?第3类:多个绝对值化简,应用零点分段法,分类讨论以上这类分类讨论化简方法就叫做零点分段法,其步骤是:求零点、分段、区段内化简、综合。
七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!例题1、【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3||-6|+|3|>|-6+3||-2|+|-3|=|-2-3||0|+|-8|=|0-8|归纳:|a|+|b|_____|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.参考答案:(1)≥(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m-n=13,则n=m-13,|m+m -13|=1,m=7或6当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0 【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数、1个正数2个负数、1个0,1个正数和1个负数.例题2、已知:b是最小的正整数,且a、b满足(c-5)^2 +|a+b|=0(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,线段AB的中点为M,线段BC的中点为N,P为动点,其对应的数为x,点P在线段MN上运动(包括端点).①求x的取值范围.②化简式子|x+1|-|x-1|+2|x-4/9|(写出化简过程).详细解析考点:数轴的定义,绝对值的性质分析:本题考查了数轴与绝对值,需掌握绝对值的性质,正确理解AB,BC的变化情况是关键;第(1)题根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c 的值;第②题以①为分界点,根据x的范围分0≤x≤4/9、4/9<x≤1、1<x≤3确定x+1,x-1,x-4/9的符号,然后根据绝对值的意义即可化简.解答:(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5.(2)①(-1+1)÷2=0,(1+5)÷2=3,∴x的取值范围为:0≤x≤3.②当0≤x≤4/9时,x+1>0,x-1<0,x-4/9≤0,∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)-2(x-4/9)=x+1+x-1-2x+8/9=8/9;当4/9<x≤1时,x+1>0,x-1≤0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)+2(x-4/9)=x+1+x-1+2x-8/9=4x-8/9;当1<x≤3时,x+1>0,x-1>0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1-(x-1)+2(x-4/9)=x+1-x+1+2x-8/9=2x-10/9;例题3、数轴上从左到右的三个点A,B,C 所对应数的分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c 的值.(2)若原点O在A,B两点之间,求 |a|+|b|+ |b-c| 的值.(3)若O是原点,且OB=17,求a+b-c的值.参考答案(1)以B为原点,点A,C对应的数分别-2017,1000,a+b+c=-2017+0+1000=-1017.(2)当原点O在A,B两点之间时,|a|+|b|=2017,|b-c|=1000,∴ |a|+|b|+|b-c|2017 +1000 = 3017 .附另解:点 A,B,C 对应的数分别 b-2017,b,b+1000,∴ |a|+|b|+|b-c|=2017-b+b+1000= 3017 .(3)若原点O在点B的左边,则点A,B,C 所对应数分别是 a=-2000,b=17, c=1017,则 a+b-c=-2000+17-1017=-3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=-2034,b=-17, c=983,则 a+b-c=-2034+(-17)-983=-3034绝对值压轴题小结绝对值作为初一数学的重点和难点,解题时一定要注意分类讨论。
初一上册数学绝对值经典题

初一上册数学绝对值经典题经典题 1已知|x| = 3,|y| = 5,且x > y,求x + y的值。
解析:因为|x| = 3,所以x = ±3;因为|y| = 5,所以y = ±5。
又因为x > y,当x = 3时,y只能取-5,此时x + y = 3 + (-5) = -2;当x = -3时,y只能取-5,此时x + y = -3 + (-5) = -8。
综上,x + y的值为-2或-8。
经典题 2若|a - 2| + (b + 3)^2 = 0,求a + b的值。
解析:因为|a - 2|是非负数,(b + 3)^2也是非负数,两个非负数的和为0,则这两个非负数都为0。
所以a - 2 = 0,b + 3 = 0,解得a = 2,b = - 3。
则a + b = 2 + (-3) = -1。
经典题 3化简| -2| - | - 5|解析:| -2| = 2,| - 5| = 5所以| -2| - | - 5| = 2 - 5 = -3经典题 4已知a,b互为相反数,c,d互为倒数,m的绝对值为2,求|m| - cd + (a + b/m)的值。
解析:因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为|m| = 2,所以m = ±2。
当m = 2时,|m| - cd + (a + b/m) = 2 - 1 + (0/2) = 1;当m = -2时,|m| - cd + (a + b/m) = 2 - 1 + (0/-2) = 1。
综上,|m| - cd + (a + b/m)的值为1。
经典题 5比较-| -3|和-(-3)的大小。
解析:-| -3| = -3,-(-3) = 3因为-3 < 3,所以-| -3| < -(-3)。
初一数学绝对值难点突破(含答案)

绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
初一第一章的《绝对值》的几个难题(答案)

初一第一章的《绝对值》的几个难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
2、若a 、b 为整数,且200820081a b c a -+-=;试求:c a a b b c -+-+-的值。
3、解方程:2218x x -+-=。
4、已知:关于x 的方程1x ax -=,同时有一个正根和一个负根,求整数a 的值。
5、已知:a 、b 、c 是非零有理数,且a +b +c =0;求:a b c abc a b c abc+++。
6、设abcde 是一个五位数,其中a 、b 、c 、d 、e 是阿拉伯数字,且a <b 〈c 〈d ,试求y a b b c c d d e =-+-+-+-的最大值。
7、求关于x 的方程21(01)x a a --=<<所有解的和.8、若1x 、2x 都满足条件:21234x x -++=且12x x <,则12x x -的取值范围是 .9、已知:(12)(21)(31)36x x y y z z ++--++-++=;求:x +2y +3z 的最大值和最小值。
10、解方程: ①314x x -+=; ②311x x x +--=+; ③134x x ++-=。
初一第一章的《绝对值》的几个难题(的解答):知识点:1、绝对值的定义:表示一个数的点到原点的距离就叫做这个数的绝对值。
2、绝对值的代数意义:(0)(0)a a a a a ≥⎧=⎨-<⎩ 3、绝对值的基本性质: ①非负性:0a ≥; ②ab a b =; ③(0)a a b b b =≠; ④22a a =; ⑤a b a b a b -≤+≤+; ⑥a b a b a b -≤-≤+。
难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
初一数学期末复习数轴绝对值动点压轴题难题(附答案详解)

初一数学数轴绝对值动点压轴题(附答案详解)一、解答题(共20小题)1. 如图,数轴的原点为O,点A,B,C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)求点A,C分别对应的数;(2)求点P,Q分别对应的数(用含t的式子表示).(3)试问当t为何值时,OP=OQ?2. 已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P,Q两点从原点出发运动4秒时的位置.(2)如果P,Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P,Q到原点的距离相等?3. 阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与−2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4)求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.4. 如图1,在平面直角坐标系中,A(6,a),B(b,0)且(a−6)2+√b−2=0.(1)求点A,B的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若S△PAB=15,请求出P点的坐标;(3)如图2,已知AB=√52,若C点是x轴上一个动点,是否存在点C,使BC=AB,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.5. 如图,A,B分别为数轴上的两点,A点对应的数为−5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.6. 数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是,点B对应的数是;(2)若数轴上有一点D,且BD=4,则点D表示的数是什么?(3)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.当点P和点Q间的距离为8个单位长度时,求t的值.7. 如图,已知点O是原点,点A在数轴上,点A表示的数为−6,点B在原点的右侧,且OB=4OA.3(1)点B对应的数是,在数轴上标出点B.(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P,Q两点表示的数:P是;Q是;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?8. 如图,半径为1个单位的圆片上有一点A与数轴的原点重合,AB是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,−5,+4,+3,−2.当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?9. 结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示−3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于∣m−n∣.如果表示数a 和−1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于−4与2之间,则∣a+4∣+∣a−2∣的值为;(3)利用数轴找出所有符合条件的整数点x,使得∣x+2∣+∣x−5∣=7,这些点表示的数的和是.(4)当a=时,∣a+3∣+∣a−1∣+∣a−4∣的值最小,最小值是.10. 如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,当PB=2时,求运动时间t.11. A,B,C为数轴上的三点,动点A,B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点 C 对应的数为8.(1)若2秒后,a,b满足∣a+8∣+(b−2)2=0,则x=,y=,并请在数轴上标出A,B两点的位置.(2)若动点A,B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得∣a∣=∣b∣,使得z=.(3)若动点A,B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A 与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.12. 探索研究:(1)比较下列各式的大小(用“<”或“>”或“=”连接).①∣+1∣+∣4∣∣+1+4∣;②∣−6∣+∣−3∣∣−6−3∣;③∣10∣+∣−3∣∣10−3∣;④∣8∣+∣−5∣∣8−5∣;⑤∣0∣+∣+2∣∣0+2∣;⑥∣0∣+∣−8∣∣0−8∣.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,∣a∣+∣b∣∣a+b∣(用“<”或“>”或“=”或“≥”或“≤”连接).(3)根据(2)中得出的结论,当∣x∣+2017=∣x−2017∣时,则x的取值范围是;若x>0,且∣x∣+∣y∣=10,∣x+y∣=2,则y=.13. 阅读下面材料并回答问题.I阅读:数轴上表示−2和−5的两点之间的距离等于(−2)−(−5)=3;数轴上表示1和−3的两点之间的距离等于1−(−3)=4.一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数.II问题:如图,O为数轴原点,A,B,C是数轴上的三点,A,C两点对应的数互为相反数,且A点对应的数为−6,B点对应的数是最大负整数.(1)点B对应的数是,并请在数轴上标出点B位置;PC,求线段AP中点对应的数;(2)已知点P在线段BC上,且PB=25⋅x2−bx+2的值(a,b,c是点(3)若数轴上一动点Q表示的数为x,当QB=2时,求a+c100A,B,C在数轴上对应的数).14. 如图,已知数轴上点A表示的数为6,点B表示的数为−4,C为线段AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点C表示的数是;(2)当t=秒时,点P到达点A处;(3)点P表示的数是(用含字母t的代数式表示);(4)当t=秒时,线段PC的长为2个单位长度;(5)若动点Q同时从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,那么,当t=秒时,PQ的长为1个单位长度.15. 阅读理解.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子∣x+1∣+∣x−2∣取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<−1,−1≤x≤2和x>2,经研究发现,当−1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子∣x−2∣+∣x−4∣+∣x−6∣+∣x−8∣取最小值时,相应的x的取值范围是,最小值是.(2)已知y=∣2x+8∣−4∣x+2∣,求相应的x的取值范围及y的最大值.写出解答过程.16. 阅读思考:小聪在复习过程中,发现可以用“两数的差”来表示“数轴上两点间的距离”,探索过程如下:如图甲所示,三条线段的长度可表示为AB=4−2=2,CB=4−(−2)=6,DC=(−2)−(−4)=2,于是他归纳出这样的结论:当b>a时,AB=b−a(较大数−较小数).(1)思考:你认为小聪的结论正确吗? .(2)尝试应用:①如图乙所示,计算:EF=,FA=.②把一条数轴在数m处对折,使表示−14和2014两数的点恰好互相重合,则m=.(3)问题解决:①如图丙所示,点A表示数x,点B表示−2,点C表示数2x+8,且BC=4AB,问:点A和点C分别表示什么数?②在上述①的条件下,在如图丙所示的数轴上是否存在满足条件的点D,使DA+DC=3DB?若存在,请直接写出点D所表示的数;若不存在,请说明理由.17. 如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程∣x+9∣=1的两解(a<b),(c−16)2与∣d−20∣互为相反数.(1)求a、b、c、d的值;(2)若A、B两点以每秒6个单位的速度向右匀速运动,同时C、D两点以每秒2个单位的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍,若存在,求时间t;若不存在,请说明理由.18. 已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.19. 在数轴上依次有 A ,B ,C 三点,其中点 A ,C 表示的数分别为 −2,5,且 BC =6AB .(1)在数轴上表示出 A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从 A ,B ,C 三点同时出发,沿数轴负方向运动,它们的速度分别是 14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点 P ,使 P 到 A ,B ,C 的距离和等于 10?若存在求点 P 对应的数;若不存在,请说明理由.20. 已知数轴上三点 M ,O ,N 对应的数分别为 −3,0,1,点 P 为数轴上任意一点,其对应的数为x .(1)如果点 P 到点 M 、点 N 的距离相等,那么 x 的值是 . (2)当 x = 时,使点 P 到点 M ,点 N 的距离之和是 5;(3)如果点 P 以每秒钟 3 个单位长度的速度从点 O 向左运动时,点 M 和点 N 分别以每秒钟 1个单位长度和每秒钟 4 个单位长度的速度也向左运动,且三点同时出发,那么 秒钟时点 P 到点 M ,点 N 的距离相等.答案第一部分1. (1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1−6=−5,点C对应的数是1+2=3.(2)∵动点P,Q分别同时从A,C出发,分别以每秒2个单位长度和1个单位长度的速度沿数轴正方向运动,∴点P对应的数是−5+2t,点Q对应的数是3+t.(3)①当点P与点Q在原点两侧时,若OP=OQ,则5−2t=3+t,解得:t=23;②当点P与点Q在原点同侧时,若OP=OQ,则−5+2t=3+t,解得:t=8;当t为23或8时,OP=OQ.2. (1)设P的速度为x单位长度/秒,Q的速度为3x单位长度/秒.依题意,得4(x+3x)=16,∴x=1.∴P的速度为1单位长度/秒,Q的速度为3单位长度/秒.4秒时,P的位置在−4,Q的位置在12.(2)设再经过y秒时,点P,Q到原点的距离相等,①当点P,Q位于原点两侧时,12−3y=4+y,解得,y=2.②当点P,Q位于原点同侧时,3y−12=4+y,解得,y=8.所以再经过2秒或8秒时点P,Q到原点的距离相等.3. (1)5【解析】∣3−(−2)∣=5.(2)∣x−7∣(3)−8;−3或−13(4)如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.4. (1)∵(a−6)2+√b−2=0,又∵(a−6)2≥0,√b−2≥0,∴a=6,b=2,∴A(6,6),B(2,0).(2)设P(0,m)(m>0),∵S△PAB=S△POA+S△ABO−S△POB,∴15=12×m×6+12×2×6−12×2×m,9).∴P(0,92(3)C(2+2√13,0)或(2−2√13,0).【解析】∵AB=√52=2√13,B(2,0),∴BC=AB=2√13,∴C(2+2√13,0)或(2−2√13,0).5. (1)设相遇时间为x秒,4x+6x=55−(−5),解得:x=6,因此C点对应的数为−5+4×6=19.(2)设追及时间为y秒,6y−4y=55−(−5),解得:y=30,点D对应的数为−5−4×30=−125.(3)①相遇前PQ=20时,设相遇时间为a秒,4a+6a=55−(−5)−20,解得:a=4,因此Q点对应的数为−5+4×4=11,②相遇后PQ=20时,设相遇时间为b秒,4b+6b=55−(−5)+20,解得:b=8,因此C点对应的数为−5+4×8=27,故Q点对应的数为11或27.6. (1)−30;−10【解析】∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B在点C左侧,∴点B对应的数为10−20=−10,点A对应的数为−10−20=−30.(2)由于点B对应的数为−10,BD=4,∴点D表示的数为−14或−6.(3)当运动时间为t秒时,点P对应的数是4t−30,点Q对应的数是t−10,依题意,得:∣t−10−(4t−30)∣=8,∴20−3t=8或3t−20=8,解得:t=4或t=28.3.∴t的值为4或2837. (1)8数轴表示如图所示:【解析】∵点A表示的数为−6,∴OA=6,OA,∵OB=43∵点B在原点的右侧,∴点B对应的数是8.(2)①−6+t;8−3t②∵点P和点Q经过t秒后在数轴上的点D处相遇,∴−6+t=8−3t,∴t=7,2=−2.5.∴点D所表示的数=−6+72③∵P是−6+t;Q是8−3t,∴OP=∣−6+t∣,OQ=∣8−3t∣,∵点P与点Q分别到原点的距离相等,∴∣−6+t∣=∣8−3t∣,∴−6+t=8−3t或−6+t=3t−8,或t=1,∴t=72秒或1秒,点P与点Q分别到原点的距离相等.∴经过72【解析】①∵P的路程为t,Q的路程为3t,∴P是−6+t;Q是8−3t.8. (1)无理;−2π【解析】把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是−2π.(2)±4π【解析】把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是±4π.(3)2+1+5+4+3+2=17,故A点运动的路程共有34π,+2−1−5+4+3−2=1,故此时点A所表示的数是2π.9. (1)3;5;−4或2【解析】∣1−4∣=3,∣−3−2∣=5,∣a−(−1)∣=3,所以,a+1=3或a+1=−3,解得a=−4或a=2.(2)6【解析】因为表示数a的点位于−4与2之间,所以a+4>0,a−2<0,所以∣a+4∣+∣a−2∣=(a+4)+[−(a−2)]=a+4−a+2=6.(3)12【解析】使得∣x+2∣+∣x−5∣=7的整数点有−2,−1,0,1,2,3,4,5,−2−1+0+1+2+ 3+4+5=12.故这些点表示的数的和是12.(4)1;7【解析】a=1有最小值,最小值=∣1+3∣+∣1−1∣+∣1−4∣=4+0+3=7.10. (1)5【解析】∵B是线段OA的中点,∴BA=12OA=5.(2)6【解析】当t=3时,点P所表示的数是2×3=6.(3)当0≤t≤5时,动点P所表示的数是2t;当5≤t≤10时,动点P所表示的数是20−2t.(4)①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴∣2t−5∣=2,∴2t−5=2或2t−5=−2,解得t=3.5或t=1.5;②当5≤t≤10时,动点P所表示的数是20−2t,∵PB=2,∴∣20−2t−5∣=2,∴20−2t−5=2或20−2t−5=−2,解得t=6.5或t=8.5.综上所述,所求t的值为1.5或3.5或6.5或8.5.11. (1)4;1(2)103或56(3)2.75或9.2512. (1)=;=;>;>;=;=(2)≥(3)x≤0;−6或−413. (1)−1点B位置如图:【解析】点B对应的数是−1.(2)设点P对应的数为p,∵点P在线段BC上,∴PB=p−(−1)=p+1,PC=6−p,∵PB=25PC,∴p+1=25(6−p),∴p=1.设AP中点对应的数为t,则t−(−6)=1−t,∴t=−2.5,∴AP中点对应的数为−2.5.(3)由题意:a+c=0,b=−1,当点Q在点B左侧时,−1−x=2,x=−3,∴a+c100−x2−bx+2=0=0−(−1)×(−3)+2=−1,当点Q在点B左侧时,x−(−1)=2,x=1,∴a+c100−x2−bx+2=0−(−1)×1+2=3.14. (1)1【解析】(6−4)÷2 =2÷2= 1.故点C表示的数是1.(2)5【解析】[6−(−4)]÷2 =10÷2=5(秒).答:当t=5秒时,点P到达点A处.(3)2t−4【解析】点P表示的数是2t−4.(4)1.5秒或3.5【解析】P在点C左边,[1−2−(−4)]÷2=3÷2= 1.5(秒).P在点C右边,[1+2−(−4)]÷2=7÷2= 3.5(秒).答:当t=1.5秒或3.5秒时,线段PC的长为2个单位长度.(5)3秒或113【解析】点P,Q相遇前,依题意有(2+1)t=6−(−4)−1,解得t=3;点P,Q相遇后,依题意有(2+1)t=6−(−4)+1,解得t=113.答:当t=3秒或113秒时,PQ的长为1个单位长度.15. (1)4≤x≤6;8.(2)当x≥−2时,y=∣2x+8∣−4∣x+2∣=−2x,当−4≤x≤−2时,y=∣2x+8∣−4∣x+2∣=6x+16,当x≤−4时,y=∣2x+8∣−4∣x+2∣=2x,所以x=−2时,y有最大值y=4.16. (1)正确【解析】∵当b>a时,b−a的值为线段AB的实际长度.(2)2;3;1000(3)①∵BC=2x+8−(−2)=2x+10,AB=−2−x,又∵BC=4AB,∴2x+10=4(−2−x),解得x=−3,∴点A表示数−3,点C表示数2.②存在.设点D所表示的数为y,则(a)当y<−3时,DA=−3−y,DC=2−y,DB=−2−y,若DA+DC=3DB,则−3−y+2−y=3(−2−y),解得y=−5,满足条件;(b)当−3≤y<−2时,DA=y−(−3)=y+3,DC=2−y,DB=−2−y,若DA+DC=3DB,则y+3+2−y=3(−2−y),解得y=−113<−3,不符合题意;(c)当−2≤y<2时,DA=y−(−3)=y+3,DC=2−y,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+2−y=3(y+2),解得y=−13,满足条件;(d)当y≥2时,DA=y−(−3)=y+3,DC=y−2,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+y−2=3(y+2),解得y=−5,不符合题意.综上可知,存在点D表示的数为−5或−13时满足条件.17. (1)∵a,b是方程∣x+9∣=1的两根(a<b),∴a=−10,b=−8 .∵(c−16)2与∣d−20∣互为相反数,(c−16)2≥0,∣d−20∣≥0,∴c−16=0,d−20=0.∴c=16,d=20 .(2)可知:AC=26,BD=28,AB=2,CD=4.∵A、B两点以每秒6个单位的速度向右匀速运动,C、D两点以每秒2个单位的速度向左匀速运动,∴点A、C相遇时间t=26÷(6+2)=134,点B、D的相遇时间t=28÷(6+2)=72.∵点A、C相遇之后到B、D相遇之前,A、B两点都运动在线段CD上,∴当134<t<72时,A、B两点都运动在线段CD上.(3) 存在时间,使得 BC =4AD .理由:(1) 当 t =72 时,点 B 与点 D 相遇,此时 AD =AB =2,BC =CD =4; 当 A 、 D 相遇时 t =30÷8=154; 当 72<t <154 时,点 A 在线段 CD 上,此时 BC =4+8(t −72)=8t −24,AD =2−8(t −72)=30−8t . 若 BC =4AD ,则 8t −24=4(30−8t ),解得 t =3.6;(2) 当 t =154 时,点 A 与点 D 相遇,此时 BC =CD +AB =6,AD =0; 当 t >154 时,点 A 在 CD 的延长线上,此时 BC =8t −24,AD =8t −30 .若 BC =4AD ,则 8t −24=4(8t −30),解得 t =4.综上所述,t =3.6 或 t =4 时,BC =4AD .18. (1) ∵ 点 A 表示的数为 8,B 在 A 点左边,AB =12,∴ 点 B 表示的数是 8−12=−4.∵ 动点 P 从点 A 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t (t >0)秒, ∴ 点 P 表示的数是 8−3t .(2) 设点 P 运动 x 秒时,与 Q 相距 2 个单位长度.则 AP =3x ,BQ =2x .∵AP +BQ =AB −2,∴3x +2x =10.解得:x =2.∵AP +BQ =AB +2,∴3x +2x =14.解得:x =145.∴ 点 P 运动 2 秒或 145 秒时与点 Q 相距 2 个单位长度.(3) 如图:当 P 在 Q 的左侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 即 MN +PQ =6.如图当 P 在 Q 的右侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 综上,MN +PQ =6.19. (1)(2) 7÷(2−14)=4(秒),4×(12−14)−1=0.答:丙追上甲时,甲乙相距 0 个单位长度.(3) 设 P 点表示的数为 x ,由题意可得 ∣x +2∣+∣x +1∣+∣x −5∣=10.当 x <−2 时,−x −2−x −1−x +5=10.解得 x =−83. 当 −2<x <−1 时,x +2−x −1−x +5=10.解得 x =−4,不属于上述范围(舍).当 −1<x <5 时,x +2+x +1−x +5=10.解得 x =2.当 x >5 时,x +2+x +1+x −5=10.解得 x =4,不属于上述范围(舍).结合数轴,解得 x =−83,2,∴P 点表示的数为 −83 或 2.20. (1) −1(2) −3.5 或 1.5(3) 43 或 2 【解析】提示:①当点 M 和点 N 在点 P 同侧时,因为 PM =PN ,所以点 M 和点 N 重合. ②当点 M 和点 N 在点 P 两侧时,有两种情况.情况 1:如果点 M 在点 N 左侧;情况 2:如果点 M 在点 N 右侧.。
初一数学绝对值难题解析

初一数学绝对值【1 】难题解析绝对值是初一数学的一个主要常识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对根本概念的懂得程度和基赋性质的灵巧应用才能.绝对值有两个意义:(1)代数意义:非负数(包含零)的绝对值是它本身,负数的绝对值是它的相反数.即|a|=a(当a≥0), |a|=-a (当a<0)(2)几何意义:一个数的绝对值等于数轴上暗示它的点到原点的距离.灵巧应用绝对值的基赋性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思虑:|a+b|=|a|+|b|,在什么前提下成立?|a-b|=|a|-|b|,在什么前提下成立?经常应用解题办法:(1)化简绝对值:分类评论辩论思惟(即取绝对值的数为非负数和负数两种情形)(2)应用绝对值的几何意义:数形联合思惟,如绝对值最值问题等.(3)零点分段法:求零点.分段.区段内化简.分解.例题解析:第一类:考核对绝对值代数意义的懂得和分类评论辩论思惟的应用1.在数轴上暗示a.b两个数的点如图所示,并且已知暗示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴a-c要分类评论辩论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2. 设x<-1,化简2-|2-|x-2|| .解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3.设3<a<4,化简|a-3|+|a-6| .解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34. 已知|a-b|=a+b,则以下说法:(1)a必定不是负数;(2)b可能是负数;哪个是准确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b,解得a=0,这时b>0;综上所述,(1)是准确的.第二类:考核对绝对值基赋性质的应用5. 已知2011|x-1|+2012|y+1|=0,求x+y+2012的值?解:∵|x-1|≥0,|y+1|≥0∴2011|x-1|+2012|y+1|≥0又∵已知2011|x-1|+2012|y+1|=0,∴|x-1|=0, |y+1|=0∴x=1,y=-1,原式=1-1+2012=20126.设a.b同时知足:(1)|a-2b|+|b-1|=b-1(2) |a-4|=0那么ab等于若干?解:∵|a-2b|≥0,|b-1|≥0∴|a-2b|+|b-1|=b-1≥0∴(1)式=|a-2b|+b-1=b-1 ,得|a-2b|=0,即a=2b∵ |a-4|=0 ∴a-4=0,a=4∵ a=2b ∴ b=2 ,ab=4×2=87.设a.b.c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0,请化简:|b|-|a+b|-|c-b|+|a-c| .解:∵|a|+a=0,a≠0 ∴a<0∵|ab|=ab≥0 ,b≠0,a<0 ∴b<0,a+b<0∵|c|-c=0,c≠0 ∴c>0 ,c-b>0,a-c<0∴原式=b+(a+b)-(c-b)+c-a=b8.知足|a-b|+ab=1的非负整数(a,b)共有几对?解:∵a,b都长短负整数∴|a-b|也长短负整数,ab也长短负整数∴要知足|a-b|+ab=1,必须|a-b|=1,ab=0 或者|a-b|=0,ab=1分类评论辩论:当|a-b|=1,ab=0时,a=0,b=1 或者a=1,b=0 有两对(a,b)的取值;当|a-b|=0,ab=1时,a=1,b=1有一对(a,b)的取值;综上所述,(a,b)共有3对取值知足题意.9.已知a.b.c.d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值?剖析:此题咋一看无从下手,但是假如把a-b和c-d分离看作一个整体,并且应用绝对值基赋性质:|x-y|≤|x|+|y|即可快速解出.解:设x=a-b,y=c-d,则|a-b-c+d|=|x-y|≤|x|+|y|∵|x|≤9,|y|≤16 ∴|x|+|y|≤25 ,|x-y|≤|x|+|y|≤25∵已知|x-y|=25 ∴|x|=9,|y|=16∴|b-a|-|d-c|=|-x|-|-y|=|x|-|y|=9-16=-7第三类:多个绝对值化简,应用零点分段法,分类评论辩论以上这种分类评论辩论化简办法就叫做零点分段法,其步调是:求零点.分段.区段内化简.分解.依据以上材料解决下列问题:(1)化简:2|x-2|-|x+4|(2)求|x-1|-4|x+1|的最大值.解:(1)令x-2=0,x+4=0,分离求得零点值:x=2,x=-4,分区段评论辩论:当x≤-4时,原式=-2(x-2)+(x+4)=-x+8当-4<x≤2时,原式=-2(x-2)-(x+4)=-3x当x>2时,原式=2(x-2)-(x+4)=x-8综上评论辩论,原式=…(略)(2)应用“零点分段法”将代数式简化,然后在各个取值规模内求出最大值,再加以比较,从中选出最大值.令x-1=0,x+1=0,分离求得零点值:x=1,x=-1,分区段评论辩论:当x≤-1时,原式=-(x-1)+4(x+1)=3x+5 ,当x=-1时,取到最大值等于2;当-1<x≤1时,原式=-(x-1)-4(x+1)=-5x-3,此时无最大值;当x>1时,原式=(x-1)-4(x+1)=-3x+3,此时无最大值.综上评论辩论,当x=-1时,原式可以取到最大值等于2.11.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为若干?解:我们知道,互为相反数的两个数,它们的绝对值相等,应用这条性质,可以把绝对值内带x 的项的符号由负号都变成正号,以便于区段内断定正负关系.即原式=2x+|5x-4|+|3x-1|+4令5x-4=0,3x-1=0,分离求得零点值:x=4/5 , x=1/3,分区段评论辩论:当x≤1/3时,原式=2x-(5x-4)-(3x-1)+4=-6x+9,此时不是恒值;当1/3<x≤4/5时,原式=2x-(5x-4)+(3x-1)+4=7,此时恒为常数7;当x>4/5时,原式=2x+(5x-4)+(3x-1)+4=10x-1,此时也不是恒值.综上所述,若原式恒为常数,则此常数等于7 .12.若|a|=a+1,|x|=2ax,且|x+1|+|x-5|+2|x-m|的最小值是7,则m等于若干?解:∵当a≥0时,|a|=a=a+1,得到0=1抵触∴a<0,|a|=-a=a+1,解得a=-1/2.∵|x|=2ax=-x,即x的绝对值等于它的相反数∴x≤0令x+1=0,x-5=0,x-m=0,分离求得零点值:x=-1,x=5,x=m∵x≤0 ∴要对m进行分类评论辩论,以肯定分段区间:(1)若m≥0,则x取值规模分成x≤-1和-1<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=-1时取到最小值8+2m当-1<x≤0,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m, x=0时取到最小值6+2m所以当m≥0时,最小值是6+2m,令6+2m=7,得m=0.5,相符题意(2)若-1≤m<0,则x取值规模分成x≤-1和-1<x≤m和m<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=-1时取到最小值8+2m, 因为-1≤m<0,所以最小值≥6当-1<x≤m,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m, x=m时取到最小值6所以当-1≤m<0时,最小值是6,和题意不符.(3)若m<-1,则x取值规模分成x≤m和m<x≤-1和-1<x≤0当x≤m,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=m时取到最小值4-2m当m<x≤-1,原式=-(x+1)-(x-5)+2(x-m)=4-2m,这时为恒值4-2m当-1<x≤0,原式=(x+1)-(x-5)+2(x-m)=2x-2m+6,无最小值所以当m<-1时,最小值是4-2m,令4-2m =7,得m=-1.5,相符题意综上所述,m=0.5或-1.5 .第四类:应用绝对值的几何意义解题1.x的绝对值的几何意义是在数轴上暗示x的点到原点的距离,即|x|=|x-0||x-1|的几何意义是在数轴上暗示x的点到暗示1的点的距离,|x+2|的几何意义是在数轴上暗示x的点到暗示-2的点的距离,|a-b|的几何意义是在数轴上暗示a的点到暗示b的点的距离.2.设A和B是数轴上的两个点,X是数轴上一个动点,我们研讨下,当X在什么地位时,X到A点和B点的距离之和最小?很显然,当X点在A点和B点之间时,X点到两个点的距离之和最小,最小值即为A点到B点的距离.当再增长一个C点时,若何求动点X到三个点的距离之和的最小值呢.经由研讨发明,当X点在中央的点即C点时,它到三个点的距离之和最小,最小值也是A 点到B点的距离.持续研讨下去,我们可以得到结论:假如有奇数个点,当动点处在最中央谁人点的地位时,它到所有点的距离之和最小.假如有偶数个点,当动点处在最中央的两个点之间时,它到所有点的距离之和最小.用一句话来记忆,就是奇中偶范.即奇数个点时,取最小值是在最中央的点.偶数个点时,取最小值是在最中央的两个点之间的规模内都可以.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0), |a|=-a (当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2|| 。
解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6| 。
解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b,解得a=0,这时b>0;综上所述,(1)是正确的。
第二类:考察对绝对值基本性质的运用5、已知2011|x-1|+2012|y+1|=0,求x+y+2012的值?解:∵|x-1|≥0,|y+1|≥0∴2011|x-1|+2012|y+1|≥0又∵已知2011|x-1|+2012|y+1|=0,∴|x-1|=0, |y+1|=0∴x=1,y=-1,原式=1-1+2012=20126、设a、b同时满足:(1)|a-2b|+|b-1|=b-1(2) |a-4|=0那么ab等于多少?解:∵|a-2b|≥0,|b-1|≥0∴|a-2b|+|b-1|=b-1≥0∴(1)式=|a-2b|+b-1=b-1 ,得|a-2b|=0,即a=2b∵ |a-4|=0 ∴a-4=0,a=4∵ a=2b ∴ b=2 ,ab=4×2=87、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0,请化简:|b|-|a+b|-|c-b|+|a-c| 。
解:∵|a|+a=0,a≠0 ∴a<0∵|ab|=ab≥0 ,b≠0,a<0 ∴b<0,a+b<0∵|c|-c=0,c≠0 ∴c>0 ,c-b>0,a-c<0∴原式=b+(a+b)-(c-b)+c-a=b8、满足|a-b|+ab=1的非负整数(a,b)共有几对?解:∵a,b都是非负整数∴|a-b|也是非负整数,ab也是非负整数∴要满足|a-b|+ab=1,必须|a-b|=1,ab=0 或者|a-b|=0,ab=1分类讨论:当|a-b|=1,ab=0时,a=0,b=1 或者a=1,b=0 有两对(a,b)的取值;当|a-b|=0,ab=1时,a=1,b=1有一对(a,b)的取值;综上所述,(a,b)共有3对取值满足题意。
9、已知a、b、c、d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值?分析:此题咋一看无从下手,但是如果把a-b和c-d分别看作一个整体,并且运用绝对值基本性质:|x-y|≤|x|+|y|即可快速解出。
解:设x=a-b,y=c-d,则|a-b-c+d|=|x-y|≤|x|+|y|∵|x|≤9,|y|≤16 ∴|x|+|y|≤25 ,|x-y|≤|x|+|y|≤25∵已知|x-y|=25 ∴|x|=9,|y|=16∴|b-a|-|d-c|=|-x|-|-y|=|x|-|y|=9-16=-7第三类:多个绝对值化简,运用零点分段法,分类讨论以上这种分类讨论化简方法就叫做零点分段法,其步骤是:求零点、分段、区段内化简、综合。
根据以上材料解决下列问题:(1)化简:2|x-2|-|x+4|(2)求|x-1|-4|x+1|的最大值。
解:(1)令x-2=0,x+4=0,分别求得零点值:x=2,x=-4,分区段讨论:当x≤-4时,原式=-2(x-2)+(x+4)=-x+8当-4<x≤2时,原式=-2(x-2)-(x+4)=-3x当x>2时,原式=2(x-2)-(x+4)=x-8综上讨论,原式=…(略)(2)使用“零点分段法”将代数式简化,然后在各个取值范围内求出最大值,再加以比较,从中选出最大值。
令x-1=0,x+1=0,分别求得零点值:x=1,x=-1,分区段讨论:当x≤-1时,原式=-(x-1)+4(x+1)=3x+5 ,当x=-1时,取到最大值等于2;当-1<x≤1时,原式=-(x-1)-4(x+1)=-5x-3,此时无最大值;当x>1时,原式=(x-1)-4(x+1)=-3x+3,此时无最大值。
综上讨论,当x=-1时,原式可以取到最大值等于2。
11、若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为多少?解:我们知道,互为相反数的两个数,它们的绝对值相等,利用这条性质,可以把绝对值内带x的项的符号由负号都变成正号,以便于区段内判断正负关系。
即原式=2x+|5x-4|+|3x-1|+4令5x-4=0,3x-1=0,分别求得零点值:x=4/5 , x=1/3,分区段讨论:当x≤1/3时,原式=2x-(5x-4)-(3x-1)+4=-6x+9,此时不是恒值;当1/3<x≤4/5时,原式=2x-(5x-4)+(3x-1)+4=7,此时恒为常数7;当x>4/5时,原式=2x+(5x-4)+(3x-1)+4=10x-1,此时也不是恒值。
综上所述,若原式恒为常数,则此常数等于7 。
12、若|a|=a+1,|x|=2ax,且|x+1|+|x-5|+2|x-m|的最小值是7,则m等于多少?解:∵当a≥0时,|a|=a=a+1,得到0=1矛盾∴a<0,|a|=-a=a+1,解得a=-1/2。
∵|x|=2ax=-x,即x的绝对值等于它的相反数∴x≤0令x+1=0,x-5=0,x-m=0,分别求得零点值:x=-1,x=5,x=m∵x≤0 ∴要对m进行分类讨论,以确定分段区间:(1)若m≥0,则x取值范围分成x≤-1和-1<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m,x=-1时取到最小值8+2m当-1<x≤0,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m,x=0时取到最小值6+2m所以当m≥0时,最小值是6+2m,令6+2m=7,得m=0.5,符合题意(2)若-1≤m<0,则x取值范围分成x≤-1和-1<x≤m和m<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m,x=-1时取到最小值8+2m, 因为-1≤m<0,所以最小值≥6当-1<x≤m,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m,x=m时取到最小值6所以当-1≤m<0时,最小值是6,和题意不符。
(3)若m<-1,则x取值范围分成x≤m和m<x≤-1和-1<x≤0当x≤m,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m,x=m时取到最小值4-2m当m<x≤-1,原式=-(x+1)-(x-5)+2(x-m)=4-2m,这时为恒值4-2m 当-1<x≤0,原式=(x+1)-(x-5)+2(x-m)=2x-2m+6,无最小值所以当m<-1时,最小值是4-2m,令4-2m =7,得m=-1.5,符合题意综上所述,m=0.5或-1.5 。
第四类:运用绝对值的几何意义解题1、x的绝对值的几何意义是在数轴上表示x的点到原点的距离,即|x|=|x-0||x-1|的几何意义是在数轴上表示x的点到表示1的点的距离,|x+2|的几何意义是在数轴上表示x的点到表示-2的点的距离,|a-b|的几何意义是在数轴上表示a的点到表示b的点的距离。
2、设A和B是数轴上的两个点,X是数轴上一个动点,我们研究下,当X在什么位置时,X到A点和B点的距离之和最小?很显然,当X点在A点和B点之间时,X点到两个点的距离之和最小,最小值即为A点到B点的距离。
当再增加一个C点时,如何求动点X到三个点的距离之和的最小值呢。
经过研究发现,当X点在中间的点即C点时,它到三个点的距离之和最小,最小值也是A点到B点的距离。
继续研究下去,我们可以得到结论:如果有奇数个点,当动点处在最中间那个点的位置时,它到所有点的距离之和最小。
如果有偶数个点,当动点处在最中间的两个点之间时,它到所有点的距离之和最小。
用一句话来记忆,就是奇中偶范。
即奇数个点时,取最小值是在最中间的点。
偶数个点时,取最小值是在最中间的两个点之间的范围内都可以。