流体力学与液压传
于治明主编液压传动课件第一章 流体力学基础

静止液体在单位面积上所受的法向力称为静压力。 静止液体在微小面积上所受的内法线方向的法向力, 该点的压力为。 (3-1) 静压力性质: 静压力垂直于承压面,其方向和该面的内法线方向一致。 静止液体内任意一点所受到的压力在各个方向上都相等。
• 压力及其性质: 质量力:力的作用反映在液体内部每一个质点上。如重力、惯性力、离心力等。质量力的大小 和液体的质量成正比。 表面力:力的作用反映在外部表面或内部截面上。表面力的大小和作用面积成正比。如液体边 界上的大气压力,液体内部各部分之间相互作用的压力、内摩擦力等。 单位质量力数值上等于加速度。 单位面积上作用的表面力称为应力。 法向应力和切向应力 液体在单位面积上所受的内法线方向的法向应力称为压力。
压力为p时液体的运动粘度
p
大气压力下液体的运动粘度
a
(1 9)
(5)气泡对粘度的影响
b 0 (1 0.015b)
b为混入空气的体积分数 混入b空气时液体的运动粘度
不含空气时液体的运动粘度
0
b
(三)、选用与维护
1、工作介质的选择 品种、粘度 2、工作介质的使用和维护 1)污染物种类及其危害 固体颗粒、水、空气、化学物质、微生物 污染能量。 2)污染原因 3)污染物等级 指单位体积工作介质中固体颗粒污染物的含 量,即工作介质中固体颗粒的浓度。 ISO4406:1987,1999
一、基本概念
(一)、理想液体、恒定流动和一维流动
既无粘性不可压缩的假想液体,称为理想液体。 液体流动时,液体中任意点处的压力、速度和密度都不随 时间而变化,液体作恒定流动。
只要压力、速度或密度有一个随时间变化,液体作非恒 定流动。当液体整体作线性流动时,称为一维流动。
(二)、流线、流束和通流截面
流体力学与液压传动

流体力学与液压传动流体力学是研究流体静力学和流体动力学的学科,涉及液体和气体在静止和流动状态下的力学行为。
而液压传动则是利用流体进行能量传递和控制的一种技术。
本文将介绍流体力学的基本原理、液压传动的应用及其在工程领域中的意义。
一、流体力学基本原理流体力学主要研究流体的运动规律和压力分布等基本性质。
在流体力学中,流体可以分为不可压缩流体和可压缩流体两类。
不可压缩流体通常指液体,如水、油等;可压缩流体则主要指气体。
在流体力学中,最基本的方程为连续性方程、动量方程和能量方程。
其中,连续性方程描述了流体在运动过程中质量守恒的关系;动量方程描述了流体受到外力作用时的运动规律;能量方程则研究了流体能量的变化。
二、液压传动的应用液压传动利用液体在封闭管路中传递能量,实现机械运动的控制和传递。
液压传动广泛应用于各种机械设备中,如农业机械、工程机械、船舶、飞机等。
液压传动具有传动效率高、可靠性强、运动平稳等优点。
液压传动系统由液压泵、液压阀、液压缸等组成。
通过液压泵将液压油压入系统,并由液压阀进行分配和控制,最终驱动液压缸进行工作。
液压传动通过调节液压阀的开启和关闭,以及控制液压泵的转速来实现对机械设备的精确控制。
三、液压传动在工程领域中的意义液压传动在工程领域中具有广泛的应用价值。
首先,液压传动能够实现大功率输出,满足重载工况下的需求。
其次,液压传动具有可靠性高的特点,适用于各种恶劣的工作环境。
此外,液压传动还具有灵活性强、动作平稳等优点,能够满足复杂工况下的控制要求。
在工程领域中,液压传动广泛应用于起重机械、挖掘机、注塑机、铁路设备等大型机械设备中。
液压传动不仅能够提高机械设备的工作效率,还能够降低设备的能耗和噪声,提升整体的操作性能。
总结:流体力学和液压传动是现代工程领域中重要的学科和技术。
流体力学研究了流体的运动规律和性质,为液压传动提供了理论基础。
液压传动利用流体进行能量传递和控制,应用广泛且具有重要意义。
第二章 液压传动流体力学基础

第12张/共91张
11:55
2.2 液体动力学
实验
第13张/共91张
11:55
2.2 液体动力学
一维流动
当液体整个作线形流动时,称为一维流动;当作平面或 空间流动时,称为二维或三维流动。一维流动最简单,但是 严格意义上的一维流动要求液流截面上各点处的速度矢量完 全相同,这种情况在现实中极为少见。通常把封闭容器内液 体的流动按一维流动处理,再用实验数据来修正其结果,液 压传动中对工作介质流动的分析讨论就是这样进行的。
静止液体中的压力分布
例:如图所示,有一直径为d, 解:对活塞进行受力分析, 活塞受到向下的力: 重量为G的活塞侵在液体中, 并在力F的作用下处于静止状 F下 =F+G 态,若液体的密度为ρ,活 活塞受到向上的力: 塞侵入深度为h,试确定液体 d 2 在测量管内的上升高度x。 F上=g h x 4 F 由于活塞在F作用下受力平衡, d 则:F下=F上,所以:
第16张/共91张 11:55
2.2 液体动力学
通流截面、流量和平均流速
流束中与所有流线正交的截面称为通流截面,如图c中的A面 和B面,通流截面上每点处的流动速度都垂直于这个面。 单位时间内流过某通流截面的液体体积称 为流量,常用q表示 ,即:
q V t
式中
q —流量,在液压传动中流量
常用单位L/min; V —液体的体积; t —流过液体体积V 所需的时间。
1mmHg(毫米汞柱)=1.33×102N/m2
1at(工程大气压,即Kgf/cm2)=1.01972×105帕 1atm(标准大气压)=0.986923×105帕。
第9张/共91张 11:55
2.1 液体静力学
帕斯卡原理
液压传动动力元件的工作原理

液压传动动力元件的工作原理
液压传动是一种广泛应用于工业和机械领域的动力传输方式。
液压传动系统由多个液压元件组成,其中动力元件是其中最重要的部分之一。
动力元件的作用是将液压能转化为机械能,从而实现机械设备的运转。
液压传动动力元件的工作原理可以简单地描述为:当液压系统中的液体被压缩时,它会产生一定的压力,这个压力会被传送到液压元件中,从而产生机械运动。
液压元件的工作原理基于流体力学原理,主要包括以下几个方面:
1. 液体的传递:液压元件通过管道将液体传递到需要机械运动的地方。
在液体传递过程中,需要保持管道内部的压力稳定,以确保液体能够顺畅地流动。
2. 液体的压缩:当液体被泵送到液压元件中时,它会被压缩,产生一定的压力。
这个压力可以用来驱动其他机械部件。
3. 液体的控制:液压元件可以通过控制阀门和调节器来控制液体的流量和压力。
这些控制器可以根据需要进行调整,以实现不同的机械运动。
4. 液体的转换:液压元件可以将液体的能量转换为机械能量。
例如,液压缸可以将液体的压力转换为线性运动,从而驱动其他机械部件。
液压传动动力元件包括多种类型,其中最常见的包括液压泵、液压缸、液压马达、液压阀门等。
这些元件在不同的机械设备中有不同的应用。
总之,液压传动动力元件是实现液压传动系统工作的核心部分。
了解其工作原理对于设计、维护和修理液压传动系统都非常重要。
流体力学与液压传动

流体力学与液压传动
流体力学和液压传动是许多工业领域中至关重要的技术,其用途
涉及到众多的行业,如制造业、航空、机械、铁路等。
它们的原理和
应用原理各不相同,但它们的最终目的都是一样的,即利用流体的动
能来增加机器的性能。
流体力学是研究流体运动的一门学科,其中包括气体和流体的流
动运动,液体的流动运动和流体力学基础理论等。
它研究的内容涉及
流体中的各种物理机制,包括流体的运动、压强、动能等,以及流体
与其他物体间相互作用机理等。
流体力学不仅能为机械设计工程提供
理论依据,还可帮助理解物理现象,并有助于设计特殊形状的流体元件,从而改善机械性能。
液压传动则是依靠液压原理和流体力学来传递动能的技术。
它结
合了机械传动和电子传动的优点,具有体积小巧、传动精度高、动作
迅速、可靠性强等优点,而且可以根据需要实现全电控制或半电控制,适用于需要较大能量和较快动作的产品设备。
液压传动应用越来越广泛,可用于飞机飞行控制装置、火箭发射机构、大型机床、工业机械
等多种领域。
因此,流体力学和液压传动都是工程设计过程中十分重要的技术,它们能够提高机械设备的性能,发挥重要作用于我们的社会经济发展
过程中。
《流体力学与液压传动》 试题库及参考答案

《流体力学与液压传动》 试题库及参考答案一、填空题............................................................................................................- 3 -二、问答题..........................................................................................................- 10 -三、分析题..........................................................................................................- 14 -四、计算题..........................................................................................................- 20 -一、 填空题1.液压系统中的压力取决于,执行元件的运动速度取决于。
(外负载;进入执行元件的流量)2.液压传动装置由、、和四部分组成,其中和为能量转换装置。
(动力元件、执行元件、控制元件、辅助元件;动力元件、执行元件)3.液体体积弹性模量的物理意义为,体积弹性模量越大液体抵抗变形的能力越。
(单位体积相对变化量所需要的压力增量;强)4.液体的粘度随温度的升高而, 其原因是。
(降低, 分子间的内聚力减小(内摩擦力减小))5.液体粘度的因压力的增高而, 其原因是。
(增大,分子间的距离减小,内聚力增大(内摩擦力增大))6.液体的可压缩性随温度的升高而,因压力的增高而。
(增大 ; 降低)7.液体在管道中存在两种流动状态,时粘性力起主导作用,时惯性力起主导作用,液体的流动状态可用来判断。
流体力学与液压传动期末复习试题

⑴求负载和流速
列出液压缸1,2的受力平衡方程式
而
通过液压缸1,2的受力平衡方程式得到FL1和FL2并带入到上式得
流速为
⑵求负载
当时 ,由上述力平衡方程式有
则
4求负载
时,由平衡方程式有
解答:
(a)防止重物下滑。
(b)实现速度切换。
解答:
系统将会卸荷。
解答:
压力高于减压阀的调定压力时,导阀打开,阀口减小,甚至关闭,有少量油液经导阀泄回油箱。
式中,p1=pa(大气压),v1=0,h1=0(取I-I断面为零势能基准面),p2=p,h2=H,v2=v,α1=α2=2(层流), (仅考虑管中的摩擦损失)。则上式化为
(4)分别计算各项
2-13如图所示。直径D=200mm的活塞在泵缸内等速地向上运动,同时油从不变液位的开敞油池被吸入泵缸。吸油管直径d=50mm,沿程阻力系数λ=0.03,各段长度L=4m,每个弯头的局部阻力系数ζ=0.5,突然收缩局部损失系数ζ缩=0.5,突然扩大局部损失系数ζ扩=1,当活塞处于高于油池液面h=2m时,为移动活塞所需的力F=2500N。设油液的空气分离压为0.1×105Pa,密度ρ=900kg/m3,试确定活塞上升的速度,并求活塞以此速度运动时。能够上升到多少高度而不使活塞和油相分离。
解:
静特性曲线方程
实际流量
容积效率
解:
普通连接时,液压缸运动速度为
则
差动连接时进入无杆腔流量Q’’
则
解:
解:
设d1>d2,工作台向左运动的速度为v1,推力为F1;向右运动的速度为v2,推力为F2。
1压力油从A管进入时(B管回油)
2压力油从B管进入时(A管回油)
3两柱塞缸同时进油时,形成差动连接,设其速度为V3(方向向左),推力为F3(方向向左)
流体力学与液压传动

流体力学与液压传动1液体传动的工作原理是帕斯卡定律,即密封容积中的液体既可以传递力,也可以传递运动。
2 液压管路中的压力损失可以分为两种,一种是沿程压力损失,一种是局部压力损失。
3 液体的流态可分为层流和紊流,判别流态的准则是雷诺数。
4 在液压系统中,由于某些原因使液体压力急剧上升,形成很高的压力峰值,这种现象称为液压冲击。
+5 齿轮泵特性,结构简单,体积小,重量轻,工作可靠,成本低对液压油污染不太敏感,便于维修利用。
6 单作用叶片泵的工作原理:定子不动,叶片在转子内往复运动相邻两叶片形成密封O1 O2左半吸油,右半压油。
双作用叶片泵的工作原理:转子与定子同心,转子旋转时叶片靠在定子内,当r向R移动时吸油,当R-r时排出。
单作用叶片泵旋转一周完成吸,压油,双作用叶片泵旋转一周完成两次吸丶压油。
7 液压传动的密封方式:O型密封圈丶普通Y型密封圈丶西姆科密封圈丶新型同轴密封圈8 直动溢流阀9液体抑制阀类型:压力控制阀(溢流阀减压阀顺序阀平衡阀)流量控制阀(节流阀调速阀同步阀)方向控制阀(单向阀换向阀)10调速回路类型:节流调速回路(进口节流式,出口节流式,劳路节流式)丶容积调速回路丶容积节流调速回路(变量与定量马达,定量泵与变量马达,变量泵与变量马达,变量泵-液压缸)丶速度换接回路11粘性液体在外力作用下,分子间的相互运动产生一种内摩擦力大小用粘度来度量,温度高,粘度小,压力大,粘度大。
12减压阀原理:串联减压式压力负反馈①定值减压阀,出口压力恒定②定差减压阀,出口压力差大小恒定1314滤油器选用①有足够的过滤精度,滤芯中颗粒越小,精度越高②有足够的通油能力③滤芯便于清洗或更换④滤芯应有足够强度,不会因压力而损坏。
15液压泵和马达:都是靠密封的工作空间的容积变化进行工作。
液压泵将机械能→液压能为系统提供压力油以压力,流量形式传输到系统中,是系统动力源液压马达将液压能→机械能输出转矩转速16 17我国采用的相对粘度是恩氏黏度,他是用恩氏粘度计测量的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南科技大学试题单
考试科目流体力学与液压传课程代码命题人张俊俊、朱建公学院制造学院专业机200101–200110 学号共2页第 1
图1 图2
图3 图4
图5
南科技大学试题单答案
考试科目流体力学与液压传课程代码命题人张俊俊、朱建公
学院制造学院专业机200101–200110 学号共2页第 1 页
一问答题:1、液压元件使用灵活方便、体积小重量轻、反应速度快、操纵方便可实现无级调速、能自动实现过载保护、易实现自动控制。
缺点是:不能得到严格的传动比、效率低、故障不易查找。
2、雷诺数Re=ϖd/ς作用:判断液体流动的状态,当雷诺数小于临界雷诺数为层流当雷诺数大于临界雷诺数为紊流
3液体在单位速度梯度下流动时,液层间单位面积上产生的内摩擦力。
4、换向阀阀芯的工作位置数叫位,换向阀与系统相连的油口数叫通。
5、沿程压力损失和局部压力损失。
沿程压力损失受液体的粘性、管长、管径、流速
等的影响。
局部压力损失受截面形状变化、弯管接头、阀口、流速等的影响。
6、不考虑泄露的情况下,泵每转一弧度所能排出液体的体积。
容积效率=实际流量与理论流量的比。
7、滑阀在中位时各油口的连接方式称中位机能。
例O型中位机能在:各油口关闭,系统保压、缸锁紧。
8、以下4部分组成动力元件:把机械能转化成液压能。
执行元件:把液压能转化成机械能。
控制元件实现对执行元件印度速度、方向、作用力等的控制。
辅助元件:保证系统正常工作。
二、1、泵的工作压力P=0
2、能实现3级调压, 各溢流阀的调整压力应满足Py1> Py2 >Py3
3、压油管: 速度V1=952*0.2/302=2m/s
雷诺数Re=2*30*10-3/0.3*10-4=2000<2320 为层流λ=64/ Re=0.032
压力损失ΔP1 =(0.032*30/0.03+0.5+0.29)900*22/2+0.2=0.059MPa 回油管: 速度V2=902*0.2/302=1.8m/s
雷诺数Re=1.8*30*10-3/0.3*10-4=1800<2320 为层流λ=64/ Re=0.032
压力损失ΔP2 =(0.032*32/0.03+0.1+0.29+0.29)900*1.82/2+0.1=0.05MPa
泵的出口压力P =(ΔP2*π902/4)/ π952/4+F/π952/4+ΔP1=1.533 MPa
4、(1)P=2000/100+3=23Kgf/cm2 (2)速度变快(3)不变
三、
1YA 2YA 3YA 4YA
快进+———
工进+—+—
快退—+——
停止、卸荷———+
特点:先导型溢流阀卸荷回路卸荷压力小冲击小,回油节流调速回路速度平稳性好
发热、泄漏节流调速影响小,用三位四通电磁换向阀易实现自动控制。