一阶巴特沃斯低通滤波器电路图

合集下载

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

各种滤波器及其典型电路

各种滤波器及其典型电路

第一章滤波器1.1 滤波器的基本知识1、滤波器的基本特性定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。

功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。

类型:按处理信号形式分:模拟滤波器和数字滤波器。

按功能分:低通、高通、带通、带阻、带通。

按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器按传递函数的微分方程阶数分:一阶、二阶、…高阶。

如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线.2、模拟滤波器的传递函数与频率特性(一)模拟滤波器的传递函数模拟滤波电路的特性可由传递函数来描述。

传递函数是输出与输入信号电压或电流拉氏变换之比。

经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。

这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。

(二)模拟滤波器的频率特性模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。

若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。

频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性(三)滤波器的主要特性指标1、特征频率:(1)通带截止频f p=wp/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

(2)阻带截止频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

(3)转折频率f c=wc/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

低通滤波器实验报告

低通滤波器实验报告

(科信学院)信息与电气工程学院电子电路仿真及设计CDIO三级项目设计说明书(2012/2013学年第二学期)题目: ____低通滤波器设计____ _____ _____ _专业班级:通信工程学生姓名:学号:指导教师:设计周数:2周2013年7月5日题目: ____低通滤波器设计____ _____ _____ _ (1)第一章、电源的设计 (2)1.1实验原理: (2)1.1.1设计原理连接图: (2)1. 2电路图 (5)第二章、振荡器的设计 (7)2.1 实验原理 (7)2.1.1 (7)2.1.2定性分析 (7)2.1.3定量分析 (8)2.2电路参数确定 (10)2.2.1确定R、C值 (10)2.2.2 电路图 (10)第三章、低通滤波器的设计 (12)3.1芯片介绍 (12)3.2巴特沃斯滤波器简介 (13)3.2.1滤波器简介 (13)3.2.2巴特沃斯滤波器的产生 (13)3.2.3常用滤波器的性能指标 (14)3.2.4实际滤波器的频率特性 (15)3.3设计方案 (17)3.3.1系统方案框图 (17)3.3.2元件参数选择 (18)3.4结果分析 (20)3.5误差分析 (23)第四章、课设总结 (24)第一章、电源的设计1.1实验原理:1.1.1设计原理连接图:整体电路由以下四部分构成:电源变压器:将交流电网电压U1变为合适的交流电压U2。

整流电路:将交流电压U2变为脉动的直流电压U3。

滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。

稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。

1)变压器变压220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。

2)整流电路桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。

见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--s a s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c ccc2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H p Na归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩs p a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW

0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

一阶巴特沃斯低通滤波器公式

一阶巴特沃斯低通滤波器公式

一阶巴特沃斯低通滤波器公式巴特沃斯低通滤波器是一种常见的信号处理工具,用于将输入信号中的高频成分滤除,只保留低频成分。

其中,一阶巴特沃斯低通滤波器是一种简单的滤波器类型,它可以通过一个公式来表示。

一阶巴特沃斯低通滤波器的公式如下:H(s) = 1 / (s + ω_c)其中,H(s)表示传输函数,s表示复平面上的频率变量,ω_c表示截止频率。

传输函数是描述滤波器输入与输出之间关系的数学表达式。

在这个公式中,s可以用复数形式表示,即s = σ + jω,其中σ是实部,ω是虚部。

复平面上的频率变量可以用来描述滤波器的频率响应特性。

截止频率ω_c是指滤波器的输出信号幅度下降到输入信号幅度的1/sqrt(2)倍时的频率。

一阶巴特沃斯低通滤波器是一种一阶无限脉冲响应(IIR)滤波器,因此它具有无限长的冲激响应。

这意味着滤波器的输出取决于输入信号的当前和过去的值。

一阶巴特沃斯低通滤波器的特点是具有较为平滑的频率响应曲线,对于信号中的高频成分有较好的抑制效果。

通过调整截止频率ω_c的值,可以改变滤波器的频率响应特性。

当ω_c较大时,滤波器的截止频率较高,会有较好的高频抑制效果;当ω_c较小时,滤波器的截止频率较低,会有较好的低频保留效果。

一阶巴特沃斯低通滤波器公式的应用十分广泛。

例如,在音频处理领域,巴特沃斯低通滤波器可以用于去除音频信号中的杂音和噪声,提高音质;在图像处理领域,巴特沃斯低通滤波器可以用于图像平滑处理,去除图像中的高频噪点,提高图像清晰度。

除了一阶巴特沃斯低通滤波器公式,还有其他类型的巴特沃斯滤波器公式,如二阶、三阶等。

这些公式可以根据滤波器的阶数和特性来选择和设计合适的滤波器。

一阶巴特沃斯低通滤波器公式是描述一种常见滤波器的数学表达式。

通过调整截止频率,可以改变滤波器的频率响应特性,从而实现对信号的滤波和处理。

在实际应用中,巴特沃斯低通滤波器广泛应用于音频处理、图像处理等领域,起到了重要的作用。

巴特沃斯滤波器

巴特沃斯滤波器

巴特沃斯滤波器滤波器的作用顾名思义就是过滤掉不需要的信号,它可以将有用的信号与噪声分离,提高信号的抗干扰性及信噪比,滤掉不感兴趣的频率成分等。

巴特沃斯滤波器是三大原型模拟低通滤波器之一,今天小编要介绍的就是巴特沃斯滤波器。

巴特沃斯滤波器电路一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。

二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。

巴特沃斯滤波器原理巴特沃斯型滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的所有电容元件值来实现的。

巴特沃斯低通滤波器简介D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。

随着次数的增加,振铃现象会越来越明显。

巴特沃斯低通滤波器原理图图3二阶巴特沃斯低通滤波器原理图基于以上对有源一阶RC 低通滤波器、积分器以及两者之间的区别于联系的分析,在此给出阶巴特沃斯低通滤波器的原理图如下图3 所示:根据巴特沃斯-阶低通滤波器的原理图可知,在该滤波电路中R和C,构成低通级,R3和G构成积分环节,这两级电路同时表现出低通特性。

巴特沃斯滤波器优点巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐渐减少,趋向负无穷大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶巴特沃斯低通滤波器电路图
图1. 一阶巴特沃斯低通滤波器电路图
图1是一由运放741或351组成的一阶有源巴特沃斯低通滤波器电路图。

截止频率fc = 1/{2π(RC),增益Gp = 1 + (RF/R1).
The circuit shown in Figure 1 is a first-order Butterworth low-pass filter.
A low-pass filter is a circuit that blocks signals with frequencies greater than a cut-off frequency fc. The circuit in Figure 1 uses an op-amp configured as a non-inverting amplifier, with an RC circuit at the non-inverting input to do the filtering of the high-frequency signals. The cut-off frequency fc of this circuit is determined by R and C, i.e., fc = 1/{2π(RC)}.
The pass-band gain Gp of this filter is given by: Gp = 1 + (RF/R1). Thus, if the frequency f of the input s ignal is lower than fc, Vo ≈ Gp x Vin. If f = fc, Vo ≈ 0.707 Gp x Vin. If f > fc, Vo < Gp x Vin.
图2. 二阶巴特沃斯低通滤波器电路图
图2是一由运放741或351组成的二阶有源巴特沃斯低通滤波器电路图。

截止频率fc = 1/{2π x sqrt(R2R3C2C3)},增益Vo/Vin = (1+RF/R1).
As the frequency of the input signal goes higher than fc, the gain of the first-order Butterworth
low-pass filter in Figure 1 decreases at a rate of -20 dB/decade. If one desires a better low-pass frequency response than this, the second-order Butterworth low-pass filter in Figure 2 can be used. This circuit exhibits a -40 dB/decade roll-off at f>fc, wherein fc = 1/{2π x sqrt(R2R3C2C3)}. Also, for this circuit, magnitude of Vo/Vin = (1+RF/R1)/(sqrt(1+(f/fc)4)).。

相关文档
最新文档