低通滤波器电路设计与实现

合集下载

基于TMS320F2812截止频率为2kHz低通滤波的设计与实现

基于TMS320F2812截止频率为2kHz低通滤波的设计与实现

截止频率为2KHz的低通滤波器设计实现滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。

对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

滤波器主要参数如下:中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

数字滤波器按频率特性划分为低通、高通、带通、带阻、全通等类型,根据其单位冲激响应函数的时域特性可分为无限冲激响应( IIR) 滤波器和有限冲激响应滤( FIR) 波器。

有限长单位冲击响应( FIR) 数字滤波器可以做成具有严格的线性相位,同时又具有任意的幅度特性。

此外,FIR 滤波器的单位抽样响应是有限长的,因而滤波器一定是稳定的,只要经过一定的延时,任何非因果有限长序列都能变成因果有限长序列,因而总是能用因果系统实现。

MATLAB 在数字信号处理方面的应用功能。

目前FIR滤波器的实现方法大致可分为三种:利用单片通用数字滤波器集成电路、DSP器件或者可编程逻辑器件实现。

低通滤波器电路设计与实现

低通滤波器电路设计与实现

低通滤波器电路设计与实现一般来说,低通滤波器可以分为无源滤波器和有源滤波器两种。

无源滤波器是由被动元件(如电阻、电容、电感)构成的电路,直接利用被动元件的特性去除高频信号。

有源滤波器则在无源滤波器的基础上加入了主动元件(如运算放大器),增强了滤波器的性能和稳定性。

下面我们以RC无源低通滤波器为例,详细介绍低通滤波器的设计与实现。

RC无源低通滤波器是一种常见的一阶滤波器,由一个电阻R和一个电容C组成。

其基本原理是利用电容的电压延迟特性和电阻的阻性特性来实现滤波的目的。

首先,在设计RC无源低通滤波器时,首先需要确定滤波器的截止频率。

截止频率是指信号通过低通滤波器后,其幅频特性下降到-3dB时的频率。

通常情况下,截止频率可根据应用需求确定。

接下来,我们可以根据截止频率来选择合适的电容C和电阻R的数值。

根据RC滤波器的截止频率公式fc=1/(2πRC),可以得知,电容和电阻的数值越大,截止频率越低。

因此,在选择电容和电阻时,需要根据截止频率的要求来确定。

例如,假设我们要设计一个截止频率为1kHz的RC无源低通滤波器。

为了简化计算,假设我们选择电容为1μF,求解电阻的数值。

根据截止频率公式fc=1/(2πRC),我们可以得到R=1/(2πfc*C)。

代入数值,可得R=1/(2π*1000*1*10^-6)=159.2Ω。

因此,我们可以选择最接近该数值的标准电阻值,如160Ω。

在确定好电容和电阻的数值后,我们可以按照如下的图示,将它们组装成一个低通滤波器电路。

```---R------C---```在这个电路中,信号通过电容C后,会在电阻R上形成输出电压。

由于电容对高频信号的通过能力较差,高频成分将被滤除。

而对于低频信号,电容的阻抗相对较低,可以使其更容易通过。

因此,该电路实现了低通滤波的功能。

需要注意的是,实际电路中可能会存在元件的误差、电路的非理想性等因素,这些都可能会对滤波器的性能产生影响。

因此,在设计和实现低通滤波器时,需要对元件进行精确的选取和调试,并结合实际情况进行性能的评估和优化。

低通滤波器的设计与实现

低通滤波器的设计与实现

低通滤波器的设计与实现在信号处理和通信系统中,滤波器是一种重要的工具,用于调整信号的频率分量以满足特定的需求。

低通滤波器是一种常见的滤波器类型,它能够通过去除高于截止频率的信号分量,使得低频信号得以通过。

本文将探讨低通滤波器的设计原理和实现方法。

一、低通滤波器的设计原理低通滤波器的设计基于滤波器的频率响应特性,通过选择合适的滤波器参数来实现对信号频谱的调整。

常见的低通滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。

1. 巴特沃斯滤波器巴特沃斯滤波器是一种常见的低通滤波器,具有平坦的幅频特性,在通带内没有波纹。

其特点是递归性质,可以通过级联一阶巴特沃斯滤波器得到高阶滤波器。

巴特沃斯滤波器的设计需要确定截止频率和阶数两个参数。

截止频率确定了滤波器的频率范围,阶数决定了滤波器的陡峭程度。

常用的巴特沃斯滤波器设计方法有极点分布法和频率转换法。

2. 切比雪夫滤波器切比雪夫滤波器是一种具有优异滚降特性的低通滤波器,可以实现更陡峭的截止特性。

与巴特沃斯滤波器相比,切比雪夫滤波器在通带内存在波纹。

切比雪夫滤波器的设计需要确定截止频率、最大允许通带波纹和阶数三个参数。

最大允许通带波纹决定了滤波器的陡峭程度。

常用的切比雪夫滤波器设计方法有递归法和非递归法。

3. 椭圆滤波器椭圆滤波器是一种折衷设计,可以实现更陡峭的截止特性和更窄的过渡带宽度。

与切比雪夫滤波器相比,椭圆滤波器在通带内和阻带内都存在波纹。

椭圆滤波器的设计需要确定截止频率、最大允许通带和阻带波纹、过渡带宽和阶数五个参数。

最大允许通带和阻带波纹决定了滤波器的陡峭程度,过渡带宽决定了滤波器的频率选择性。

常用的椭圆滤波器设计方法有变换域设计法和模拟滤波器转换法。

二、低通滤波器的实现方法低通滤波器的实现方法多种多样,常见的包括模拟滤波器和数字滤波器两类。

1. 模拟滤波器模拟滤波器是基于模拟电路实现的滤波器,其输入和输出信号都是连续的模拟信号。

常见的模拟滤波器包括电容滤波器、电感滤波器和LC滤波器。

二阶有源低通滤波电路的设计与分析

二阶有源低通滤波电路的设计与分析

二阶有源低通滤波电路的设计与分析有源滤波电路是一种灵活、可靠和性能卓越的滤波器,广泛用于通信、控制和测量等领域。

本文介绍了实现二阶有源低通滤波器的基本原理,并通过计算机仿真分析了设计过程中遇到的一些问题。

一、二阶有源低通滤波器原理有源低通滤波器是一种混合型滤波器,它具有电容和电感耦合之间的耦合,从而实现了低通特性。

其基本原理是,将输入信号分别经过两个放大器,然后将放大器的输出信号反馈到电容的两个端,进而形成一个闭环系统,以构成一个连续反馈低通滤波器,达到滤波的目的。

二、有源低通滤波器的设计有源低通滤波器的设计有三个要考虑的重要参数,包括滤波器的频率特性,输入阻抗和输出阻抗。

1.滤波器频率特性:有源低通滤波器的基本频率特性可以使用Bessel函数表示。

它的特性截止频率可以用“截止频率Hz”表示。

同时,有源低通滤波器也具有频带宽和延迟特性,可以用“频带宽Hz”和“延迟时间ms”来表示。

2.输入阻抗:有源低通滤波器的输入阻抗为电子放大器的输入阻抗,由电子放大器的输入元件的参数决定,一般是50欧姆或大于50欧姆的阻抗。

3.输出阻抗:有源低通滤波器的输出阻抗取决于电子放大器的输出元件的参数,输出阻抗一般为几千欧姆以上。

三、计算机仿真分析由于有源低通滤波器的设计过程非常复杂,需要考虑很多参数,因此通常采用计算机仿真技术进行分析研究,以便验证设计方案的正确性。

在计算机仿真的分析过程中,首先要确定滤波器的输入信号的频率、幅度和相位,并计算出滤波器的输出信号特性,如频率、幅度和相位等,然后将实验结果与理论预测结果进行对比,以验证滤波器的设计方案是否正确。

四、结论有源低通滤波器是一种灵活、可靠和性能卓越的滤波器,它具有良好的性能特性,广泛应用于通信、控制和测量等领域。

其设计方案中,需要考虑多个参数,使用计算机仿真技术可以有效验证设计的正确性,也可以大大提高滤波器的性能。

无源低通滤波器的设计与仿真解析

无源低通滤波器的设计与仿真解析

无源低通滤波器的设计与仿真解析1.无源低通滤波器的基本原理-RC低通滤波器:RC电路由一个电阻R和一个电容C组成,输入信号通过电容进入电路,通过电阻输出。

该电路对高频信号的传递具有阻碍作用,使高频信号通过电容时被短路,从而被滤除。

-RLC低通滤波器:RLC电路由一个电阻R、一个电感L和一个电容C组成,输入信号通过电容进入电路,通过电感和电阻输出。

该电路除了对高频信号的阻碍作用外,还可以通过电感的电流变化来抵消与电阻上产生的电势降。

2.无源低通滤波器的设计步骤- 确定所需的截止频率(Cut-off frequency):截止频率是滤波器的重要参数,决定了滤波器对输入信号的滤波效果。

根据所需的滤波效果,选择适当的截止频率。

-计算电阻、电容和电感的数值:根据所选的截止频率和电压源的数值,使用以下公式计算电阻、电容和电感的数值:- RC低通滤波器:R = 1 / (2πfc),C = 1/ (2πfR)- RLC低通滤波器:R = 1 / (2πfc),L = R / (2πfQ),C = 1 / (2πfR)其中,f为截止频率,c为电容,l为电感,Q为无损品质因数。

-选择合适的电阻、电容和电感的数值:根据所计算出的数值,选择能满足要求的最接近的标准数值。

-进行电路连接:根据所选择的电阻、电容和电感的数值,将它们连接成相应的电路。

3.无源低通滤波器的仿真解析- 使用软件进行仿真:使用一些电子电路仿真软件如Multisim、PSpice等,将设计好的低通滤波器电路进行仿真。

-输入信号:选择一个合适的输入信号作为仿真的输入,例如正弦波、方波等。

-输出信号:观察滤波器电路的输出信号,并与输入信号进行对比分析,判断滤波器对输入信号的滤波效果。

-优化设计:根据仿真结果,可以对电阻、电容和电感的数值进行微调,以达到更好的滤波效果。

4.总结通过设计和仿真无源低通滤波器,我们可以滤除高频信号,保留低频信号。

设计无源低通滤波器的步骤包括确定截止频率、计算电阻、电容和电感的数值、选择标准数值和进行电路连接。

低通滤波器的设计与优化

低通滤波器的设计与优化

低通滤波器的设计与优化低通滤波器是一种能够将高频信号削弱而保留低频信号的电子设备。

在信号处理和通信系统中,低通滤波器被广泛应用于去除噪声、降低信号失真以及频率分析等领域。

本文将介绍低通滤波器的设计原理、常见的设计方法以及优化技术。

一、低通滤波器的设计原理低通滤波器的设计原理基于信号的频率特性。

它能够通过设置一个截止频率,将高于该频率的信号滤除。

截止频率是指滤波器对信号进行衰减的临界频率。

低于截止频率的信号成为通过信号,而高于截止频率的信号则被滤除。

二、常见的低通滤波器设计方法1. RC低通滤波器设计方法RC低通滤波器是一种简单且常用的低通滤波器。

它由一个电阻(R)和一个电容(C)组成。

该滤波器的截止频率(fc)可以通过选择合适的电阻和电容值来实现。

一般情况下,截止频率与电容和电阻的乘积成反比。

因此,可以通过调整电容和电阻的比值来实现滤波器的截止频率。

2. 无源滤波器设计方法无源滤波器是一种只由被动元件(如电阻、电容、电感)构成的滤波器。

常见的无源滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

这些滤波器可以通过调节元件的数值和结构来实现不同的频率响应。

三、低通滤波器的优化技术1. 频率响应优化频率响应是指滤波器在不同频率下的响应特性。

要优化低通滤波器的频率响应,可以通过调整滤波器的阶数、元件数值以及滤波器结构等方式来实现。

同时,利用计算机仿真工具进行频率响应分析和优化也是一种常用的方法。

2. 抗混叠设计在使用模拟信号进行数字化处理时,会出现混叠现象。

抗混叠设计是指优化低通滤波器的频率特性,以确保信号在进行采样和重建时不会出现混叠。

其中,选择合适的截止频率和滤波器响应是关键。

3. 噪声优化在实际应用中,低通滤波器常常用于去除信号中的噪声。

优化低通滤波器的噪声特性可以通过选择低噪声元件、优化电路布局以及增加可调节的增益控制等方式来实现。

四、低通滤波器的应用领域低通滤波器在各个领域都有广泛的应用。

lc低通滤波器设计原理

lc低通滤波器设计原理

lc低通滤波器设计原理
LC低通滤波器是一种常用于电子电路中的滤波器,其设计原理可以简单描述如下:
1.基本原理
LC低通滤波器的基本原理是利用电感和电容的特性,将高频信号滤除,只传递低频信号。

电感具有阻抗增大,对高频信号有良好的衰减特性;电容则具有阻抗减小,对低频信号的通过有良好的传输特性。

因此,通过电感和电容的串联或并联组合,可以实现对不同频率信号的滤波作用。

2.滤波器参数
LC低通滤波器设计中需要确定的参数有截止频率和阻抗匹配。

截止频率决定了滤波器的频率响应,一般是指在该频率以下的信号可以通过,而在该频率以上的信号则被滤除。

阻抗匹配是指将滤波器的输入和输出阻抗调整为与电路其他部分相匹配,以最大限度地保留信号的能量。

3.设计方法
一般来说,LC低通滤波器的设计可以采用以下步骤:(1)确定截止频率fc:根据所需滤波效果和电路实际情况,选择合适的截止频率fc。

(2)计算电容值C:根据截止频率和电感值,计算所
需的电容值C。

(3)计算电感值L:根据电容值和截止频率,计算所需的电感值L。

(4)阻抗匹配:根据电路其他部分的阻抗,调整滤波器的输入和输出阻抗,以确保最大限度地保留信号能量。

总之,LC低通滤波器是一种常用的滤波器,其设计原理主要是利用电感和电容的特性实现对不同频率信号的滤波作用。

在设计时需要确定截止频率和阻抗匹配等参数,以达到所需的滤波效果。

低通滤波器的设计与仿真

低通滤波器的设计与仿真

低通滤波器的设计与仿真设计低通滤波器需要考虑以下几个方面:1. 频率响应:低通滤波器的频率响应应该呈现出降低高频分量的特性。

常见的频率响应形状包括巴特沃斯型(Butterworth)、切比雪夫型(Chebyshev)以及椭圆型(Elliptic)等。

2.通带衰减和阻带衰减:通带衰减是指滤波器在低频范围内将信号传递的衰减程度,而阻带衰减则是指滤波器将高频信号抑制的程度。

一个优秀的低通滤波器要能够实现较低的通带衰减和较高的阻带衰减。

3.相位响应:滤波器的相位响应与滤波后的信号延迟有关。

在一些应用中,信号的相位延迟会对系统的性能产生影响,因此需要对低通滤波器的相位响应进行合理设计。

设计滤波器的一种方法是使用模拟滤波器设计技术。

在模拟滤波器设计中,可以使用模拟滤波器的传递函数、阶数以及频率响应形状等参数进行设计。

根据设计的参数,可以利用电路设计工具进行滤波器的仿真和优化。

最终得到满足要求的模拟滤波器电路。

另一种方法是使用数字滤波器设计技术。

数字滤波器是通过数字信号处理的方法实现滤波效果的。

在设计数字滤波器时,需要选择适当的滤波器类型(如FIR滤波器或IIR滤波器)、阶数、滤波器系数等参数。

可以使用各种数学算法和信号处理工具进行仿真和优化,最终得到满足要求的数字滤波器。

在设计和仿真低通滤波器时,常用的工具有MATLAB、Simulink、SPICE等。

这些工具提供了丰富的滤波器设计函数和可视化界面,可以方便地进行设计和仿真。

在进行滤波器设计和仿真过程中,需要注意选择适当的滤波器类型和参数。

此外,还需要根据应用需求进行滤波器的性能优化和调整。

通过设计与仿真,可以得到满足特定应用需求的低通滤波器,提高系统的性能和信号质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低通滤波器电路设计与实现摘要滤波器是一种二端口网络。

它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦。

目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高,所以需用大量的滤波器。

再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。

低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。

理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。

有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。

滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。

根据指标,本次设计选用有源二阶巴特沃斯低通滤波器可达到本次设计要求的指标,可调增益部分通过电压跟随器和反相放大器来实现可调增益。

关键词:低通滤波器,巴特沃斯滤波器,频率响应Low-pass filter circuit design and AchieveAuthor: Shang ShiweiTutor: Song JiayouAbstractFilter is a kind of two-port network. It has the characteristics of frequency choice, that can make some frequency pass, but to other frequency is to stop, because now in radar, microwave, communication, and other departments, more work frequency is becoming more and more common, the requirements of the frequency of space also increase; So need a lot of filter. Moreover, the application of microwave solid device for the development of the filter can boost, as parameters amplifiers, microwave solid times frequency device, microwave solid mixers, kind of device is working frequency, need corresponding filter. Low pass filter is a through the low frequency signal and attenuation or inhibit the high frequency signal components. Ideal filter circuit frequency response in bandpass should have certain amplitude and linear phase shift, and in which the amplitude with inner resistance should be zero. Active filter is to point to by amplifying circuit and network structure of RC filter circuit, it is actually a particular frequency response of the amplifier. The order number of filter, the higher amplitude frequency characteristics of the attenuation rate faster, but RC network's day, more component parameters are calculated the more detailed, the more difficult the commissioning of the circuit. According to the index, the design choose active second order bart wo low-pass filter can achieve the design requirements of the index, adjustable gain through the voltage of follow and reversed-phase amplifier to achieve adjustable gain.Key words:Low-pass filter,Butterworth filter,Frequency response目录1 引言 (4)1.1本课题的研究背景、发展及意义 (5)1.2本次设计的基本内容 (6)2 基本理论介绍 (6)2.1滤波器分类及特性 (6)2.2低通滤波器的作用和结构 (8)2.2.1 低通滤波器的主要技术指标 (8)2.2.2 简单一阶低通有源滤波器 (9)2.2.3 简单二阶低通有源滤波器 (10)3 方案设计与仿真 (11)3.1设计思路 (11)3.2低通滤波器理解分析与计算 (11)3.3电路仿真及结果 (14)3.3.1 仿真软件简介 (14)3.3.2 仿真电路及结果 (15)结论 (27)致谢 (28)参考文献 .................................................................................................... 错误!未定义书签。

1 引言滤波器是一种能使有用信号通过,滤除信号中的无用频率,即抑制无用信号的电子装置。

有源滤波器实际上是一种具有特定频率响应的放大器。

低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。

理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。

但实际滤波器不能达到理想要求。

为了寻找最佳的近似理想特性,本文主要着眼于幅频响应,而不考虑相频响应。

一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。

滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。

任何高阶滤波器都可由一阶和二阶滤波器级联而成。

对于n为偶数的高阶滤波器,可以由n/2节二阶滤波器级联而成;而n为奇数的高阶滤波器可以由(n-1)/2节二阶滤波器和一节一阶滤波器级联而成,因此一阶滤波器和二阶滤波器是高阶滤波器的基础。

1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。

20世纪50年代无源滤波器日趋成熟。

自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。

导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展,到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。

80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。

90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。

当然,对滤波器本身的研究仍在不断进行。

我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。

经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。

我国现有滤波器的种类和所覆盖的频率已基本上满足现有各种电信设备。

从整体而言,我国有源滤波器发展比无源滤波器缓慢,尚未大量生产和应用。

从下面的生产应用比例可以看出我国各类滤波器的应用情况:LC滤波器占50%;晶体滤波器占20%;机械滤波器占15%;陶瓷和声表面滤波器各占1%;其余各类滤波器共占13%。

从这些应用比例来看,我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。

随着电子工业的发展,对滤波器的性能要求越来越高,功能也越来越多,并且要求它们向集成方向发展。

我国滤波器研制和生产与上述要求相差甚远,为缩短这个差距,电子工程和科技人员负有重大的历史责任。

无源滤波器由无源元件(电阻、电容、电感)组成,具有高频性能好、电路简单、功能可靠、无需直流供电,能够输出高压大电流等优点。

但无源滤波器带负载能力较差,不但通带放大倍数会因负载电阻而减小,而且通带截至频率也会因负载电阻而增大。

同时无源滤波器的体积和重量也比较大,其电感还会引起电磁干扰。

有源滤波器由电阻、电容和有源器件(如集成运放)组成,具有电路体积小重量轻、通带内信号可放大、精度高、性能稳定、易于调试、负载效应小、可多级相连构成高阶滤波器等诸多优点。

但由于集成运放所限,有源滤波电路不适于高电压大电流负载,而只适用于信号处理。

根据题目具体要求,系统只需对弱电信号进行处理,且对于信号处理的精确性要求较为苛刻,因此采用有源滤波器更为适合。

有源滤波器实际上是一种具有特定频率响应的放大器。

它是在运算放大器的基础上增加一些电阻、电容等无源元件而构成的。

1.1本课题的研究背景、发展及意义滤波器技术在计算机测控技术、通信、数据采集等领域均有广泛的应用。

如在通信领域中为获得最高信噪比所设置的匹配滤波器和为减少基带传输过程中的码间串扰所设置的均衡器;在数据采集中所设置的限带抗混迭滤波和D/A转化后的平滑滤波;以及在语音识别的研究,为提取语音频谱而设置的带通滤波器组等。

在信号频率动态范围不宽的场合,设定固定截止频率的滤波器技术已很成熟,但在许多工程应用领域,信号频率动态范围往往很宽,如在0.1Hz ~ 20kHz之间变化,因此,有必要采用多种截止频率的滤波器。

随着集成电路的迅速发展,近几年来,电子电路的构成完全改变了,电子设备日趋小型化。

原来为处理模拟信号所不可缺少的LC型滤波器,在低频部分,将逐渐为有源滤波器和陶瓷滤波器所替代。

在高频部分也出现了许多新型的滤波器,例如:螺旋振子滤波器、微带滤波器、交指型滤波器等等。

虽然它们的设计方法各有自己的特殊之点,但是这些设计方法仍是以低通滤波器设计为基础,再从中演变而成,因此我们这次所设计的滤波器具有广泛的学习意义。

相关文档
最新文档