自动控制原理实验报告 (2)

合集下载

自动控制实验2实验报告

自动控制实验2实验报告

⾃动控制实验2实验报告:实验报告项⽬名称: MATLAB⽤于时域分析课程名称: ⾃动控制原理信息科学与⼯程学院通信⼯程系⼀、实验名称:MATLAB⽤于时域分析⼆、1)⼀阶系统响应sys1=tf([100],[1 0]);sys2=tf([0.1],[1]);sys=feedback(sys1,sys2);step(sys)1)⼆阶系统响应%Wn=1;t=0:0.1:12;num=[1];zetal=0;den1=[1 2*zetal 1]; zeta3=0.3; den3=[1 2*zeta3 1]; zeta5=0.5; den5=[1 2*zeta5 1]; zeta7=0.7; den7=[1 2*zeta7 1]; zeta9=1.0; den9=[1 2*zeta9 1]; [y1,x,t]=step(num,den1,t);[y3,x,t]=step(num,den3,t);[y5,x,t]=step(num,den5,t);[y7,x,t]=step(num,den7,t);[y9,x,t]=step(num,den9,t);plot(t,y1,t,y3,t,y5,t,y7,t,y9); grid on3)稳定性分析den=[1 1 2 24];roots(den)4)动态性能分析t=0:0.01:2;num=[1000];den=[1 34.5 1000];[y,x,t]=step(num,den,t);plot(t,y);%求超调量maxy=max(y);yss=y(length(t));pos=100*(maxy-yss)/yss%求峰值时间for i=1:1:201if y(i)==maxy,n=i;endendtp=(n-1)*0.01%求调节时间for i=n:1:201if(y(i)<1.05&y(i)>0.95),m=i;break;endendym=y(18)ts=(m-1)*0.015)稳态误差分析%-----------单位冲击-------t=0:0.1:15;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=impulse(num1,den1,t); y2=impulse(num2,den2,t);y3=impulse(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er1=0-y1(length(t))%0型系统稳态误差er2=0-y2(length(t))%1型系统稳态误差er3=0-y3(length(t))%2型系统稳态误差figure;%-----------单位阶跃-------t=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,den1,t);y2=step(num2,den2,t);y3=step(num3,den3,t);subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);subplot(3,1,3);plot(t,y3);er4=0-y1(length(t))%0型系统稳态误差er5=0-y2(length(t))%1型系统稳态误差er6=0-y3(length(t))%2型系统稳态误差figure%-----------单位斜坡-------t=0:0.1:20;t1=0:0.1:20;[num1,den1]=cloop([1],[1,1]);[num2,den2]=cloop([1],[1,1,0]); [num3,den3]=cloop([4,1],[1,1,0,0]); y1=step(num1,[den1 0],t);y2=step(num2,[den2 0],t);y3=step(num3,[den3 0],t);subplot(3,1,1);plot(t1,y1,t1,t1); subplot(3,1,2);plot(t,y2,t,t); subplot(3,1,3);plot(t,y3,t,t);er7=t1(length(t1))-y1(length(t))%0型系统稳态误差er8=t(length(t))-y2(length(t))%1型系统稳态误差er9=t(length(t))-y3(length(t))%2型系统稳态误差6)实例分析:kp=[0.11 6];t=[0:0.01:1];num1=303.03*kp(1);den1=[0.00001 0.00633 0.20167 21.21*kp(1)+1]; y1=step(num1,den1,t);num2=303.03*kp(2);den2=[0.00001 0.00633 0.20167 21.21*kp(2)+1]; y2=step(num2,den2,t);subplot(211),plot(t,y1);subplot(212);plot(t,y2);gtext('kp=0.11');gtext('kp=6');。

自动控制原理2 实验报告

自动控制原理2 实验报告

中国石油大学(北京)实验报告实验课程:自动控制原理2实验名称:采样控制系统分析班级:学号: 姓名:实验台号:成绩:实验日期:年月日实验1采样控制系统一、实验目的考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔Ts对系统稳定性的影响。

二、实验步骤1、典型单位负反馈连续时间系统的开环传递函数为G(s)=K/(s2+s),借助于Matlab 仿真,并分析并验证K对系统性能的影响。

步骤:Matlab相关命令:Gs=tf([1],[1 1 0]) ;pzmap(Gs);figure(1)rlocus(Gs);K值变化时的阶跃相应曲线for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k];den=[1,1,0]Gs=tf(num,den);figure(1)margin(Gs);figure(2)t=0:0.001:500;step(Gs,t);grid;hold onend2、将上述连续系统离散化,成为带零阶保持器的采样系统。

借助于Matlab仿真,调整采样周期T 和增益K 的大小,观察T 和K 对系统稳定性和调节性能的影响。

调整系数,给出[1]p384-385习题7-24和7-26的答案。

实验步骤:(1) 确定有零阶保持器的开环系统脉冲传递函数G(z)。

))(1()1()(T T e z z z e K z G -----=Matlab 相关命令:for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k*0.1,0];den=[1,-1.9,0.9];G1=tf(num,den);G=tf2zp(num,den);Gd=c2d(G,0.1,’zoh ’);G0=feedback(Gd,a);t=0:0.1:50;u=1;tsim(G0,u,t,0);gridfor k=[0,0.01,0.05,0.10,0.15,0.20,0.25]G=tf([5],[1 1 0]);Gd=c2d(G,0.1,'zoh');G0=feedback(Gd,1);t=0:0.1:50;step(G0,t); gridxlabel('t');ylable('c(t)');title(‘ramp response ’)hold onend当T=0.1,0.5,1,2时分别重复上面的命令习题7-247-24(1)求出脉冲传递函数:程序代码:rlocus(G)G0=tf([1],[1 10 0 ]);G=c2d(G0,0.1,'zoh')G =0.003679 z + 0.002642----------------------z^2 - 1.368 z + 0.3679Sample time: 0.1 secondsDiscrete-time transfer function.(2)求闭环系统的z特征方程feedback(G,1)ans =0.003679 z + 0.002642----------------------z^2 - 1.364 z + 0.3705Sample time: 0.1 secondsDiscrete-time transfer function.(3)计算使系统稳定的K的最大值rlocus(G)(4)K=78(5)求闭环脉冲传递函数并绘出单位阶跃响应曲线程序代码:G0=tf([78],[1 10 0 ]);G=c2d(G0,0.1,'zoh')Gd= feedback(G,1);t=0:0.1:6;step(Gd,t)Gd =0.2869 z + 0.2061---------------------z^2 - 1.081 z + 0.574Sample time: 0.1 seconds Discrete-time transfer function. 阶跃响应曲线:(6)系统闭环极点以及超调量程序代码:G0=tf([120],[1 10 0 ]);G=c2d(G0,0.1,'zoh');Gd=feedback(G,1);t=0:0.1:6;step(Gd,t)Transfer function:0.4415 z + 0.3171----------------------z^2 - 0.9264 z + 0.685 Sampling time: 0.1b = [0.4415 0.3171];a = [1 -0.9264 0.685]; [b,a] = eqtflength(b,a); [z,p,k] = tf2zp(b,a)z =-0.7182p =0.4632 + 0.6859i0.4632 - 0.6859i k =0.4415超调量为53.8%. (7) t=0:0.1:6;step(Gd,t)7-267-26.程序代码:G0=tf([1],[1 1 0]);G=c2d(G0,0.2,'zoh');Gd=feedback(G,1);t=0:0.2:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.4,'zoh');Gd=feedback(G,1);t=0:0.4:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.6,'zoh');Gd=feedback(G,1);t=0:0.6:25;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.8,'zoh');Gd=feedback(G,1);t=0:0.8:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.0,'zoh');Gd=feedback(G,1);t=0:1.0:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.2,'zoh');Gd=feedback(G,1);t=0:1.2:30;step(Gd,t)hold on实验图形记录:(1)T=0.2s%21%;8.38s T σ==(2)T=0.4s%26%;8.53s T σ==(3)T=0.6s%31%;11.4s T σ==(4)T=0.8ss(5)T=1.0s(6)%40%;15.3s T σ==(7)T=1.2ssT 从0.2s 到1.2s3、计算机控制系统如图5-7所示,采样周期T=0.1s ,试分析不同的PID 调节器及不同参数对系统性能的影响,并分析各种情况下PID 参数的选择方法。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

华南农业大学自动控制原理实验报告二

华南农业大学自动控制原理实验报告二

专业班次 组别题 目 典型环节的电路模拟与软件仿真研究 姓名(学号) 日期 2019.03.27一、实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二、实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.利用上位机界面上的软件仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与电路模拟测试的结果作比较。

三、实验原理1.积分(I )环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为:0()1()()i U s G s U s Ts== 其方块图、模拟电路和阶跃响应,分别如图4、图5和图6所示。

U 为输入阶跃信号的幅值。

式中:1T R C =为积分时间常数。

1K T=为积分增益。

3.惯性环节的传递函数、方块图、模拟电路和阶跃响应 惯性环节的传递函数为:0()1i U KG s U Ts ==+ 其方块图、模拟电路和阶跃响应,分别如图2-1-7、图2-1-8和图2-1-9所示。

U 为输入阶跃信号的幅值。

式中:2T R C =为惯性时间常数。

21R K R =为惯性增益。

专业班次组别题目典型环节的电路模拟与软件仿真研究姓名(学号)日期 2019.03.27四、实验步骤1.积分(I)环节(1)步骤1:构造模拟电路典型积分环节模拟电路连线图如图16所示图16 典型积分环节模拟电路(2)步骤2:打开labview的时域特性程序后,软件界面的参数设置如下: 测试信号:阶跃;幅值:3V(偏移0);频率/周期:1s(占空比50%);运行程序,直接进行实验。

阶跃响应曲线如图17图17 积分环节阶跃响应曲线(3)步骤3:按表2-6改变实验参数,并将结果记录到表2-6中。

※注意:为提高实验精度,在示波器屏幕上测取T时,数据应作均值滤波。

自动控制原理实验报告

自动控制原理实验报告

学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。

其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。

在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。

上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。

简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

B 、积分环节:主要用于消除稳态误差,提高系统的型别。

积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。

C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。

设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告本实验为基于微处理器的温度控制系统的设计与实现。

实验目的是通过实践掌握基于微处理器的控制系统设计和实现方法,了解数字信号处理的基本原理和应用。

本报告将分为实验原理,系统设计,实验步骤,实验结果和结论等几个部分进行详细阐述。

一、实验原理数字信号处理的基本原理是将模拟信号经过采样、量化和编码后转换为数字信号,并在数字领域中对其进行处理。

在本实验中,采用的是基于单片机控制的数字温度控制系统。

该系统的设计要求基于以往的温度控制系统,并具备更过的实用价值和工程性能。

系统的基本原理如下:1.数字信号采样该系统通过传感器来采集温度值,并将其转化为数字信号,实现了数字化控制。

系统在稳态时,通过采用PID控制方法来对温度进行控制。

2.温度控制方法对于本实验中开发的系统,采用的是基于PID控制算法的控制方法。

PID即比例积分微分控制算法,它是一种最常用的控制算法,具备响应速度快、稳态误差小等优点。

PID控制算法的主要原理是,通过比例、积分和微分三个控制系数对输出进行调节,使系统的响应速度更快,而且在稳态时误差非常小。

3.系统设计本实验系统的设计通过单片机的程序控制,主要包含三部分:硬件设计、软件设计和温控系统设计。

二、系统设计1.硬件设计本实验采用的是基于AT89S52单片机的数字温度控制系统,其硬件电路主要包括以下模块:(1)单片机控制器:采用AT89S52单片机;(2)温度传感器:采用DS18B20数字温度传感器;(3)电源模块:采用稳压电源,提供系统所需电压。

2.软件设计本实验采用的是基于C语言开发的程序控制系统,该软件具备以下功能模块:(1)数据采集:通过程序控制读取温度传感器数值;(2)控制算法:实现PID控制算法的程序设计;(3)控制输出:将PID算法结果通过程序输出到负载端。

3.温控系统设计本实验设计的数字温度控制系统,其温控系统设计主要包括以下几个方面:(1)温度检测:系统通过DS18B20数字温度传感器检测环境温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称: 自动控制原理实验项目: 典型环节的时域相应实验地点: 自动控制实验室实验日期: 2017 年 3 月22 日指导教师: 乔学工实验一典型环节的时域特性一、实验目的1、熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃相应曲线与实际阶跃响应曲线。

对比差异,分析原因。

3、了解参数变化对典型环节动态特性的影响。

二、实验设备PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

三、实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1.比例环节 (P) (1)方框图(2)传递函数:K S Ui S Uo =)()((3)阶跃响应:)0()(≥=t K t U O 其中 01/R R K =(4)模拟电路图:(5)理想与实际阶跃响应对照曲线: ① 取R0 = 200K;R1 = 100K 。

② 取R0 = 200K;R1 = 200K 。

2.积分环节 (I)(1)方框图(2)传递函数: TS S Ui S Uo 1)()(=(3)阶跃响应:)0(1)(≥=t t Tt Uo 其中 C R T 0=(4)模拟电路图(5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K;C = 1uF 。

② 取R0 = 200K;C = 2uF 。

1Uo0tUi(t)Uo(t)理想阶跃响应曲线0.4s1Uo0tUi(t)Uo(t)实测阶跃响应曲线0.4s10V无穷3.比例积分环节 (PI)(1)方框图:(2)传递函数:(3)阶跃响应:(4)模拟电路图:(5)理想与实际阶跃响应曲线对照:①取 R0 = R1 = 200K;C = 1uF。

理想阶跃响应曲线实测阶跃响应曲线②取 R0=R1=200K;C=2uF。

K1+U i(S)+ U o(S)+Uo10VU o(t)2U i(t )0 0 、2stUo无穷U o(t)2U i(t )0 0 、2s t理想阶跃响应曲线实测阶跃响应曲线4.惯性环节 (T) (1) 方框图(2) 传递函数:1)()(+=TS KS Ui S Uo 。

(3) 模拟电路图(4) 阶跃响应:)1()(TteK t Uo --=,其中01/R R K =;C R T 1=(5) 理想与实际阶跃响应曲线对照: ① 取R0=R1=200K;C=1uF 。

② 取R0=R1=200K;C=2uF 。

Uo无穷U o(t)2U i(t )0 、4stUo10VU o(t)2U i(t )0 、4st5、比例微分环节 (PD) (1) 方框图(2) 传递函数:)1()()(TS K S Ui S Uo +=(3) 阶跃响应:K t KT t Uo +)(=δ)(。

(4) 模拟电路图(5) 理想与实际阶跃响应曲线对照:① 取R0 = R2 = 100K,R3 = 10K,C = 1uF;R1 = 100K 。

② 取R0=R2=100K,R3=10K,C=1uF;R1=200K 。

31Uo0t Ui(t)Uo(t)理想阶跃响应曲线31Uo0tUi(t)Uo(t)实测阶跃响应曲线6、比例积分微分环节 (PID) (1)方框图:(2)传递函数: (3)阶跃响应: (4)模拟电路图:(5)理想与实际阶跃响应曲线对照:①取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 100K 。

Kp+ U i(S)1 Ti S+U o(S)+ +Td S②取 R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 200K。

四、实验步骤及结果波形1、按所列举的比例环节的模拟电路图将线接好。

检查无误后开启设备电源。

2、将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。

将开关分别设在“方波”档与“500ms~12s”档,调节调幅与调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。

3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”与“CH2”表笔分别监测模拟电路的输入Ui端与输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。

4、改变几组参数,重新观测结果。

5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节与比例积分微分环节的模拟电路图。

观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形的结果。

6、各典型环节不同参数下的阶跃响应曲线的实验结果:1、比例环节①取R0=200K;R1=100K。

②取R0=200K;R1=200K。

2、积分环节①取R0=200K;C=1uF。

②取R0=200K;C=2uF。

3、比例积分环节①取R0=R1=200K;C=1uF。

②取R0=R1=200K;C=2uF。

4、惯性环节①取R0=R1=200K;C=1uF。

②取R0=R1=200K;C=2uF。

5、比例微分环节①取R0=R2=200K,R3=10K,C=1uF,R1=100K。

②取R0=R2=200K,R3=10K,C=1uF,R1=200K。

6、比例积分微分环节①取R2=R3=200K,R0=10K,C1=C2=1uF,R1=100K。

②取R2=R3=200K,R0=10K,C1=C2=1uF,R1=200K实验报告课程名称: 自动控制原理实验项目: 典型二阶系统的时域分析实验地点: 自动控制实验室实验日期: 2017 年 3 月22 日指导教师: 乔学工实验二典型二阶系统的时域特性一、实验目的1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。

三、实验内容1、典型的二阶系统稳定性分析(1)结构框图(2)对应的模拟电路图(3)理论分析系统开环传递函数为: ;开环增益01T K K =。

(4)实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

sT 10=, s T 2.01=,R K 2001=R K 200=⇒系统闭环传递函数为:其中自然振荡角频率: ;阻尼比:。

2、典型的三阶系统稳定性分析 (1)结构框图(2)模拟电路图)1()1()(101101+=+=S T S T K S T S T K S G KS S KS S S W n n n++=++=52)(2222ωζωωRT K n 10101==ω401025R n ==ωζ(3)理论分析系统的开环传函为:)15.0)(11.0(500)()(++=S S S RS H S G (其中RK 500=),系统的特征方程为:02020120)()(123=+++⇒=+K S S S S H S G 。

(4)实验内容实验前由 Routh 判断得 Routh 行列式为:为了保证系统稳定,第一列各值应为正数,所以有得: 0 < K < 12R > 41、7K Ω 系统稳定 K = 12 R = 41、7K Ω 系统临界稳定K > 12R < 41、7K Ω 系统不稳定四、实验步骤及波形1、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

由于每个运放单元均 设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅与调频 电位器,使得“OUT ”端输出的方波幅值为 1V,周期为 10s 左右。

2、典型二阶系统瞬态性能指标的测试(1)按模拟电路图 1、2-2 接线,将 1 中的方波信号接至输入端,取 R = 10K 。

(2)用示波器观察系统响应曲线 C(t),测量并记录超调 MP 、峰值时间 tp 与调节时间 tS 。

(3)分别按 R = 50K;160K;200K;改变系统开环增益,观察响应曲线 C(t),测量并记录性能指标 MP 、tp 与 tS,及系统的稳定性。

并将测量值与计算值进行比较 (实验前必须按公式计算出)。

将实验结果填入表 1、2-1 中。

参数项目R (KΩ)KωnξC (tp)C (∞)Mp (%) tp(s) ts(s) 响应 情 况理 论 值测量 值理 论 值测 量 值理 论 值测量值0<ξ<1欠阻尼1020 10 1/4 1、4 1 44 38、820、32 0、296 1、6 1、344衰减振荡50 4 4、47 0、56 1、1 1 11 7、760、85 0、766 1、6 1、047ξ=1临界阻尼160 1、25 2、5 1 无 1 无无1、9 3、672单调指数ξ> 1过阻尼200 1 2、24 1、12 无 1 无无2、9 4、844单调指数系统响应曲线如下:欠阻尼 R=10KΩ欠阻尼R=50 KΩ临界阻尼R=160KΩ过阻尼R=200KΩ3、典型三阶系统的性能(1)按图 1、2-4 接线,将 1 中的方波信号接至输入端,取 R = 30K。

(2)观察系统的响应曲线,并记录波形。

(3)减小开环增益 (R = 41、7K;100K),观察响应曲线,并将实验结果填入表 1、2-3 中。

R(KΩ)开环增益K 稳定性30 16.7 不稳定发散41 、7 12 临界稳定等幅振荡100 5 稳定衰减收敛不同开环增益下的的响应曲线:K=16、7(R=30KΩ)K=12(R=41、7KΩ)K=5(R=100KΩ)实验报告课程名称: 自动控制原理实验项目: 控制系统的稳定性与稳态误差实验地点: 自动控制实验室指导教师: 乔学工实验三 控制系统的稳定性与稳态误差一、实验目的1.学会利用MATLAB 对控制系统的稳定性进行分析;2.学会利用MATLAB 计算系统的稳态误差。

二、实验设备安装Windows 系统与MATLAB 软件的计算机一台。

三、实验内容1、利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子与分母多项式系数所构成 的两个向量惟一确定出来。

即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MATLAB 表示。

相关文档
最新文档