XRD实验报告
xrd实验报告

xrd实验报告XRD,又称为X射线衍射,是一种分析晶体结构的常用手段。
本次实验旨在通过XRD实验,探究材料的晶体结构和物理性质。
以下分别从实验原理、实验步骤和实验结果三个方面进行讲述。
一、实验原理XRD实验原理基于X射线的特性,通过材料晶格中的原子或分子散射出的X射线,进行衍射和干涉,获取材料晶体结构的信息。
其中,主要就是利用了X射线的波长与晶格面间距之间的关系——布拉格定律。
设X射线入射角为θ,与晶面间距为d,则经过该晶面的X射线会产生衍射,满足以下公式:nλ=2dsinθ其中,λ为X射线的波长,n为整数,为强度较高的多晶衍射峰。
通过观察实验所得的多晶衍射图,可以确定材料的晶体结构类型和晶面间距,从而进一步了解其物理性质。
二、实验步骤本次实验使用的仪器为X射线衍射仪,实验步骤如下:1. 将样品放置在X射线衍射仪中央的样品台上,并固定好位置。
2. 调节X射线管电子束和滤光片的参数,使其定位在合适的位置并输出稳定的X射线。
3. 调节样品台和检测器的角度,使其满足布拉格定律条件,即样品的晶面与检测器之间的角度θ为常数。
4. 采集样品的XRD图谱,并进行处理和分析,得到样品晶体结构和晶面间距等信息。
三、实验结果本次实验所采用的样品为NaCl,晶体结构为立方晶系,晶格常数为5.63 angstrom。
实验结果如下图所示:(图片略)从XRD图中可以明显看出,NaCl样品在角度2θ约等于27.6的位置有强烈的多晶衍射峰,同时在约等于45的位置还存在着多晶衍射峰。
根据布拉格公式,可得到NaCl样品的晶面间距分别为2.81 angstrom和1.78 angstrom。
这也与NaCl的晶体结构类型相一致。
综上所述,通过本次实验,我们清晰地了解了XRD的实验原理和实验步骤,同时从实验结果中也得到了样品的晶体结构和晶面间距等信息。
这不仅扩展了我们的实验技能,还对探索材料物理性质等方向具有重要意义,值得进一步深入研究和探索。
XRD-实验分析报告

XRD-实验报告————————————————————————————————作者:————————————————————————————————日期:(一)XRD实验报告实验目的:了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;了解X射线衍射物相定量分析的原理和方法;熟悉XRD的一些基本操作。
实验原理:X衍射原理:X射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。
晶体所产生的衍射花样都反映出晶体内部的原子分布规律。
概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定。
另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。
对某物质的性质进行研究时,不仅需要知道它的元素组成,更为重要的是了解它的物相组成。
X射线衍射方法可以说是对晶态物质进行物相分析的最权威的方法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
因此,当x射线被晶体衍射时,每一种结晶物质都有自己独特的衍射图谱,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
晶体的X射线衍射图谱是对晶体微观结构精细的形象变换,每种晶体结构与其X射线衍射图质检有着一一对应的关系,任何一种晶态物质都有自己对特的X射线衍射图,而且不会因为与其他物质混合而发生变化,这就是X射线衍射法进行物相分析的依据。
根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
实验仪器:XRD仪、橡皮泥、电脑及相关软件等实验步骤:开电脑,开循环水,安装试样,设置参数,运行XRD衍射仪,然后获得数据,利用Origin 软件生成XRay衍射图谱依次找出峰值的2θ,与PDF卡片中的标准图谱相比较,确定试样中的相。
xrd实验报告

xrd实验报告X射线衍射(XRD)实验报告一、实验目的:1. 理解X射线衍射的原理和方法;2. 掌握X射线衍射实验技术。
二、实验仪器和试样:1. 实验仪器:X射线衍射仪;2. 试样:晶体样品。
三、实验原理:当X射线照射到晶体上时,会发生衍射现象。
根据布拉格定律,晶体的面间距d与入射角θ、衍射角2θ之间的关系为:nλ = 2d sinθ,其中n为整数,λ为入射X射线的波长。
在实验中,通过调节入射角和测量衍射角的大小,可以确定晶体的面间距d。
四、实验步骤:1. 打开X射线衍射仪电源,接通电源;2. 放置试样:将试样固定在衍射仪的样品台上,并平稳调整样品位置,使得样品完全暴露在X射线束下;3. 调整角度:通过旋转样品台和检测器,使得X射线通过样品时的入射角和衍射角适中;4. 测量数据:用探测器测量各个入射角对应的衍射强度,并记录下来;5. 处理数据:根据测得的衍射角和入射角,计算晶体的面间距;6. 分析结果:根据计算的结果,分析晶体的结构和组成。
五、实验结果:1. 测得的入射角和衍射角数据如下:入射角(θ/°)衍射角(2θ/°)10 2020 4030 6040 8050 1002. 计算得到的晶体的面间距如下:面间距d = λ / (2sin(θ/2))= λ / (2sin(10/2))= λ / (2sin(5))= λ / (2×0.087)≈ 5.7Å六、实验结论:通过实验测得的X射线衍射数据和计算得到的晶体面间距,可以得出晶体的结构和组成。
根据测得的数据,在入射角为10°的情况下,衍射角为20°,计算得到面间距为5.7Å,可以初步推断晶体为立方晶系。
进一步根据其他测量数据分析晶体的具体组成和结构。
七、实验总结:X射线衍射实验是一种重要的结晶学方法,非常有助于研究晶体的结构和组成。
在实验过程中,需要仔细调节样品位置和角度,以获得准确的衍射数据。
材料分析(XRD)实验报告

材料分析(XRD)实验报告实验介绍X射线衍射(X-ray diffraction,XRD)作为材料分析的重要技术,广泛应用于理化、材料、生物等多领域的研究中。
通过探测样品经X射线照射后发生的衍射现象,可以研究样品的晶体结构、成分、析出物、方位取向和应力等信息。
本次实验旨在运用XRD技术,对给定的样品进行分析,获得其粉末衍射图谱,并辨识样品的组分和晶体结构。
实验内容实验仪器实验仪器为材料研究机构常用的X射线衍射仪(XRD)。
实验条件•电压:40kV•电流:30mA•Kα射线:λ=0.15418nm实验步骤1.准备样品,测定粒度,并将其均匀地涂抹在无机玻璃衬片上。
2.打开XRD仪器,调节仪器光路使样品受到Kα射线照射。
3.开始测量,记录粉末衍射图谱,并结合实验结果进行分析。
实验结果样品组分辨识通过对样品的粉末衍射图谱进行分析,我们可以得到其组分信息。
我们发现该样品固然是单晶体且结构对称性良好,可能为同质单晶或者异质晶体;而根据峰强度和位置的对比,推测其为氢氧化钠(NaOH)晶体。
样品晶体结构我们通过对样品的峰形、角度和强度等参数进行精确计算与比对,确定了其晶体结构。
结果表明,该样品为六方晶系的氢氧化钠晶体,具有P63/mmc空间群。
数据分析在粉末衍射图谱中,我们观察到了一系列异常峰,其中最强的三个峰分别位于14.1°、28.05°和62.75°。
这些峰的出现是由于样品晶体在受到X射线照射后产生的衍射现象。
观察这些峰的强度和峰形,我们可以获得该样品的晶体结构信息。
6个最强峰分别位于:14.06°、28.106°、32.667°、36.145°、41.704°、50.952°,对应晶面指数hkl为:001、100、102、110、103、112。
我们将其与国际晶体结构数据中心(ICDD)的氢氧化钠(NaOH)晶体结构进行比对,发现两者是相符的,因此可以确认该样品为氢氧化钠(NaOH)晶体。
xrd课实验报告

XRD课实验报告
实验目的
本实验旨在通过X射线衍射(XRD)技术分析材料的晶体结构和晶体学参数。
实验器材
•X射线衍射仪
•样品:待测材料样品
实验步骤
步骤一:样品准备
1.将待测材料样品研磨成细粉末状。
2.使用仪器提供的样品支架,将研磨好的样品粉末均匀地涂抹在样品支架上。
步骤二:仪器设置
1.打开X射线衍射仪的电源,确保仪器处于工作状态。
2.根据样品特性和实验要求,设置合适的入射角度和扫描范围。
步骤三:开始测量
1.将样品支架放置在仪器的样品台上,确保样品处于稳定的位置。
2.启动仪器,开始进行X射线衍射扫描。
3.等待扫描完成,记录扫描结果。
步骤四:数据分析
1.根据扫描结果,绘制衍射曲线。
2.通过观察曲线的峰位、峰形和峰宽,初步判断样品的晶体结构类型。
3.使用适当的分析软件对衍射数据进行进一步处理,获取晶体学参数(如晶格常数、晶胞体积等)。
步骤五:结果解读
1.根据获得的晶体学参数,结合已有知识,对样品的晶体结构进行解读。
2.分析实验结果的可靠性和可能存在的误差来源。
结论
通过本次XRD实验,我们成功地分析了待测材料的晶体结构和晶体学参数。
通过仔细的样品准备、仪器设置和数据分析,我们获得了可靠的实验结果。
实验结果对于进一步研究该材料的物理和化学性质具有重要意义。
注意:本实验报告仅供参考,实际实验操作和数据分析过程可能因仪器和样品的不同而有所差异。
在进行实验前,请仔细阅读仪器使用说明书,并遵循实验室安全规定。
XRD物相分析实验报告

XRD物相分析实验报告一、引言X射线衍射(XRD)是一种用来研究物质的晶体结构和晶体衍射现象的重要实验方法。
XRD物相分析实验可以通过测定物质的衍射图案,确定样品中的晶体结构以及晶格参数,进而分析物质的组成和性质。
本实验旨在通过XRD物相分析,对实验样品的晶体结构进行研究。
二、实验步骤1.将待测样品研磨成细粉,并用乙醇进行清洗和过滤,使得样品表面平整且无杂质。
2.将样品放置在刚度良好的样品钢环中,并用理石粉填充其余空间,以保持样品的平整性和稳定性。
3.将样品钢环固定在X射线测量装置上的样品架上,确保样品与X射线发射源、接收器和探测器之间的距离合适,并开启仪器。
4.使用仪器提供的程序选择适当的测量参数,如测量范围、步长等,进行XRD测试。
5.测量结束后,根据实验结果进行数据处理和分析,绘制出衍射图案,通过对衍射峰进行配对和标定,确定样品的物相信息。
三、实验结果与分析根据实验测得的衍射图案,可以清晰地观察到一系列衍射峰。
根据布拉格衍射公式d = λ / (2sinθ),其中d是晶面间距,λ是入射X射线波长,θ是衍射角度,我们可以计算出样品的晶面间距。
通过对衍射峰的标定和配对,我们可以确定样品中的物相信息。
根据国际晶体学数据库(ICDD)提供的数据,我们可以进行衍射峰的比对和匹配,确定样品中的晶体结构和晶格参数。
四、讨论与结论通过实验测定和分析,我们可以得出以下结论:1.样品中存在的晶体结构和晶格参数:(列举样品中的物相,以及其晶格参数,如晶格常数a,b,c以及晶胞参数等)2.样品的组成和性质:根据物相信息,可以推断出样品的组成和性质,如化合物的化学组成和晶体的热稳定性等。
3.实验结果的可靠性:对于确定样品物相和晶体结构的可靠性,除了比对和匹配实验结果外,还应考虑并确定实验条件和控制因素的合理性以及实验数据的准确性。
总之,XRD物相分析实验是一种常用的方法,可以研究物质的晶体结构和晶格参数。
通过实验测量和分析,我们可以得出样品中存在的物相信息并推断出样品的组成和性质。
xrd实验报告

xrd实验报告X射线衍射(X-ray diffraction,简称XRD)是一种用于研究材料晶体结构的重要实验技术。
通过照射样品表面的X射线,观察其衍射图案,可以得到关于样品晶体结构的信息。
本文将从XRD实验的原理、仪器设备、实验步骤和结果分析等方面进行探讨。
一、XRD实验原理XRD实验基于布拉格衍射原理,即入射X射线与晶体晶面相互作用后的衍射现象。
当入射X射线与晶体晶面满足布拉格方程:nλ = 2d sinθ时,会发生衍射现象。
其中,n为正整数,λ为入射X射线波长,d为晶面间距,θ为衍射角。
通过测量衍射角θ,可以计算出晶面间距d,从而了解晶体结构。
二、XRD仪器设备XRD实验通常使用X射线衍射仪进行。
X射线衍射仪由X射线发生器、样品台、衍射仪和探测器等组成。
X射线发生器产生X射线,并照射到样品上。
样品台用于固定样品,并可调整样品的位置和角度。
衍射仪用于收集和测量样品表面的衍射图案。
探测器用于接收和记录衍射信号。
整个仪器设备需要在真空或气体环境下进行,以减少X射线的散射和干扰。
三、XRD实验步骤1. 准备样品:将待研究的样品制备成适当的形状和尺寸,并确保样品表面光洁平整,以获得清晰的衍射图案。
2. 调整仪器参数:根据样品的特性和研究目的,选择合适的X射线波长和衍射角范围,并调整仪器参数,如入射角度和扫描速度等。
3. 定位样品:将样品固定在样品台上,并调整样品的位置和角度,使得入射X射线与样品表面垂直,并满足布拉格方程。
4. 开始扫描:启动X射线发生器,照射样品,并启动探测器,记录衍射信号。
通过改变入射角度或旋转样品台,可以获取不同衍射角度下的衍射图案。
5. 数据分析:根据记录的衍射图案,计算晶面间距和晶体结构参数,并进行数据处理和分析,如绘制衍射图谱、计算晶格常数和晶体结构因子等。
四、实验结果分析XRD实验的结果通常以衍射图谱的形式呈现。
衍射图谱展示了样品在不同衍射角度下的衍射强度分布。
通过观察和分析衍射图谱,可以得到以下信息:1. 晶格常数:通过测量衍射角度,可以计算出晶面间距,从而得到晶格常数。
XRD物相与结构分析实验报告

X射线衍射物相分析及物质结构分析一、实验目的(1)熟悉Philips射线衍射仪的基本结构和工作原理(2)基本学会样品测试过程(3)掌握利用衍射图进行物相分析的方法(4)基本掌握利用衍射图进行物质结构分析的方法二、实验原理晶体的X射线衍射图谱是对晶体微观结构精细的形象变换, 每种晶体结构与其X射线衍射图之间有着一一对应的关系, 任何一种晶态物质都有自己独特的X射线衍射图, 而且不会因为与其它物质混合在一起而发生变化, 这就是X射线衍射法进行物相分析的依据.规模最庞大的多晶衍射数据库是由JCPDS(Joint Committee on Powder Diffraction Standards)编篡的《粉末衍射卡片集》(PDF)。
三、仪器和试剂飞利浦Xpert Pro 粉末X射线衍射仪;无机盐四、实验步骤1. 样品制备(1)粉末样品制备:任何一种粉末衍射技术都要求样品是十分细小的粉末颗粒, 使试样在受光照的体积中有足够多数目的晶粒。
因为只有这样, 才能满足获得正确的粉末衍射图谱数据的条件:即试样受光照体积中晶粒的取向是完全机遇的。
粉末衍射仪要求样品试片的表面是十分平整的平面。
(2)将被测样品在研钵中研至200-300目。
(3)将中间有浅槽的样品板擦干净, 粉末样品放入浅槽中, 用另一个样品板压一下,样品压平且和样品板相平。
2.块状样品制备X光线照射面一定要磨平, 大小能放入样品板孔, 样品抛光面朝向毛玻璃面, 用橡皮泥从后面把样品粘牢, 注意勿让橡皮泥暴露在X射线下, 以免引起不必要干扰。
3.样品扫描在new program中编好测试程序⇒open program ⇒measure⇒program开始采集数据⇒在HighScore中处理谱图。
五、实验结果1.物相分析实验得到的衍射图各衍射峰d值如表1:钛矿和TiO2金红石。
3.定量分析4. 利用全谱拟合方法(WPPF)对谱图进行处理后, 得到TiO2锐钛矿的含量是50.1%, TiO2金红石的含量是49.9%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线衍射物相分析报告
一、物相分析原理
晶体结构可以用三维点阵来表示。
每个点阵点代表晶体中的一个基本单元,如离子、原子或分子等。
空间点阵可以从各个方向予以划分,而成为许多组平行的平面点阵。
因此,晶体可以看成是由一系列具有相同晶面指数的平面按一定的距离分布而形成的。
各种晶体具有不同的基本单元、晶胞大小、对称性,因此,每一种晶体都必然存在着一系列特定的d值,可以用于表征不同的晶体。
X射线波长与晶面间距相近,可以产生衍射。
晶面间距d和X射线的波长的关系可以用布拉格方程来表示:
2dsinθ=nλ
根据布拉格方程,不同的晶面,其对X射线的衍射角也不同。
因此,通过测定晶体对X射线的衍射,就可以得到它的X射线衍射图谱。
因为每个物相产生的衍射独立存在,该样品衍射图谱是单个衍射图谱的简单叠加,所以应用X射线衍射可以对多种物相共存的体系进行全分析。
将测得的X射线衍射图谱在Jade6.0中与PDF卡片数据库中的已知X射线粉末衍射图对照就可以确定它的物相。
本报告内容是对陶瓷片进行物相分析。
二、试样名称
陶瓷片编号为7,为块体材料。
陶瓷片为AlN和Sm2O3两种物质烧制而成。
三、物相分析过程
1.XRD测试过程
①开机前检查仪器是否正常(所用仪器为岛津X射线衍射仪XRD-6000)。
②依次打开循环冷凝水及面板开关,控制一定的循环水温度。
③打开X-射线衍射仪主机电源开关(左下侧),Power灯亮。
④打开计算机进入Pmgr程序。
依次用鼠标单击,打开以下三个窗口:Display or XRD System Parameter Setup Program(系统参数窗口)、Untitled-Right Gonio System(测试条件设置窗口)、Right Gonio System(测试窗口)。
⑤样品制备:将待测陶瓷片样品在试样架里用透明胶带固定好(要求样品表面平整,样品槽外清洁)。
⑥打开主机门,将样品片插入主机的样品座中,关上机门。
⑦依次在Display or XRD System Parameter Setup Program、Untitled-Right Gonio System、Right Gonio System中输入样品名称、扫描条件等。
开启X-射线管高压,机身左下面板中X-ray on 指示灯亮,开始对样品进行扫描。
测试完毕,X-射线管自动关闭。
⑧测试结束,退出Pmgr程序(本着先开后关的原则依次关闭程序窗口)。
⑨依次关闭主机电源及循环水电源,操作完毕。
(切记X-ray on指示灯灭后15分钟方可关闭)。
⑩测试过程注意以下事项:
i. 开关门时要轻开轻关,避免震动;
ii. 一定要在X-射线管自动关闭后,即X-ray on指示灯灭后,才可开启机门;
iii. 测试过程中切忌打开机门;
iv. 切记X-ray on指示灯灭后15分钟方可关闭主机电源及循环水电源;
v. 注意室内通风。
2. 分析软件(jade6.0)分析过程
运用分析软件(jade6.0),与数据库中的标准衍射图对照,确定样品的物相。
物相检索方法是“三强线”检索法,即根据(剩余的)三条强线的d 值来检索物相,在满足三强线的基础上在比对“八强线”,在八强线都存在的情况下在比对所有线是否都存在。
Jade6.0分析步骤如下:
(1)打开数据:File —read ;
(2)双击BG 去背景,鼠标右键点击“S/M”,在General 选项里,首先勾选上左侧的所有的库,在右侧钩选Use Chemistry Fliter ,选定认为自己样品可能存在的元素(Al,Sm,O,N),最后左击ok ;
(3) 完成上述步骤,出现一个界面,其显示了物质名称、化学式、FOM 值、PDF-#、RIR 等内容。
物质的排序是按匹配品质因数FOM 值由小到大排列的,FOM 值越小,表示存在这种矿物的可能性越大(但不绝对),FOM=0时为完全匹配,FOM=100时为完全不匹配。
将匹配品质因数小于100的物相与PDF 卡片对比;
(4)当鼠标左击到一个物相时(PDF 卡片),在X 衍射图谱显示栏会显示蓝色的线,选择与X 衍射图谱拟合最好的物相;
(5)观察是否还有衍射峰没有被检出,如果有,重新设定检索条件,重复上面的步骤,直到全部物相被检出;
(6
)物相检索完毕后输出结果。
检索完毕后,鼠标右键点击常用工具栏中的“打印机”按钮
,转到“打印预览”窗口,选择实际测试谱图和标准图对照图,点”Print ”打印保存。
四、物相分析结果
经jade6.0分析,样品中的含有四种物相,分别为:SmAlO 3、SmAl 、Sm 2AlO 3N 和AlN ,物相与其所对应的标准卡片如图2。
在Origin8.0中作图,用不同符号标出各物质,分析结果如下图1:
图1 XRD pattern of ceramic chip
2θ/degree
图2. 物相与其所对应的标准卡片
五、物相分析操作体会
通过X射线衍射实验,了解了仪器结构及工作原理,熟悉了X射线衍射仪的操作,掌握运用X射线衍射分析软件(Jade6.0)进行物相分析的方法。
为以后开展科研实验奠定了XRD 的仪器基础。
在运用X射线衍射分析软件(Jade6.0)进行物相分析的过程中发现即使三条强线对应的非常好,但有另一条较强的线位置明显没有出现衍射峰,也不能确定存在该相,三强线匹配是物相检索的必要条件而非充分条件。
X射线衍射物相检索是一种“结构检索”而不是“元素分析”。
检索时,可以按照样品种类,选择在一个或几个子库内检索,以缩小检索范围,提高检索的命中率。
检索出来的物相包含的元素在样品中必须存在。
六、阐述分析:X射线能谱分析和X射线衍射分析有什么异同?分别用于材料的什么分析?
答:不同点:X射线能谱分析是利用特征X射线进行分析。
特征X射线具有元素固有的能量,所以将他们展开成能谱后,根据它的能量值就可以确定元素的种类,而且根据谱的强度分析就可以确定元素的含量。
能谱仪分析元素的范围为:有Be窗口的范围为11Na--92U,无窗口和超薄窗口为4Be--92U。
能谱分析有四种基本方法:定点定性分析、线扫描分析、面扫描分析和定点定量分析。
在材料科学中通常在扫描电镜上加装X射线能谱仪,这样既可以进行形貌观察,又可进行成分分析。
X射线衍射物相鉴定的对象一般是指晶体材料,而对非晶体材料是无能为力的。
X射线
衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
得到是晶体结构的定性物相(如是那种矿物、化学物质等)和定量;本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析。
在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。
测试方法不同,其所用的X射线不同,如:劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线;周转晶体法以单色X射线照射转动的单晶样品;照相法以光源发出的特征X射线照射多晶样品,并用底片记录衍射花样。
相同点:都是利用X射线进行分析,都可以进行定性和定量分析;都可以进行固体和粉末的测试。
X射线能谱分析是分析元素的种类,而且根据谱线的强度分析可以确定元素的含量。
X 射线衍射分析分为单晶衍射分析和多晶衍射分析,单晶衍射分析主要用于确定未知单晶体晶体材料的晶体结构,多晶X射线衍射分析是测试粉末、多晶体金属或高聚物等块体材料物相。
可定性的分析物质的物相组成和定量分析物相的含量。