哥尼斯堡七桥问题与一笔画
七桥问题与一笔画

这 就 是 数 学 史 上 著 名 的 七 桥 问 题 , 你 愿 意 试 一 试 吗 ?
每一个到此游玩或散心的人都 想试一试,可是,对于这一看 似简单的 问题,没有一个人能 符合要求地从七座桥上走一遍。 这个问题后来竟变得神乎其神, 说 是有一支队伍,奉命要炸毁 这七座桥,并且命令要他们按 照七桥问题的要求去炸。 七桥 问题也困扰着哥尼斯堡大学的 学生们,在屡遭失败之后,他 们给当时著名数学家欧 拉写了 一封信,请他帮助解决这个问 题。
问题分析
数学家欧拉知道了七桥问题他用四个点A、B、 C、D分别表示小岛和岸,用七条线段表示七 座桥(如图)于是问题就成为如何“一笔画” 出图中的图形?
C
A
D
B
● 点A、B表示岛 点C。D表示岸 ▎线表示桥
问题分析
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。如:
● ● ●
十八世纪,东普鲁士 的首府哥尼斯堡是一 座景色迷人的城市, 普莱格尔河横贯城区, 使这 座城市锦上添 花,显得更加风光旖 旋。这条河有两条支 流,在城中心汇成大 河,在河的 中央有 一座美丽的小岛。河 上有七座各具特色的 桥把岛和河岸连接起 来。
问题情景
18世纪时风景秀丽的小城哥尼斯堡中有一 条河,河的中间有两个小岛,河的两岸与两 岛之间共建有七座桥(如图),当时小城的 居民中流传着一道难题:一个人怎样才能不 重复地走过所有七座桥,再回到出发点?
图⑶
图⑷
总结规律
①可以一笔画成的图形,与偶点个数无关, 与奇点个数有关。也就是说,凡是图形中没 有奇点的(奇点个数为0 ),可选任一个点做 起点,且一笔画后可以回到出发点。 ②若奇点个数为2,可选其中一个奇点做起点, 而终点一定是另一个奇点,即一笔画后不可以 回到出发点。 ③凡是图形中有2个以上奇点的,不能完成一 笔画。 用你发现的规律,说一说七桥问题的答案?
一笔画七桥问题

例3:再回到“七桥问题”,问:在 何处架设一座桥,可使游人一次走 遍所有各桥?
例4:某花园小径如图,问:你能否 从图中点1出发不重复地走过所有小 径?如果能,请标出所经过各点的 顺序;如果不能,请标出必须重复 走的小径。
练习:下面各图,能否一笔画出? 若能,请画出走法;若不能,请说 明理由。
留一道作业:下面的五环标志可否一笔 画成?如何画?
一笔画------七桥问题
一笔画----------七桥问题
请你做下面的游戏:一笔画出图中 的 图形来。 规则:笔不离开纸面,每根 线都只能画一次。这就是古老的民间 游戏——一笔画。 你能画出来吗?
以下网络中哪一个是可以遍历的(即 一笔而不重复地画成)?
拓扑学起源于公元1736年一个著名问题—— 哥尼斯堡七桥问题——的解决.
1727年在欧拉20岁的时候,被俄国请去在圣彼得堡 (原列宁格勒)的科学院做研究。他的德国朋友告 诉了他这个曾经令许多人困惑的问题。
欧拉并没有跑到哥尼斯堡去走走。他把这个难题化成了这样 的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七 桥问题”就等价于下图中所画图形的一笔画问题了, 这个 图如果能够一笔画成的话,对应的“七桥问题”也就解决了。
能否一笔画是由图的奇、偶点的数目来决定的。那么什么 叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点; 与偶数(双数)条边相连的点叫做偶点。如下图中的①、 ④为奇点,②、③为偶点。
1.凡是由偶点组成的连通图,一定可以一笔画成。画时 可以把任一偶点为起点,最后一定能以这个点为终点画完 此图。例如下图都是偶点,画的线路可以是:①→③→⑤ →⑦→②→④→⑥→⑦→①
2.凡是只有两个奇点的连通图(其余都为 偶点),一定可以一笔画成。画时必须把一 个奇点为起点,另一个奇点终点。例如下图 的线路是:①→②→
七桥问题与一笔画的通解

七桥问题与一笔画的通解(论文拟稿)在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。
当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。
后来,数学家欧拉将它变成了一个一笔画问题(如图)。
从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。
但是,这是为什么呢?在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。
那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。
因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。
从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。
起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。
回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。
故七桥问题无解。
从上面总结出以下结论:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点为终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。
而汉字“日”,只有两个奇点,则可以一笔画。
早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。
从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。
哥尼斯堡七桥问题---- 一笔画

投递路线 一笔画
欧拉回路
最理想的投递路线,就是该段道图是一条欧拉回路。 图(2)的投递路线如下图(3)。
含有奇点的段道图不能一笔画出,有些道路需要重复 走两次的都要添上一条弧。图(1)添弧后如图(4)。
图(3)
图(4)
问题:如何不重复地走 完七桥后回到起点?
一笔画问题 如何将此图一笔画出?
中国邮递员问题
• 中国邮递员问题(Chinese Postman Problem, CPP)是由我国管梅谷教授于1962年首先提出并
发表的 • 例如:观察下列段道图
图(1)
图(2)
从邮局出发,走遍邮区的所有街道至少 一次再回到邮局,按照什么样的路线投 递邮件才能使总的路程最短?
全都是偶点的连 通图可以一笔画
画时以任一点为起点,最后仍回 到该点
一
有两个奇点的连 画时以一个奇点为起点,另一个
笔
通图可以一笔画 奇点为终点
画
奇点个数超过两个的连通图 形不能一笔画
判断下列图形能否一笔画
图1
图3
图2
图4
谁能够一次走遍所有的7座桥,而且每座桥都 是偶点的连通图可以一笔画奇点个数超过两个的连通图形不能一笔画画时以任一点为起点最后仍回到该点画时以一个奇点为起点另一个奇点为终点有两个奇点的连通图可以一笔画判断下列图形能否一笔画图4图3图2图1谁能够一次走遍所有的7座桥而且每座桥都只通过一次
一笔画
一笔画 要求:①一笔画完
.
. ③也
偶点:进进出出 奇点:起点或终点
哥尼斯堡七桥问题与一笔画课件

在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航
一笔画和最短路线问题

造桥选址问题:
如图, A,B两地在一条河的两岸, 现要在 河上造一座桥MN, 桥造在何处才能使从A 到B的路径AMNB最短?(假定河的两岸是 平行的直线,桥要与河垂直)
平行且相等的原理
利用勾股定理 求解几何体的最短路线长
一、台阶中的最值问题
例1、如图,是一个三级台阶,它的每一级的长、宽和 高分别等于5cm,3cm和1cm,A和B是这个台阶的两个 相对的端点,A点上有一只蚂蚁,想到B点去吃可口的 食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面 爬到B点,最短线路是多少?
分析: 根据题意分析蚂蚁爬行的路 线有三种情况(如图①②③ ),由勾股 定理可求得图1中AC1爬行的路线最 短.
D D1 C1
2
D1
C1
1
A1
B1
4
①
②
A B 2
C1
1
D
C
2 4
③
C
A 1 A1
4
B1
A
B
AC1 =√42+32 =√25 ;
AC1 =√62+12 =√37 ;
AC1 =√52+22 =√29
18世纪风景秀丽的哥尼斯堡(位于立陶宛与波兰之间,现属俄罗 斯)中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建 有七座桥(如图),城中的居民经常沿河过桥散步,不知从什么时 候起,脚下的桥梁触发了人们的灵感,一个有趣的问题在居民中传 开了:谁能够一次走遍所有的7座桥,而且每座桥都只通过一次? 最后是否仍能回到出发点? 这就是数学史上著名的七桥问题。
哈里发的失算,却是可以用拓扑学的知 识加以证明的。其所需之概念,只有“内部” 与“外部”两个。事实上,我们很容易用线 把①一①、②一②连起来。明眼的读者可能 已经发现:我们得到了一条简单的闭曲线, 这条曲线把整个平面分为内部(阴影部分)和 外部两个区域。其中一个③在内部区域,而 另一个③却在外部区域,要想从闭曲线内部 的③,画一条弧线与外部的③相连,而与已 画的闭曲线不相交,这是不可能的!这正是 哈里发悲剧之所在。
七桥问题与一笔画
D A
C
A→B→C→D→A→C
B
起点→过路点→…→过路点→终点
过路点都是偶点
1、起点和终点重合时,这一点 也为偶点,故奇点个数为0; 2、起点和终点不重合时,这两 点都为奇点,故奇点个数为2。
A
1.“ 七桥问题”如图所示,此图 能一笔画出来吗?为什么? 答:因为此图奇点的个数是 4, 所以不能一笔画出来。
A C D
B
数学模型建立好之后,那么“七桥问题” 也
就转化成了 “一笔画问题”
所谓图的一笔画,指的就是:从图的一
点出发,笔不离纸,遍历每条边恰好一 次,即每条边都只画一次,不准重复.
B B C A→头部→翅膀→ 尾部→翅膀→嘴B A
A
A→B→C→A
1.起点;2、终点 ;3、过路点; 4.奇点:和某个点连接的线的条数是奇数; 5.偶点:和某个点连接的线的条数是偶数;
B D E A C F B
A C A→B→C→A
下列图形能不能用一笔画出来?
D
A
C B
D
C D
C O
A
B
A
B
能
奇点 个数: 0
能
能
不能
2
4
不能
请同学们分小组讨论: 能够用一笔画的图形有何特征?
能够用一笔画的图形的特征是: 奇点的个数是0或2。 1.当奇点个数是0的时候,任何一个点 都可作起点,终点也是这个点; 2.当奇点个数是2的时候,起点一定是 其中的一个奇点,终点一定是另一 个奇点。
D
A C D C
A D C
A D
B A
C B
B A D
C BΒιβλιοθήκη B A DC BD
七桥问题和一笔画
七桥问题和一笔画18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。
如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。
当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
图 1 图 2七桥问题引起了著名数学家欧拉(17071783)的关注。
他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图2是不能一笔画出的图形。
这就是说,七桥问题是无解的。
这个结论是如何产生呢?请看下面的分析。
如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。
如果画笔经过一个n次,那么就有2n条线与该点相连结。
因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
1736年,欧拉在圣彼得堡科学院作了一次学术报告。
在报告中,他证明了上述结论。
后来他又给出了鉴别任一图形能否一笔画出的准则,即欧拉定理。
为了介绍这个定理,我们先来看下面的预备知识:由有限条线组成的图形叫做网络,其中每条线都要求有两个不同的端点。
世界数学困难——一笔画[最新]
世界数学困难——一笔画[最新] 世界数学难题——哥尼斯堡七桥问题18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。
将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点,大家都试图找出问题的答案,但是谁也解决不了这个问题。
这就是哥尼斯堡七桥问题,一个著名的图论问题。
1727年在欧拉20岁的时候,被俄国请去在圣彼得堡(原列宁格勒)的科学院做研究。
他的德国朋友告诉了他这个曾经令许多人困惑的问题。
欧拉并没有跑到哥尼斯堡去走走。
他把这个难题化成了这样的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就等价于下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。
经过研究,欧拉发现了一笔画的规律。
他认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的,这道题中的图就是连通图。
但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
那么什么叫奇、偶点呢,与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。
如下图中的?、?为奇点,?、?为偶点。
1(凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
例如下图都是偶点,画的线路可以是:?????????????????2(凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
例如下图的线路是:?????????3(其他情况的图都不能一笔画出。
一笔画哥尼斯堡七桥问题
一笔画哥尼斯堡七桥问题1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支—-图论与几何拓扑.也由此展开了数学史上的新进程.问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。
七桥问题和欧拉定理。
欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。
故事背景七桥问题18世纪著名古典数学问题之一。
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。
问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画"问题,证明上述走法是不可能的.有关图论研究的热点问题。
18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来.当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。
这就是柯尼斯堡七桥问题。
欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。
他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。
Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点.Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
著名数学家欧拉后来推论出此种走法是不可能的。