考试必备-北京师大附中高一数学上学期期中考试试题(AP班)

合集下载

(整理版)师大附中高一上学期期中考试试题(数学)

(整理版)师大附中高一上学期期中考试试题(数学)

师大附中— 度高一上学期期中考试试题〔数学〕本试卷分第一卷、第二卷.本试卷共4页.第一卷和第二卷总分值150分,考试时间120分钟.考前须知:将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共100分一、选择题:本大题有10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求.1、全集{1,2,3,4,5}U =,{3,4,5}A =,{1,3}B =,那么()U A C B ⋂等于A.{4,5}B.{2,4,5}C.{1}D.{3} 2、以下函数与函数||y x =为相等函数的是A.2y = B.y C .{,(0),(0)x x y x x >=-< D .log a xy a=3、集合{1,2}A =,{3,4}B =,那么从A 到B 的映射共有A.1个B.2个C.3个D.4个 4、函数()log (43)a f x x =-过定点A.〔1,0〕B.〔3,04〕C.〔1,1〕D.〔3,14〕5、设全集U 是实数集R ,{|2}M x x =>,{|13}N x x =<<,那么图中阴影局部所表示的集合是 A .{|23}x x << B .{|3}x x < C .{|12}x x <≤D .{|2}x x ≤6、幂函数()y f x =的图像经过点(4,2),那么(9)f 的值为A. 3B. 3±C. 81D.81± 7、以下大小关系正确的选项是A. 30.440.43log 0.3<<B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<8、函数)(log 3)(2x x f x--=的零点所在区间是A.)2,25(--B.)1,2(--C.〔1,2〕D.25,2(9、设函数()f x 是定义在R 上的奇函数,假设当(0,)x ∈+∞时,()ln f x x =,那么满足()0f x <的x 的取值范围是A .(,1)-∞-B .(0,1)C .(,1)-∞D .(,1)(0,1)-∞-⋃h 和时间t 之间的关系,其中正确的有B.2个二、填空题:本大题有3小题,每题4分,共12分,把答案填在答卷的相应位置.11、函数()1lg(1)2f x x x =-+-的定义域是 *** ;12、.计算:52log 232851ln log 16e ⨯+= *** ;13、设函数22 1 (0)()+1 (02)3 1 (2)x x f x x x x x +≤⎧⎪=<<⎨⎪-≥⎩,假设()3f x =,那么x = *** .三、解答题:本大题有3题,共38分,解容许写出文字说明、证明过程或演算步骤. 14、〔本小题总分值12分〕设2{|560}A x x x =-+=,}01|{=-=ax x B . 〔I 〕假设13a =,试判定集合A 与B 的关系;〔II 〕假设A B ⊆,求实数a 的取值组成的集合C .15、〔本小题总分值12分〕函数112)(++=x x x f .〔I 〕用定义证明函数在区间[)+∞,1是增函数; 〔II 〕求该函数在区间[]2,4上的最大值与最小值.16、〔本小题14分〕()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.〔I 〕求(0)f ,(1)f ; 〔II 〕求函数()f x 的解析式;〔Ⅲ〕假设(1)1f a -<-,求实数a 的取值范围.第II 卷 共50分一、填空题:本大题有2小题,每题4分,共8分,把答案填在答卷的相应位置.17、如果函数()22f x x ax =-+在区间11[,]24-上是单调函数,那么实数a 的取值范围是 *** ; 18、设函数22)(k x x x f --=,以下判断:①存在实数k ,使得函数()f x 有且仅有一个零点; ②存在实数k ,使得函数()f x 有且仅有两个零点; ③存在实数k ,使得函数()f x 有且仅有三个零点; ④存在实数k ,使得函数()f x 有且仅有四个零点.其中正确的选项是 *** 〔填相应的序号〕.二、选择题:本大题有2小题,每题4分,共8分,在每题给出的四个选项中,只有一项符合题目要求.||()xx a f x =(01)a <<A .B .C .D . 20、假设函数()log (1)a f x ax =+在区间(3,2)--上单调递减,那么实数a 的取值范围是A .1(0,)3 B .1(0,]3 C .1(0,]2 D .(0,1)三、解答题:本大题有3题,共34分,解容许写出文字说明、证明过程或演算步骤.21、(本小题总分值10分)函数1()4226x x f x +=-⋅-,其中[0,3]x ∈. 〔I 〕求函数()f x 的最大值和最小值;〔II 〕假设实数a 满足:()0f x a -≥恒成立,求a 的取值范围.22、(本小题总分值12分)某服装厂生产一种服装,每件服装的本钱为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.〔I 〕设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数P=f 〔x 〕的表达式; 〔II 〕当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元? 〔服装厂售出一件服装的利润=实际出厂单价-本钱〕 23、〔本小题总分值12分〕设二次函数()()R c b a c bx ax x f ∈++=,,2满足以下条件:①当R x ∈时,)(x f 的最小值为0,且图像关于直线1-=x 对称;②当()5,0∈x 时,()112+-≤≤x x f x 恒成立.〔I 〕求()1f 的值; 〔II 〕求()x f 的解析式;〔Ⅲ〕假设()x f 在区间[]m m ,1-上恒有()214x f x -≤,求实数m 的取值范围.附加题:本大题有2小题,每题5分,共10分,把答案填在答卷的相应位置. 说明:得分计入总分,超过150分, 总分计为150分.1、设函数()f x x x a =-,假设对于任意21,x x 21),,3[x x ≠+∞∈,不等式)()(2121>--x x x f x f恒成立,那么实数a 的取值范围是 *** . 2、函数)(x f y =定义域为D ,假设满足:①()f x 在D 内是单调函数; ②存在[]D n m ⊆,使()f x 在[]n m ,上的值域为⎥⎦⎤⎢⎣⎡2,2n m ,那么就称)(x f y =为“减半函数〞.假设函数)0,1,0)((log )(≥≠>+=t a a t a x f xa 是“减半函数〞,那么t 的取值范围为 *** .参考答案 第I 卷11、()()1,22,⋃+∞ 12、83-13三、解答题: 14、〔本小题总分值12分〕 解:A ={2,3}〔I 〕假设13a =,那么B={3},∴B ⊆A〔II 〕∵B ⊆A , ∴B =Φ或{2}B =或{3}B =∴0a =或12a =或13a = ∴11{0,,}32C =15、〔本小题总分值12分〕〔I 〕证明:任取[)+∞∈,1,21x x ,且12x x <,112112)()(221121++-++=-x x x x x f x f )1)(1()(2121++-=x x x x∵120x x -<,()()12110x x ++>,∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在[)+∞,1上是增函数.〔II 〕由〔I 〕知函数()f x 在[]2,4上是增函数.∴max 2419[()](4)415f x f ⨯+===+, min[()]f x =2215(2)213f ⨯+==+. 16、〔本小题总分值14分〕 解:〔I 〕()00f = (1)(1)1f f =-=-〔II 〕令0x >,那么0x -<12()log (1)()f x x f x -=+=∴0x >时,12()log (1)f x x =+∴1212log (1),(0)()log (1),(0)x x f x x x +>⎧⎪=⎨-+≤⎪⎩〔Ⅲ〕∵12()log (1)f x x =-+在(,0]-∞上为增函数,∴()f x 在(0,)+∞上为减函数 ∵(1)1(1)f a f -<-= ∴11a -> ∴2a >或0a <第II 卷 共50分 一、填空题:17、(,2][1,)-∞-⋃+∞ 18、 ②③. 二、选择题:三、解答题:19 20 DB21、(本小题总分值10分) 解:〔I 〕 2()(2)426(03)x x f x x =-⋅-≤≤令2xt =,03x ≤≤,18t ∴≤≤∴22()46(2)10h t t t t =--=--〔18t ≤≤〕∴当[1,2]t ∈时,()h t 是减函数;当(2,8]t ∈时,()h t 是增函数;min ()(2)10f x h ∴==-,max ()(8)26f x h ==〔II 〕()0f x a -≥恒成立,即()a f x ≤恒成立,∴min ()10a f x ≤=-∴a 的取值范围为(,10]-∞- 22、(本小题总分值12分) 解:〔I 〕当0<x≤100时,P=60当100<x≤500时,600.02(100)6250xP x =--=-∴**60,0100,62,100500,50x x N P x x x N ⎧<≤∈⎪=⎨-+<≤∈⎪⎩〔II 〕设销售商的一次订购量为x 件时,工厂获得的利润为L 元,那么*2*(40)20,0100,22,100500,50P x x x x N L x x x x N ⎧-=<≤∈⎪=⎨-+<≤∈⎪⎩当0<x≤100时,L 单调递增,此时当x=100时,Lmax=当100<x≤500时,L 单调递增, 此时当x=500时,Lmax=6000 综上所述,当x=500时,Lmax=6000答:当销售商一次订购500件时,该服装厂获得的利润最大,最大利润是6000元. 23、〔本小题总分值12分〕 解:〔I 〕在②中令1=x ,有()111≤≤f ,故()11=f .〔II 〕当R x ∈时,)(x f 的最小值为0且二次函数关于直线1-=x 对称, 故设此二次函数为()()()012>+=a x a x f .∵()11=f ,∴41=a .∴()()2141+=x x f .〔Ⅲ〕()()222111144424x x f x x x -=+-=+, 由()214x f x -≤即11||124x +≤,得5322x -≤≤∵()x f 在区间[]m m ,1-上恒有()214x f x -≤∴只须51232m m ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得3322m -≤≤∴实数m 的取值范围为33[,]22-.附加题:每题5分,共10分 1、3a ≤ 2、⎪⎭⎫ ⎝⎛41,0。

北京师大附中高一数学上学期期中考试试题(AP班)

北京师大附中高一数学上学期期中考试试题(AP班)

北京市师大附中上学期高一年级期中考试数学试卷(AP 班)说明:本试卷共150分,考试时间120分钟。

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合S ={1,3,5},T ={3,6},则S T 等于A. φB. {3}C.{1,3,5,6}D. R2. 函数f (x )=x -12的定义域是A. (-∞,1)B. (]1,∞-C. RD. (-∞,1) ()∞+,13. 下列函数中在其定义域上是偶函数的是A. y =2xB. y =x 3C. y =x 21D. y =x 2-4. 下列函数中,在区间(0,+∞)上是增函数的是A. y =-x 2B. y = x 2-2C. y =221⎪⎭⎫ ⎝⎛ D. y =log 2x 1 5. 已知函数f (x )=x +1,x ∈R,则下列各式成立的是A. f (x )+f (-x )=2B. f (x )f (-x )=2C. f (x )=f (-x )D. –f (x )=f (-x )6. 设函数f (x )=a x -(a>0),且f (2)=4,则A. f (-1)>f (-2)B. f (1)>f (2)C. f (2)<f (-2)D.f (-3)>f (-2)7. 已知a =log 20.3,b =23.0,c =0.32.0,则a ,b ,c 三者的大小关系是A. a>b>cB. b>a>cC. b>c>aD. c>b>a8. 函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,27),则a 的值为 A. 22 B. 2 C. 4 D. 21 9. 当0<a<1时,下列不等式成立的是 A. a 1.0<a 2.0B. log a 0.1> log a 0.2C. a 2<a 3D. log a 2< log a 310. A semipro baseball league has teams with 21 players each. League rules state that a player must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000. What is the maximum possible salary ,in dollars ,for a single player ?A. 270,000B. 385,000C. 400,000D. 430,000E.700,000二、填空题:本大题共8小题,每小题4分,共32分。

北京市北京师范大学附属中学2024-2025学年高一上学期期中考试数学试题

北京市北京师范大学附属中学2024-2025学年高一上学期期中考试数学试题

北京市北京师范大学附属中学2024-2025学年高一上学期期中考试数学试题一、单选题1.已知集合{}{}1,0,2,1,1A B =-=-,则集合A B = ()A .{}1-B .{}1,0,2-C .{}1,0,1,2-D .{}0,22.设全集R U =,{}02M x x =≤≤,{}13N x x =≤≤.如图所示,阴影部分所表示的集合为()A .()(),03,∞∞-⋃+B .(][),03,∞∞-⋃+C .()(),12,+∞∞-⋃D .(][),12,∞∞-⋃+3.设函数()()2,0,0x x f x g x x ⎧<⎪=⎨>⎪⎩,()f x 是奇函数,则()3g 的值是()A .18-B .8-C .18D .84.已知函数1()12xf x =+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()1f x f x -+=D .1()()3f x f x --=5.若,a b R ∈,且0ab ≠,则“a b >”是“11a b<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.某水果批发商销售每箱进价为40元的苹果,要求每箱售价不得低于50元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.要获得最大利润,每箱苹果的售价应定为()A .55元B .60元C .65元D .70元7.关于x 的方程2210x ax -+=的两个实数根12,x x ,满足12012x x <<<<,则常数a 的取值范围是()A .()0,1B .()1,+∞C .51,4⎛⎫ ⎪⎝⎭D .5,4⎛⎫-∞ ⎪⎝⎭8.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若()()()2,1,3a g b g c g =-==,则,,a b c的大小关系为()A .a b c<<B .c b a<<C .b a c<<D .b c a<<9.对任意[]()()21,1,442a f x x a x a ∈-=+-+-的值恒大于零,则x 的取值范围是()A .()(),13,-∞+∞B .()1,3C .()(),12,-∞+∞ D .()1,210.函数()()120f x x ax a =++->的定义域为R ,最小值为()M a ,给出以下四个结论:①()M a 最小值为1;②()M a 最大值为3;③()f x 在2,a ⎛⎫-∞ ⎪⎝⎭上单调递减;④只有唯一的a值使得()f x 的图象有一条垂直于x 轴的对称轴.其中所有正确结论是()A .①②B .②④C .②③D .①③二、填空题11.已知指数函数()f x 的图象经过点()1,2-,则这个函数的解析式是.12.函数()f x =的定义域是.13.写出一个a 的值,使关于x 的不等式1x a +<恰有两个整数解.a =.14.已知函数()92f x x x =+-,()2,x ∈+∞,当x =时,函数有最小值.15.定义在R 上的函数()f x 满足:对任意的[)1,x k ∈+∞,都存在唯一的()2,x k ∈-∞,使得()2f x =()1f x ,则称函数()f x 是“()V k 型函数”.(i )()21f x x =+是否为“()1V -型函数”?;(填“是”或“否”)(ii )若函数()()1,10,1a x x g x a x x a x ⎧+-≥⎪=>⎨⎪-<⎩是“()1V 型函数”,则实数a 的取值范围是.三、解答题16.已知集合{}2560A x x x =-+=,{}2280B x x x =+-=,{}22190C x x ax a =-+-=.(1)求A B ⋂;(2)求实数a 的值,使得A C ⋂≠∅,B C =∅ .17.解关于x 的不等式()2220x a x a --->.18.已知函数()231x f x x -=-(1)判断函数()f x 是否具有奇偶性?并说明理由;(2)用函数单调性的定义证明:()f x 在(1,)+∞上是增函数;(3)求函数()f x 在区间[]2,5上的值域.19.设函数()222f x x tx =-+,其中R t ∈.(1)若()f x 有两个零点.求实数t 的取值范围;(2)求()f x 在区间[]0,4上的最值.20.已知函数()()()2212,,1k f x x a g x h x x x =-+==+.(1)当1k =-时,方程()()f x g x =在()1,2上有实根,求实数a 的取值范围;(2)对任意R x ∈,不等式()()h x f x ≥恒成立,求实数a 的取值范围;(3)关于x 的不等式()()h x g x >的解集中的正整数解恰有3个,直接写出实数k 的取值范围.21.设集合{}1234,,,A a a a a =,其中1234,,,a a a a 是正整数,记1234A S a a a a =+++.对于i a ,14()j a A i j ∈≤<≤,若存在整数k ,满足()i j A k a a S +=,则称i j a a +整除A S ,设A n 是满足i j a a +整除A S 的数对()(),i j i j <的个数.(I )若{}1,2,4,8A =,{}1,5,7,11B =,写出A n ,B n 的值;(Ⅱ)求A n 的最大值;(Ⅲ)设A 中最小的元素为a ,求使得A n 取到最大值时的所有集合A .。

北京市首都师范大学附属中学第一学期期中考试高一(5-11班)数学试题(解析版)

北京市首都师范大学附属中学第一学期期中考试高一(5-11班)数学试题(解析版)

北京市首都师范大学附属中学第一学期期中考试高一数学试题一、单选题1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则A B =( )A .{|1}x x >B .{|23}x x <<C .{|13}x x <<D .{| 2 x x >或1}x <【答案】B【解析】计算{}{|(1)(3)0}=13B x x x x x =--<<<,再计算A B 得到答案.【详解】{}{|(1)(3)0}=13B x x x x x =--<<<,{|2}A x x =>,故{|23}A B x x ⋂=<<.故选:B . 【点睛】本题考查了交集运算,属于简单题.2.已知命题p :∃c >0,方程x 2-x +c =0有解,则¬p 为( ) A .∀c >0,方程x 2-x +c =0无解 B .∀c ≤0,方程x 2-x +c =0有解 C .∃c >0,方程x 2-x +c =0无解 D .∃c ≤0,方程x 2-x +c =0有解【答案】A【解析】利用特称命题的否定是全称命题,可得结果. 【详解】命题p :∃c >0,方程x 2-x +c =0有解,则¬p 为∀c >0,方程x 2-x +c =0无解, 故选:A. 【点睛】本题考查特称命题的否定,是基础题.3.已知定义在R 上的函数f (x )的图像是连续不断的,且有如下对应值表:那么函数f (x )一定存在零点的区间是( )A .(-∞,1)B .(1,2)C .(2,3)D .(3,4)【答案】C【解析】由表中数据,结合零点存在性定理可得出结果. 【详解】由表可知(1)(2)0,(2)(3)0,(3)(4)0f f f f f f ><>, 由零点存在性定理可知f (x )一定存在零点的区间是(2,3), 故选:C. 【点睛】本题考查零点存在性定理,理解零点存在性定理是关键,是基础题.4.下列函数中,在其定义域上既是偶函数,又在(0,+∞)上单调递减的( ) A .y =x 2B .y =3xC .y =x +1D .y 【答案】B【解析】运用函数的奇偶性和单调性对每个选项进行判断. 【详解】对A. y =x 2在(0,+∞)上单调递增,故排除;对B. y =3x,其定义域上既是偶函数,又在(0,+∞)上单调递减;对C. y =x +1,其为非奇非偶函数,故排除;对D. y 故选:B. 【点睛】本题考查了函数的奇偶性和单调性的判断,是基础题. 5.若a >b ,则下列四个不等式中必成立的是( ) A .ac >bc B .a c >b cC .a 2>b 2D .21ac +>21b c + 【答案】D【解析】根据不等式的基本性质,逐一分析选项是否恒成立. 【详解】A.当0c 时,不等式不成立;B.当0c <时,不等式不成立;C.当1,2a b ==-时,不等式不成立;D.因为210c +>,故不等式必成立, 故选:D. 【点睛】本题以命题的真假判断为载体,考查了不等式恒成立,不等式的基本性质,是基础题. 6.函数f (x的最大值为 ( ) A .2 5 B .1 2C.D .1【答案】B【解析】本小题主要考查均值定理.11()12f x ==≤=,即1x =时取等号.故选B .7.5a ≥是命题“[]1,2x ∀∈,20x a -≤”为真命题的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】“[]1,2x ∀∈,20x a -≤”等价于a 大于等于2x 的最大值,由x 的范围求得2x 的范围,可得a 的取值范围,然后结合充分条件、必要条件的定义可得结果. 【详解】因为“[]1,2x ∀∈,20x a -≤”等价于a 大于等于2x 的最大值, 而[]x 1,2∀∈,有[]21,4x ∈,所以4a ≥,由5a ≥,可得4a ≥成立,即[]1,2x ∀∈,20x a -≤成立; 反之,[]1,2x ∀∈,20x a -≤成立,可得4a ≥,不能推出5a ≥.5a ∴≥是命题“[]1,2x ∀∈,20x a -≤”为真命题的充分而不必要条件,故选A .【点睛】本题主要考查恒成立问题的求解方法,考查充分必要条件的判定,是基础题.判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.8.已知奇函数()y f x =的图像关于直线2x =对称,且()3f m =,则(4)f m -的值为( ) A .3 B .0C .-3D .13【答案】C【解析】由函数()y f x =的图象关于直线2x =对称,可得()(4)f m f m =-,再结合()y f x =为奇函数,求得(4)f m -的值.【详解】解:由函数()y f x =的图象关于直线2x =对称,可得()(4)f m f m =-, 再结合()y f x =为奇函数,可得()(4)(4)3f m f m f m =-=--=, 求得(4)3f m -=-, 故选:C. 【点睛】本题主要考查函数的奇偶性的性质,函数的图象的对称性,属于基础题.9.已知函数()2f x ax x =-,若对任意[)12,2,x x ∈+∞,且12x x ≠,不等式()()12120f x f x x x ->-恒成立,则实数a 的取值范围是A .1,2⎛⎫+∞⎪⎝⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,4⎛⎫+∞⎪⎝⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】对不等式()()1212f x f x x x --进行化简,转化为a (x 1+x 2)﹣1>0恒成立,再将不等式变形,得到a >121x x +恒成立,从而将恒成立问题转变成求121x x +的最大值,即可求出a 的取值范围. 【详解】不妨设x 2>x 1≥2,不等式()()1212f x f x x x --=22112212ax x ax x x x --+- =()()()12121212a x x x x x x x x -+---=a (x 1+x 2)﹣1,∵对任意x 1,x 2∈[2,+∞),且x 1≠x 2,不等式()()1212f x f x x x -->0恒成立,∴x 2>x 1≥2时,a (x 1+x 2)﹣1>0,即a >121x x +恒成立∵x 2>x 1≥2 ∴121x x +<14∴a≥14,即a 的取值范围为[14,+∞); 故选:D . 【点睛】本题考查了函数恒成立求参数取值范围,也是常考题型,本题以“任性函数”的形式考查函数恒成立求参数取值范围,一种方法,可以采用参变分离的方法,将恒成立转化为求函数的最大值和最小值,二种方法,将不等式整理为()0F x <的形式,即求()max 0F x < ,或是()0F x >的形式,即求()min 0F x < ,求参数取值.10.给定条件:①∃x 0∈R ,f (-x 0)=-f (x 0);②∀x ∈R ,f (1-x )=-f (1+x ).下列三个函数:y =x 3,y =|x -1|,y =221,143,1x x x x x ⎧-<⎨-+≥⎩中,同时满足条件①②的函数个数是( )A .0B .1C .2D .3【答案】B【解析】根据条件②得函数图象关于(1,0)对称,故可判断y =x 3;根据00110x x --+-=的解的情况,可判断y =|x -1|;最后验证y =221,143,1x x x x x ⎧-<⎨-+≥⎩满足①②. 【详解】解:令()(1)g x f x =+,则()(1)(1)()g x f x f x g x -=-=+=, 所以()g x 为偶函数,关于(0,0)对称,将()(1)g x f x =+的图象向右平移一个单位可得()f x 的图象,故()f x 图象关于(1,0)对称,故可排除3y x =;若存在一个0x 使得0011x x --=--,即00110x x --+-=,该方程无解,故|1|y x =-不满足②,排除;对于221,143,1x x y x x x ⎧-<=⎨-+≥⎩,当1x =时,2(1)(1)10,(1)(143)0f f -=--=-=--+=,其满足①, 画出图象如下:由图象可知,满足②. 故选:B. 【点睛】本题考查函数的基本性质,根据条件能判断出函数关于(1,0)对称是关键,属于中档题.二、填空题11.计算210.00013427--2327()8【答案】134【解析】化小数为分数,化根式为分数指数幂,再由有理指数幂的运算性质化简求值. 【详解】原式()()23123443339130.13109244-⎡⎤⎛⎫=-+=-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故答案为:134. 【点睛】本题考查有理指数幂的运算性质,是基础的计算题.12.函数y 11x -的定义域为____________. 【答案】[12,1)∪(1,+∞) 【解析】令被开方数大于等于0,同时分母非0,列出不等式组,求出x 的范围. 【详解】解:要使函数有意义需要21010x x -≥⎧⎨-≠⎩解得12x ≥且1x ≠,故答案为:[12,1)∪(1,+∞). 【点睛】求函数的定义域,要保证开偶次方根的被开方数大于等于0;分母非0;对数的底数大于0且不为1,真数大于0等方面考虑.13.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最大值为4,则a 的值为____________. 【答案】-1或1【解析】对a 分类讨论,利用函数f (x )=x 2-2x +1在区间[a ,a +2]上的最大值为4,建立方程,即可求得a 的值. 【详解】解:由题意,当0a ≥时,(2)4f a +=,即22)2(2)4(1a a +-++=,2(1)4,1a a ∴+=∴=;当0a <时,()4f a =,即2214a a -+=,2(1)4,1a a ∴-=∴=-;综上知,a 的值为1或−1. 故答案为:1或−1. 【点睛】本题考查二次函数在闭区间上的最值,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.14.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________. 【答案】(-∞,-12) 【解析】方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.15.能说明“若()()f x g x 对任意的[0,2]x ∈都成立,则()f x 在[0,2]上的最小值大于()g x 在[0,2]上的最大值”为假命题的一对函数可以是()f x =____,()g x =_______。

北京师大附中2013-2014学年上学期高一年级期中考试数学试卷(ap班) 后有答案

北京师大附中2013-2014学年上学期高一年级期中考试数学试卷(ap班)  后有答案

北京师大附中2013—2014学年上学期高一年级期中考试数学试卷(AP 班)本试卷满分100分,考试时间为120分钟。

第Ⅰ部分(70分)一、选择题:本大题有9小题,每小题3分,共27分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列关系中正确的是( ) A. 0∈∅B. π∈QC. ∅∈{∅}D.2R ∈2. 已知2()f x x m =+,()(())g x f f x =,则()g x 等于( )A. 22()x m +B. 4x m + C. 22()x m m ++D. 42x m +3. 下列函数中,与函数||y x =表示同一个函数的是( )A. 33y x =B. 2y x =C. 2()y x =D. 2||x y x =4. 下列函数中为奇函数的是( )A. 3()1f x x =+ B. 34()f x x = C. 25()f x x =D. 3()f x x x =+5. 已知f (x )是区间(,)-∞+∞上的偶函数并且在区间(0,)+∞上是减函数,则下列关系中正确的是( )A. (3)(1)f f <-B. (3)(1)f f >-C. (3)(1)f f =-D. 二者无法比较6. 已知函数y=mx+4的图象中有一部分位于第四象限,则关于m 的取值下列说法中正确的是( )A. m=0B. m<0C. 0<m<1D. m>07. 函数3()41f x x x =-+在下列哪个区间中一定具有零点?( )A. (2,1)--B. (1,0)-C. (1,2)D. (2,3)8. 已知12x -<<,则下列不等式中正确的是( )A. 0||1x ≤<B. 1||2x <<C. 0||2x ≤<D. ||1x >9. 下列关系中正确的是( )A. 0.80.733<B. 0.10.10.750.75-<C. 0.10.1log 0.5log 0.6<D. 0.50.51.10.9--<二、填空题:本大题有6小题,每小题4分,共24分。

2023-2024学年北京师大附属实验中学高一(上)期中数学试卷【答案版】

2023-2024学年北京师大附属实验中学高一(上)期中数学试卷【答案版】

2023-2024学年北京师大附属实验中学高一(上)期中数学试卷一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A ={x |x =2k +1,k ∈Z },B ={x |﹣2<x <4},那么A ∩B =( ) A .{﹣1,1}B .{1,3}C .{﹣1,1,3}D .{0,2,4}2.函数f (x )=√1−x 2的定义域是( ) A .[﹣1,1]B .(﹣1,1)C .(﹣∞,﹣1)∪[1,+∞)D .(﹣∞,﹣1)∪(1,+∞)3.下列函数中,在定义域内既是奇函数,又是增函数的是( ) A .y =x 2B .y =x +1C .y =−1xD .y =x 34.已知x >0,则x +9x的最小值为( ) A .﹣3B .3C .6D .105.已知函数f(x)={x 2−1,x ≥1,x −2,x <1.若f (a )=3,则a =( )A .±2B .2C .﹣2D .56.已知函数f (x )是定义在[﹣6,6]上的偶函数,且在[0,6]上单调递增.以下结论正确的是( ) A .f (﹣5)>f (π)>f (﹣2) B .f (π)>f (﹣2)>f (﹣5) C .f (π)>f (﹣5)>f (﹣2)D .f (﹣5)>f (﹣2)>f (π)7.已知函数y =f (x )图象是连续不断的,并且是R 上的增函数,有如下的对应值表以下说法中错误的是( ) A .f (0)<0B .当x >2时,f (x )>0C .函数f (x )有且仅有一个零点D .函数g (x )=f (x )+x 可能无零点8.已知f (x )是定义在R 上的函数,那么“存在实数M ,使得对任意x ∈R 总有f (x )≤M ”是“函数f (x )存在最大值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.数学里有一种证明方法为无字证明,是指仅用图形而无需文字解释就能不证自明的数学命题.在同一平面内有形状、大小相同的图1和图2,其中四边形ABCD 为矩形,△BCE 为等腰直角三角形,设AB =√a ,BC =√b(b ≥a >0),则借助这两个图形可以直接无字证明的不等式是( )A .a+b 2≥√abB .2aba+b ≤√ab C .a 2+b 2≥2√abD .a+b 2≤√a 2+b 2210.将5个1,5个2,5个3,5个4,5个5共25个数填入一个5行5列的表格内(每格填入1个数),使得同一行中任何两数之差的绝对值不超过2,设第k 行的所有数的和为r k (k =1,2,3,4,5),m 为r 1,r 2,r 3,r 4,r 5中的最小值,则m 的最大值为( ) A .8B .9C .10D .11二、填空题共5小题,每小题5分,共25分。

2023-2024学年北京师范大学附属中学高一上学期期中数学试题含答案解析

2023-2024学年北京师范大学附属中学高一上学期期中数学试题含答案解析

2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >4. 函数1111y x x=-+-的奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既奇函数,又是偶函数5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1 B. ()1,2C. ()2,3 D. ()3,46. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )是A. B.C. D.8. 函数()221xf x x =+的图象大致为( )A. B.C. D.9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.12. 函数2122x x y ++=值域是________.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.15. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且的210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润多少?20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x 在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件集合A 的个数.是的2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-【答案】D 【解析】【分析】根据交集的定义可求A B ⋂.【详解】因为{21,}B xx k k ==-∈N ∣,故B 中的元素为大于或等于1-的奇数,故{}1,3A B =- ,故选:D.2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤【答案】D 【解析】【分析】根据题意,由全称命题的否定是特称命题,即可得到结果.【详解】因为命题“x ∀∈R ,2230x x -+>”,则其否定为“x ∃∈R ,2230x x -+≤”故选:D3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >【答案】D 【解析】【分析】根据不等式基本性质,逐一分析四个不等式关系是否恒成立,可得答案.【详解】解:0a b <<Q , 0ab ∴>,故C 错误;的两边同除ab 得:11a b>,故A 错误;a b ∴>,故B 错误;两边同乘b 得:2ab b >,故D 正确;故选D .【点睛】本题以命题的真假判断与应用为载体,考查了不等式恒成立,不等式的基本性质等知识点,难度中档.4. 函数1111y x x=-+-奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既是奇函数,又是偶函数【答案】A 【解析】【分析】利用函数的奇偶性定义判定即可.【详解】由函数解析式可知{}1,R x x x ≠±∈,即定义域关于原点对称,又()()()11111111f x f x f x x x x x=-⇒-=-=-+--+,所以函数1111y x x=-+-是奇函数.故选:A5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1B. ()1,2C. ()2,3D. ()3,4【答案】B 【解析】【分析】利用转化法,结合数形结合思想进行判断即可.【详解】()33505f x x x x x =--=⇒=+函数3y x =和函数5y x =+在同一直角坐标系内图象如下图所示:的一方面()()()()()05,15,21,319,455f f f f f =-=-===,()()120f f <另一方面根据数形结合思想可以判断两个函数图象的交点只有一个,故选:B 6. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件 D. 非充分非必要条件【答案】A 【解析】【详解】试题分析:方程20x x m ++=有解,则11404m m ∆=-≥⇒≤.14m <是14m ≤的充分不必要条件.故A 正确.考点:充分必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )A. B.C. D.【答案】C【解析】【分析】根据图象中有一段为水平线段(表示离家的距离一直不变),逐项判断此时对应选项是否满足.【详解】图象显示有一段时间吴老师离家距离是个定值,故他所走的路程是一段以家为圆心的圆弧,所以A、B、D三个选项均不符合,只有选项C符合题意.故选:C .8. 函数()221xf x x =+的图象大致为( )A. B.C. D.【答案】D 【解析】【分析】根据函数的奇偶性判断所给函数的奇偶性,再通过函数值的正负即可判断.【详解】函数()221x f x x =+,则()()()()222211x x f x f x x x --==-=-+-+,即函数为奇函数,则A 、B 错误,当0x >时,()2201xf x x =>+.故D 正确故选:D9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定【答案】A 【解析】【分析】由条件可得()f x 在(),0∞-上是增函数,根据条件可得120x x >>-,所以()()12f x f x >-,从而得出答案.【详解】()f x 是R 上的偶函数,且在()0,∞+上是减函数故()f x 在(),0∞-上是增函数因为10x <且120x x +>,故120x x >>-;所以有()()12f x f x >-,又因为()()11f x f x ->所以有()()12f x f x ->-故选:A .10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-【答案】A 【解析】【分析】利用常变量分离法,结合数形给思想进行判断即可.【详解】令()11220f x m x m x x x =⇒=-=++,显然有0x ≠且2x ≠-且0m ≠,于是有()()()()()2,0122,,22,0x x x x x x x x m ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,设()()()()()()2,022,,22,0x x x g x x x x x x ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,它的图象如下图所示:因此要想函数()12f x m x x =-+有三个零点,只需0111m m <<⇒>,故选:A【点睛】方法点睛:解决函数零点个数问题一般的方法就是让函数值为零,然后进行常变量分离,利用数形结合思想进行求解.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.【答案】(),1-∞.【解析】【分析】利用二次根式的意义计算即可.【详解】由题意可知101x x ->⇒<,即函数的定义域为(),1-∞.故答案为:(),1-∞12. 函数2122x x y ++=的值域是________.【答案】(0,1]【解析】【分析】根据二次函数的性质求解2()22f x x x =++的范围可得函数2122x x y ++=的值域【详解】解:由22()22(1)1f x x x x =++=++,可得()f x 的最小值为1,2122y x x ∴=++的值域为(0,1].故答案为:(0,1].【点睛】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,1011、最值法,12、构造法,13、比例法.要根据题意选择.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.【答案】112【解析】【分析】运用基本不等式得出31x y +=≥,化简求得112xy ≤即可.【详解】 正实数,x y 满足:31x y +=,31x y +=≥∴112xy ≤,当且仅当12x =,16y =时等号成立.故答案为112【点睛】本题考查了运用基本不等式求解二元式子的最值问题,关键是判断、变形得出不等式的条件,属于容易题.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.【答案】 ①. 34-②. ()0,1【解析】【分析】利用分段函数代入解析式求函数值即可得第一空,利用函数的单调性结合图象得第二空.【详解】易知()()()()314144f ff f -=⇒-==-,又1x ≤时,()22211y x x x =-+=-单调递减,且min 0y =,110x x >⇒>时,11y x=-单调递减,且10y -<<,作出函数()y f x =的图象如下:所以方程()f x k =有两个不同解即函数()y f x =与y k =有两个不同交点,显然()0,1k ∈.故答案为:34-;()0,115. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.【答案】()3,2--【解析】【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有0k <满足,若集合A 的元素个数最少,由0k <,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k-<+<-即可求解.【详解】由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故当0k =时,可得{}4A x Z x =∈<;当0k >时, 2(6)(4)0kx k x ---≥可转化为24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+,所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭当0k <时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭,所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个.综上所述,当0k ≥时,集合A 的元素个数为无限个,当0k <时,集合A 的元素个数为有限个,故当0k <时,集合A 的元素个数最少,且当6k k+ 的值越大,集合A 的元素个数越少,令6()f k k k =+(0k <),则26()1f k k'=-,令()0f k '= 解得k =,所以()f k 在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k-<+<-,即32k -<<-时,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -<<-故答案为:()3,2--【点睛】本题主要考查集合的运算和解不等式,综合性比较强.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.【答案】(1){}34x x ≤< (2)][()3,23,--⋃+∞【解析】【分析】(1)利用一元二次不等式解法化简集合A ,然后利用补集和交集运算求解即可;(2)根据集合关系列不等式组求解即可.【小问1详解】因为{}2230A x x x =--<,所以{}13A x x =-<<,所以{}13U A x x x =≤-≥或ð,因为{}04B x x =<<,所以(){}34U A B x x ⋂=≤<ð.【小问2详解】因为{}13U A x x x =≤-≥或ð,由题意得23231a a a <+⎧⎨+≤-⎩或233a a a <+⎧⎨≥⎩,解得32a -<≤-或3a ≥.所以实数a 的取值范围是][()3,23,--⋃+∞.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.【答案】(1)()f x 在[]2,5x ∈单调递减,证明见解析 (2)322mm ⎧⎫≤<⎨⎬⎩⎭【解析】【分析】(1)根据函数单调性的定义即可作差求解,(2)由函数的单调性即可求解.【小问1详解】()f x 在[]2,5x ∈单调递减,证明如下:设1225x x ≤<≤,则()()()()()()21211222221212111111x x x x f x f x x x x x -+-=-=++++,由于1225x x ≤<≤,所以()()222121120,0,110x x x x x x ->+>++>,因此()()120f x f x ->,故()()12f x f x >,所以()f x 在[]2,5x ∈单调递减,【小问2详解】由(1)知()f x 在[]2,5x ∈单调递减,所以由()()121f m f m +<-得51212m m ≥+>-≥,解得322m ≤<,故不等式解集为322mm ⎧⎫≤<⎨⎬⎩⎭18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.【答案】18. 124M y y ⎧⎫=-≤<⎨⎬⎩⎭19. 14a <-或94a >【解析】【分析】(1)根据二次函数的性质即可求解集合M .(2)x ∈N 是x M ∈的必要条件,即M N ⊆,对a 分类讨论,解出不等式()(2)0x a x a -+-<的解集,可得a 的取值范围.【小问1详解】221124y x x x ⎛⎫=-=-- ⎪⎝⎭,的故函数在11,2⎛⎫- ⎪⎝⎭单调递减,在1,12⎛⎫ ⎪⎝⎭,故当12x =时取最小值min 14y =-,当=1x -时,2y =,当1x =时,0y =,故124y -≤<,所以124M y y ⎧⎫=-≤<⎨⎬⎩⎭,【小问2详解】x ∈N 是x M ∈的必要条件,即M N ⊆.当1a >时,2a a >-,此时(2,)N a a =-,所以1242a a ⎧-<-⎪⎨⎪≥⎩,解得94a >;当1a =时,N 为空集,不适合题意,所以1a =舍去; 当1a <时,2a a <-,此时(,2)N a a =-,所以1422a a ⎧<-⎪⎨⎪-≥⎩,解得14a <-综上可得a 取值范围是14a <-或94a >19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);的(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩; (2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【解析】【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【小问1详解】依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000(9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.【小问2详解】由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()(920092009000W x x x =-++≤-+=,当且仅当10000x x=,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.【答案】(1)217()()24f x x =++(2)2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩(3)13[,3{})3+∞⋃.【解析】【分析】(1)设出函数的解析式,结合函数的对称轴以及函数最值,求出函数的解析式即可;(2)通过讨论m 的范围,求出函数的单调区间,求出函数的最小值即可;(3)根据一元二次方程根的分布,结合零点存在性定理得到关于a 的不等式,解出即可.【小问1详解】设函数2()()f x a x h k =-+,由对称轴为12x =-,函数()f x 在R 上最小值为74可得得217()(24f x a x =++,将(0,2)代入()f x 得:1a =,故217()()24f x x =++;【小问2详解】()f x 的对称轴为12x=-,12m ≤-时,()f x 在[2m -,]m 递减,2min 17()()(24f x f m m ==++,1322m -<<时,()f x 在[2m -,12-递减,在1(2-,]m 递增,故min 17()()24f x f =-=,32m ≥时,()f x 在[2m -,]m 递增,故2min 37()(2)(24f x f m m =-=-+;综上,2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩;【小问3详解】2217()()1()1(1)124F x f x ax x ax x a x =--=++--=+-+在(0,3)上只有一个零点,当Δ0=时,即()2140a ∆=--=,解得3a =或1a =-当1a =-时,2210x x ++=,=1x -不满足题意,舍去,当3a =时,2210x x -+=,1x =满足题意,当0∆>时,当()(0)30F F ⋅<,解得133a >,此时()F x 在(0,3)上只有一个零点,由于(0)1F =,当()31330F a =-=时,此时133a =,此时210()103F x x x =+=-,解得13x =或3x =(舍去),满足条件,综上可得133a ≥,综上:a 的取值范围是13[,3{})3+∞⋃.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件的集合A 的个数.【答案】(1){1,2,3,,100}A = (2)证明见解析 (3)16个【解析】【分析】(1)根据题目条件,令n a n =,即可写出一个集合{1,2,3,,100}A = ;(2)由反证法即可证明;(3)因为任意的{}101,102,,200,x x A ∈⋯∉,所以集合{201,202,,205}A 中至多5个元素.设100100m a b -=≤,先通过判断集合A 中前100m -个元素的最大值可以推出(1100)i a i i m =-≤≤,故集合A 的个数与集合{201,202,203,204}的子集个数相同,即可求出.【详解】(1)答案不唯一. 如{1,2,3,,100}A = ; (2)假设存在一个0{101,102,,200}x ∈ 使得0x A ∈, 令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈,由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾,所以任意{101,102,,200}x ∈ ,x A ∉.(3)设集合{201,202,,205}A 中有(15)m m ≤≤个元素,100m a b -=,由题意,得12100200m a a a -<<< ≤,10011002100200m m a a a -+-+<<<< ,由(2)知,100100m a b -=≤.假设100b m >-,则1000b m -+>.因为10010010055100b m m -+-+=<-≤,由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤,所以由(2)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤,第21页/共21页又因为121001m a a a -<<< ≤,i a ∈N ,所以(1100)i a i i m =-≤≤. 任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,,100}{205}A m B =- , 以下证明集合0A 符合题意:对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,故满足条件的集合A 有4216=个.【点睛】本题主要考查数列中的推理,以及反证法的应用,解题关键是利用题目中的递进关系,找到破解方法,意在考查学生的逻辑推理能力和分析转化能力,属于难题.。

北京市师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷(含答案)

北京市师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷(含答案)

北京师大二附中2024—2025学年高一年级第一学期数学期中测试题本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题1.下列说法不正确的是( ) A.B.C.D.2.已知集合,则集合中元素的个数是( )A.1B.3C.5D.93.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件4.“运动改造大脑”,为了增强身体素质,某班学生积极参加学校组织的体育特色课堂,课堂分为球类项目A 、径赛项目B 、其他健身项目C .该班有25名同学选择球类项目A ,20名同学选择径赛项目B ,18名同学选择其他健身项目C ;其中有6名同学同时选择A 和名同学同时选择A 和C ,3名同学同时选择B 和.若全班同学每人至少选择一类项目且没有同学同时选择三类项目,则这个班同学人数是( )A.51B.50C.49D.485.用二分法求函数的零点,经过若干次运算后函数的零点在区间内,当(为精确度)时,函数零点的近似值与真实零点的误差的取值范围为( )A. B. C. D.6.已知关于的不等式的解集为,则实数的取值范围是( )A.B.C.D.7.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具*0∈N 0∈N 0.1∉Z 2∈Q{}0,1,2A ={},B x yx A y A =-∈∈∣x 8x,4B C (),a b a b ε-<ε02a bx +=0,4ε⎡⎫⎪⎢⎣⎭0,2ε⎡⎫⎪⎢⎣⎭[)0,ε[)0,2εx 210mx mx +->∅m ()(),40,∞∞--⋃+[)4,0-][(),40,∞∞--⋃+[]4,0-()f x R 12,x x ∈R ()()121222f x f x x x f ++⎛⎫=⎪⎝⎭()f x P ()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩()2f x x =()21f x x =-有性质的函数的个数为( )A.0B.1C.2D.38.已知“非空集合的元素都是集合的元素”是假命题,给出下列四个命题:①中的元素不都是的元素;②的元素都不是的元素;③存在且;④存在且;这四个命题中,真命题的个数为( )A.1个B.2个C.3个D.4个9.已知函数,则的定义域为( )A. B. C. D.10.已知函数,若存在区间,使得函数在上的值域为,则实数的取值范围是()A. B.C. D.二、填空题11.下列集合:①;②;③;④;⑤;⑥方程的实数解组成的集合.其中,是空集的所有序号为__________.12.若集合只含一个元素,则__________.13.若二次函数图象关于对称,且,则实数的取值范围是__________.14.若关于的不等式的解集中只有一个元素,则实数的取值集合为__________.15.若关于的方程的两个实数根是,则的最小值是__________.三、解答题16.设集合中的三个元素分别为,集合中的三个元素分别为.已知,求的值.17.已知集合,其中至少有一个集合不是空集,求实数的取值范围.P M P M P M P x P ∈x M ∈x M ∈x P ∉()f x =()()1212g x f x x =-+-3,2∞⎡⎫+⎪⎢⎣⎭()3,22,2∞⎡⎫⋃+⎪⎢⎣⎭()3,22,4∞⎡⎫⋃+⎪⎢⎣⎭()(),22,∞∞-⋃+()f x m =+[](),1a b b a >≥-()f x [],a b []2,2a b m 178m >-102m <≤2m ≤-1728m -<≤-{}0{}21,0,M xx n x n ==+<∈R ∣{}∅∅(){}0,0210x+={}2210M xax x =++=∣a =()y f x =2x =()()()01f a f f <<a x 212kx x k ≤++≤k m 2260m am a -++=,x y 22(1)(1)x y -+-A ,0,1a -B 1,,1c b a b++A B =,,a b c {}(){}{}22224430,10,220A xx ax a B x x a x a C x x ax a =+-+==+-+==+-=∣∣∣a18.已知关于的不等式.(1)若,求不等式的解集;(2)若不等式的解集为,求实数的范围.19.已知函数,且.(1)求实数的值;(2)判断函数在上的单调性,并证明;(3)求函数在上的最值.20.定义在区间上的函数满足,且对任意的都有.(1)证明:对任意的都有;(2)求的值;(3)计算.21.已知函数.(1)若函数在上单调递增,求实数的取值范围;(2)若存在实数使得关于的方程恰有三个不相等的实数根,求实数的取值范围.答案一、单选题1.A2.C3.B4.B5.B6.D7.C8.B9.C10.D二、填空题11.②④⑥12.0或113.14.15.8x ()221x x a a -->∈R 1a =R a ()2a f x x x =-()922f =a ()f x ()1,∞+()f x []2,3[]0,1()f x ()()010f f ==[]12,0,1x x ∈()()12122x x f f x f x +⎛⎫≤+ ⎪⎝⎭[]0,1x ∈()0f x ≥34f ⎛⎫ ⎪⎝⎭202411112422k ff f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()2f x x x a x a =-+∈R ()f x R a []0,4a ∈x ()()0f x tf a -=t ()(),04,∞∞-⋃+三、解答题16.因为,所以,解得,所以的值分别为.17.当三个集合全是空集时,所对应的三个方程都没有实数解,即解此不等式组,得.所以所求实数的取值范围为.18.(1)时,原不等式为,整理,得,对于方程,因为,所以它有两个不等的实数根,解得结合函数的图象得不等式的解集为或.(2)原不等式可化为,由于不等式解集为,结合函数图象可知,方程无实数根,所以,所以的范围是.19.(1)因为,且,所以,所以.(2)函数在上单调递增.证明如下:1,0AB a b =≠+10,1,1c b a a b+==-=+1,2,2a b c ==-=,,a b c 1,2,2-()2122223Δ164430,Δ(1)40,Δ480.a a a a a a ⎧=--+<⎪=--<⎨⎪=+<⎩312a -<<-a [)3,1,2∞∞⎛⎤--⋃-+ ⎥⎝⎦1a =2211x x -->2220x x -->2220x x --=Δ120=>1211x x ==+222y x x =--{1x x <-∣1x >+2210x x a --->R 221y x x a =---2210x x a ---=()Δ441840a a =++=+<a {2}aa <-∣()2a f x x x =-()922f =9422a -=1a =-()f x ()1,∞+由(1)可得,,任取,不妨设,则因为且,所以,所以,即,所以在上单调递增.(3)由(2)知,函数在上单调递增,则当时,有最小值;当时,有最大值.20.(1)任取,则有,即,于是,所以,对任意的都有.(2)由,得,于是,但由(1)的结果知,所以,()12f x x x=+()12,1,x x ∞∈+12x x <()()2121211122f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()2121112x x x x ⎛⎫=-+- ⎪⎝⎭()1221122x x x x x x -=-+()211212x x x x ⎛⎫=-- ⎪⎝⎭()()21121221x x x x x x --=()12,1,x x ∞∈+12x x <2112120,210,0x x x x x x ->->>()()210f x f x ->()()21f x f x >()f x ()1,∞+()f x []2,32x =()f x ()922f =3x =()f x ()1933f =[]120,1x x x ==∈()()22x f f x f x ⎛⎫≤+ ⎪⎝⎭()()2f x f x ≤()0f x ≥[]0,1x ∈()0f x ≥()()010f f ==()()01010002f f f +⎛⎫≤+=+=⎪⎝⎭102f ⎛⎫≤ ⎪⎝⎭102f ⎛⎫≥⎪⎝⎭102f ⎛⎫= ⎪⎝⎭由,则,于是,由(1)的结果知,所以.(3)由,得,于是,但由(1)的结果知,所以,继续求下去,可得,因此,.21.(1).由在上是增函数,则即,则范围为.(2)当时,在上是增函数,则关于的方程不可能有三个不等的实数根.当时,由,得时,对称轴,则在为增函数,此时的值域为;时,对称轴,则在为增函数,此时的值域为,在为减函数,此时的值域为;()10,102f f ⎛⎫== ⎪⎝⎭()1112100022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭304f ⎛⎫≤ ⎪⎝⎭304f ⎛⎫≥⎪⎝⎭304f ⎛⎫= ⎪⎝⎭()100,02f f ⎛⎫== ⎪⎝⎭()1012000022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭104f ⎛⎫≤ ⎪⎝⎭104f ⎛⎫≥⎪⎝⎭211042f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭10,1,2,3,,20242k f k ⎛⎫== ⎪⎝⎭2024111102422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()222,22,x a x x a f x x x a x x a x x a ⎧+-≥⎪=-+=⎨-++<⎪⎩()f x R 2,22,2a a a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩22a -≤≤a 22a -≤≤22a -≤≤()f x R x ()()0f x tf a -=(]2,4a ∈()()()222,2,x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩x a ≥()()22f x x a x =+-22a x -=()f x [),x a ∞∈+()f x ())[),2,f a a ∞∞⎡+=+⎣x a <()()22f x x a x =-++22a x +=()f x 2,2a x ∞+⎛⎤∈- ⎥⎝⎦()f x 2(2),4a ∞⎛⎤+- ⎥⎝⎦()f x 2,2a x ∞+⎡⎫∈+⎪⎢⎣⎭()f x 2(2)2,4a a ⎛⎤+ ⎥⎝⎦由存在,方程有三个不相等的实根,则,即存在,使得即可,令,只要使即可,而在上是增函数,,故实数的取值范围为.综上所述,实数的取值范围为.(]2,4a ∈()()2f x tf a ta ==2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭(]2,4a ∈2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭()2(2)8a g a a +=()max ()t g a <()g a (]2,4a ∈()max 9()48g a g ==t 91,8⎛⎫⎪⎝⎭t 91,8⎛⎫⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市师大附中-上学期高一年级期中考试数学试卷(AP 班)
说明:本试卷共150分,考试时间120分钟◎
一、选择题:本大题共10小题,每小题4分,共40分◎
在每小题给出的四个选项中,只有一项是符合题目要求的◎
1◎
设集合S ={1,3,5},T ={3,6},则S T 等于
A ◎
φ B ◎
{3} C ◎
{1,3,5,6} D ◎

2◎
函数f (x )=
x
-12的定义域是
A ◎
(-∞,1) B ◎
(]1,∞- C ◎
R D ◎
(-∞,1) ()∞+,1
3◎
下列函数中在其定义域上是偶函数的是
A ◎
y =2x B ◎
y =x 3
C ◎
y =x 2
1
D ◎
y =x
2
-
4◎
下列函数中,在区间(0,+∞)上是增函数的是
A ◎
y =-x 2
B ◎
y = x 2
-2 C ◎
y =2
21⎪⎭

⎝⎛ D ◎
y =log 2x 1
5◎
已知函数f (x )=x +1,x ∈R,则下列各式成立的是
A ◎
f (x )+f (-x )=2 B ◎
f (x )f (-x )=2 C ◎
f (x )=f (-x ) D ◎
–f (x )=f (-x )
6◎
设函数f (x )=a
x
-(a>0),且f (2)=4,则
A ◎
f (-1)>f (-2) B ◎
f (1)>f (2) C ◎
f (2)<f (-2) D ◎
f (-3)>f
(-2)
7◎
已知a =log 20◎
3,b =2
3
.0,c =0◎
3
2
.0,则a ,b ,c 三者的大小关系是
A ◎
a>b>c B ◎
b>a>c C ◎
b>c>a D ◎
c>b>a
8◎
函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,
2
7),则a 的值为 A ◎
2
2
B ◎
2 C ◎
4 D ◎
2
1 9◎
当0<a<1时,下列不等式成立的是
A ◎ a
1
.0<a
2
.0
B ◎
log a 0◎
1> log a 0◎
2 C ◎
a 2<a 3
D ◎
log a 2< log a 3
10◎
A semipro baseball league has teams with 21 players each ◎
League rules state that a player must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000◎
What is the maximum possible salary ,in dollars ,for a single player ?
A ◎
270,000 B ◎
385,000 C ◎
400,000 D ◎
430,000 E ◎
700,000
二、填空题:本大题共8小题,每小题4分,共32分◎
11◎
273
2+lg4+2lg5=__________
12◎
函数y =x 3log 2-的定义域是________
13◎
已知幂函数y =f (x )的图象过点⎪⎪⎭

⎝⎛2221,,则f (2)=_______
14◎
一种专门侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,
复制后所占内存是原来的2倍,那么开机后经过______分钟,该病毒占据64MB 内存◎
15◎
For real numbers a and b , define a $b =(a -b )
2

What is (x -y )2
$(y -
x )2
?______
16◎
已知f (x )=x 2
+(a -1)x +a 在区间[)∞+,2上是增函数,则a 的取值范围是______
17◎
若a>0,a ≠1,F (x )为偶函数,则G (x )=F (x )·log a (x +12+x )是_______
函数(填“奇”或“偶”),它的图像关于______对称◎
18◎
A class collects $50 to buy flowers for a classmate who is in the hospital ◎
Roses cost $3 each , and carnations cost $2 each ◎
No other flowers are to be used ◎
How many different bouquets could be purchased for exactly $50?_______
三、解答题:本大题共4小题,共28分
19◎
已知集合A ={}{
}
81log 24303≥=≤-<x
x B ,x x 集合,求A B ⋂◎
20◎
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆◎
租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元◎
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 21◎ 已知f (x )是定义在(0,+∞)上的增函数,且满足f (x y )=f (x )+f (y ),f (2)=1◎
(1)求f (8)
(2)求不等式f (x )-f (x -2)>3的解集
22◎
已知:2256≤x
且log 22
1≥
x , (1)求x 的取值范围;
(2)求函数f (x )= log 2(
2
x
)⎪⎪⎭
⎫ ⎝⎛⋅2log 2x 的最大值和最小值◎
【试题答案】
一、选择题
1◎
C 2◎
A 3◎
D 4◎
B 5◎
A 6◎
D 7◎
C 8◎
C 9◎
B 10◎
C
二、填空题 11◎
11
12◎
(]90,
13◎
2
14◎
45 15◎ 0
16◎ a 3-≥ 17◎ 原点 18◎
9
三、解答题
19◎
解:由0<3-x 314<≤-⇒≤x ∴ A =[)31,-
由2281log 3≥⇒≥x x ∴ B =[)∞+,2 ∴ A ⋂B =[)32, 20◎
解:(1)当每辆车月租金为3600元时,未租出的车辆数为
1250
3000
3600=-,所以
这时租出了88辆◎
(2)设每辆车的月租金定为x 元,则公司月收益为
f (x )=()5050
3000
150503000100⨯---⎪⎭⎫ ⎝⎛--
x x x 整理得:f (x )=-()307050405050
12100162502
2+--=-+x x x ∴ 当x =4050时,f (x )最大,最大值为f (4050)=307050元
21◎
解:(1)由题意得f (8)=f ()24⨯=f (4)+f (2)=f ()22⨯+f (2)=f (2)+f (2)
+f (2)=3f (2)
又1)2(=f ∴3)8(=f
(2)不等式化为f (x )>f (x -2)+3
∵ f (8)=3
∴ f (x )>f (x -2)+f (8)=f (8x -16)
∵ f (x )是(0,+∞)上的增函数 ∴ 716
2)
2(80)2(8<<⎩⎨
⎧->>-x x x x 解得
22◎
解:(1)由2256≤x
得x ≤8,由log 22
1

x 得2≥x ∴ 82≤≤x
(2)由(1)82≤≤x 得
3log 2
1
2≤≤x f (x )=log 2(
2
x )·log 2
(2
x
)=(log 2x -log 22)(log 2
x -log
2
2)
∴ f (x )=(log 2x -1)·(log 2x -2)=(log 2x -23)2-4
1◎
当log 2x =23,f (x )min =-4
1
,当log 2x =3,f (x )max =2。

相关文档
最新文档