2020届高考数学(理)一轮复习精品特训专题六:数列(5)等比数列及其前n项和A

合集下载

2020版高考数学一轮复习第六章数列第3讲等比数列及其前n项和教案(理)(含解析)新人教A版

2020版高考数学一轮复习第六章数列第3讲等比数列及其前n项和教案(理)(含解析)新人教A版

第3讲 等比数列及其前n 项和基础知识整合1.等比数列的有关概念 (1)定义如果一个数列从第□012项起,每一项与它的前一项的比等于□02同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的□03公比,通常用字母q 表示,定义的表达式为□04a n +1a n=q . (2)等比中项如果a ,G ,b 成等比数列,那么□05G 叫做a 与b 的等比中项,即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒□06G 2=ab (ab ≠0). 2.等比数列的有关公式 (1)通项公式:a n =□07a 1q n -1.等比数列的常用性质(1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.(6)等比数列{a n }满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列;满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.1.(2019·四川成都检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24 D .36答案 B解析 由题意,a 3+a 5+a 7=a 3(1+q 2+q 4)=78,所以1+q 2+q 4=13,解得q 2=3,所以a 5=a 3q 2=18.故选B.2.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值为( ) A .5 B .10 C .15 D .20答案 A解析 根据等比数列的性质,得a 2a 4=a 23,a 4a 6=a 25, ∴a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2. 而a 2a 4+2a 3a 5+a 4a 6=25,∴(a 3+a 5)2=25, ∵a n >0,∴a 3+a 5=5.3.(2019·广西柳州模拟)设等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72答案 A解析 S 4=a 11-q 41-q =15a 1,a 3=a 1q 2=4a 1,∴S 4a 3=154.故选A.4.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16答案 B解析 由a n a n +1=16n,得a n +1·a n +2=16n +1.两式相除得,a n +1·a n +2a n ·a n +1=16n +116n =16,∴q 2=16.∵a n a n +1=16n,可知公比为正数,∴q =4.5.等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42 D .48答案 A解析 由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×1-251-2=31.故选A.6.(2019·长春模拟)设数列{a n }的前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,且a 2=-2,则a 7=( )A .16B .32C .64D .128答案 C解析 由题意得S n +2+S n +1=2S n ,得a n +2+a n +1+a n +1=0,即a n +2=-2a n +1,∴{a n }从第二项起是公比为-2的等比数列,∴a 7=a 2q 5=64.故选C.核心考向突破考向一 等比数列的基本运算例1 (1)(2019·汕头模拟)已知等比数列{a n }的前n 项和为S n ,S 3=3a 1+a 2,则S 4S 2=( )A .2B .3C .4D .5答案 B解析 设等比数列的公比为q ,由题意a 1+a 2+a 3=3a 1+a 2得a 3=2a 1(a 1≠0),∴q 2=a 3a 1=2,∴S 4S 2=1-q 41-q2=1+q 2=3.故选B.(2)(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和.若S m =63,求m . 解 ①设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.触类旁通等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)所求问题可迎刃而解.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.即时训练 1.已知等比数列{a n }的前n 项和为S n ,且a 2018=3S 2017+2018,a 2017=3S 2016+2018,则公比q 等于( )A .3B .13C .4D .14答案 C解析 由a 2018=3S 2017+2018,a 2017=3S 2016+2018,得a 2017q -3S 2017=2018,a 2017-3S 2016=2018,∴a 2017q -3S 2017=a 2017-3S 2016,∴a 2017(q -1)=3(S 2017-S 2016)=3a 2017,∴q =4.故选C.2.等比数列{a n }中,a 1+a 3=10,a 2+a 4=30,则数列{a n }的前5项和S 5=( ) A .81 B .90 C .100 D .121答案 D解析 ∵等比数列{a n }中,a 1+a 3=10,a 2+a 4=30, ∴公比q =a 2+a 4a 1+a 3=3010=3,∴a 1+9a 1=10,解得a 1=1,∴数列{a n }的前5项和S 5=1×1-351-3=121.故选D.3.(2019·安徽皖江名校联考)已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=________.答案 128解析 ∵a 2·a 4=a 23=16,∴a 3=4(负值舍去),∵a 3=a 1q 2=4,S 3=7,∴q ≠1,S 2=a 11-q 21-q=4q 21+q1-q1-q=3,∴3q 2-4q-4=0,解得q =-23或q =2,∵a n >0,∴q =-23舍去,∴q =2,∴a 1=1,∴a 8=27=128.考向二 等比数列的性质角度1 等比数列项的性质例 2 (1)(2019·四川绵阳模拟)等比数列{a n }的各项均为正数,且a 1+2a 2=4,a 24=4a 3a 7,则a 5=( )A.116B.18 C .20 D.40答案 B解析 设等比数列的公比为q .由a 24=4a 3a 7,得a 24=4a 25,所以q 2=⎝ ⎛⎭⎪⎫a 5a 42=14,解得q =±12.又因为数列的各项均为正数,所以q =12.又因为a 1+2a 2=4,所以a 1+2a 1q =a 1+2a 1×12=4,解得a 1=2,所以a 5=a 1q 4=2×⎝ ⎛⎭⎪⎫124=18.故选B.(2)在等比数列{a n }中,公比a 1+a m =17,a 2a m -1=16,且前m 项和S m =31,则项数m =________.答案 5解析 由等比数列的性质知a 1a m =a 2a m -1=16,又a 1+a m =17,q >1,所以a 1=1,a m =16,S m =a 11-q m 1-q =a 1-a m q 1-q =1-16q 1-q=31,解得q =2,a m =a 1q m -1=2m -1=16.所以m =5.触类旁通在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程组求解,但如果灵活运用等比数列的性质“若m +n =p +q m ,n ,p ,q ∈N*,则有a m a n =a p a q ”,则可减少运算量,解题时,要注意性质成立的前提条件,有时需要进行适当变形.即时训练 4.(2019·福建三明模拟)已知数列{a n }是各项均为正值的等比数列,且a 4a 12+a 3a 5=15,a 4a 8=5,则a 4+a 8=( )A .15 B. 5 C .5 D .25答案 C解析 ∵a 4a 12+a 3a 5=15,∴a 24+a 28=15,又a 4a 8=5,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=25,又a 4+a 8>0,∴a 4+a 8=5.故选C.5.(2019·江西联考)在等比数列{a n }中,若a 2a 5=-34,a 2+a 3+a 4+a 5=54,则1a 2+1a 3+1a 4+1a 5=( ) A .1 B .-34C .-53D .43答案 C解析 因为数列{a n }是等比数列,a 2a 5=-34=a 3a 4,a 2+a 3+a 4+a 5=54,所以1a 2+1a 3+1a 4+1a 5=a 2+a 5a 2a 5+a 3+a 4a 3a 4=54-34=-53.故选C. 角度2 等比数列和的性质例3 (1)已知各项都是正数的等比数列{a n },S n 为其前n 项和,且S 3=10,S 9=70,那么S 12=( )A .150B .-200C .150或-200D .400或-50答案 A解析 解法一:由等比数列的性质知S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,∴(S 6-10)2=10(70-S 6),解得S 6=30或-20(舍去),又(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),即402=20(S 12-70),解得S 12=150.故选A.解法二:设等比数列前n项和为S n =A -Aq n,则⎩⎪⎨⎪⎧A 1-q 9=70,A 1-q3=10,两式相除得1+q 3+q 6=7,解得q 3=2或-3(舍去),∴A =-10.∴S 12=-10(1-24)=150.故选A.(2)已知等比数列{a n }的前10项中,所有奇数项之和为8514,所有偶数项之和为17012,则S =a 3+a 6+a 9+a 12的值为________.答案 585解析 设公比为q ,由⎩⎪⎨⎪⎧S偶S奇=q =2,S奇=a 1[1-q 25]1-q2=8514,得⎩⎪⎨⎪⎧a 1=14,q =2,∴S =a 3+a 6+a 9+a 12=a 3(1+q 3+q 6+q 9)=a 1q 2(1+q 3)(1+q 6)=585.触类旁通1等比数列前n 项和的性质主要是若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列.(2)注意等比数列前n 项和公式的变形.当q ≠1时,S n =a 11-q n 1-q =a 11-q -a 11-q·q n,即S n =A -Aq n(q ≠1).3利用等比数列的性质可以减少运算量,提高解题速度.解题时,根据题目条件,分析具体的变化特征,即可找到解决问题的突破口.即时训练 6.(2019·云南玉溪模拟)等比数列{a n }中,公比q =2,a 1+a 4+a 7+…+a 97=11,则数列{a n }的前99项的和S 99=( )A .99B .88C .77D .66答案 C解析 解法一:由等比数列性质知a 1,a 4,a 7,…,a 97是等比数列且其公比为q 3=8,∴a 11-8331-8=11,∴a 1(1-299)=-77,∴S 99=a 11-q 991-q=77.故选C.解法二:令S 0=a 1+a 4+a 7+…+a 97=11,S ′=a 2+a 5+a 8+…+a 98,S ″=a 3+a 6+a 9+…+a 99.由数列{a n }为等比数列,q =2易知S 0,S ′,S ″成等比数列且公比为2,则S ′=2S 0=22,S ″=2S ′=44,所以S 99=S 0+S ′+S ″=11+22+44=77.故选C.7.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26 D .16答案 B解析 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列.由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列.又∵S 3n =14,∴S 4n =14+2×23=30.故选B.考向三 等比数列的判定与证明例4 (1)(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. ①求b 1, b 2, b 3;②判断数列{b n }是否为等比数列,并说明理由; ③求{a n }的通项公式. 解 ①由条件可得a n +1=2n +1na n . 将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入,得a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.②{b n }是首项为1,公比为2的等比数列.由题设条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.③由②可得a n n=2n -1,所以a n =n ·2n -1.(2)(2019·安徽江南十校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. ①证明:{S n -n +2}为等比数列; ②求数列{S n }的前n 项和T n .解 ①证明:当n =1时,a 1=S 1,S 1-2a 1=1-4,解得a 1=3.由S n -2a n =n -4可得S n -2(S n -S n -1)=n -4(n ≥2),即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2].因为S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. ②由①知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.触类旁通判定一个数列为等比数列的常用方法(1)定义法:若a n +1a n=q (q 是常数),则数列{a n }是等比数列. 2等比中项法:若a 2n +1=a n a n +2n ∈N *,则数列{a n }是等比数列.3通项公式法:若a n =Aq nA ,q 为常数,则数列{a n }是等比数列.即时训练 8.(2019·柳州模拟)已知数列{a n }的前n 项和为S n ,满足S n =2a n -2n (n ∈N *).(1)证明:{a n +2}是等比数列,并求{a n }的通项公式;(2)数列{b n }满足b n =log 2(a n +2),T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,若T n <a 对任意正整数n 都成立,求a 的取值范围.解 (1)证明:因为S n =2a n -2n (n ∈N *) ①, 所以a 1=S 1=2a 1-2,得a 1=2.当n ≥2时,S n -1=2a n -1-2(n -1) ②.由①②两式相减得a n =2a n -1+2,变形得a n +2=2(a n -1+2).又因为a 1+2=4,所以{a n +2}是以4为首项,2为公比的等比数列,所以a n +2=4×2n-1,所以a n =4×2n -1-2=2n +1-2(n ≥2).又a 1=2也符合上述表达式,所以a n =2n +1-2(n ∈N *).(2)因为b n =log 2(a n +2)=log 22n +1=n +1,1b n b n +1=1n +1n +2=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,依题意得a ≥12,即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。

大高考2020版高考数学一轮总复习第6章数列第三节等比数列及其前n项和课件理

大高考2020版高考数学一轮总复习第6章数列第三节等比数列及其前n项和课件理

高考AB卷
学法大视野
(4)前 n 项和公式法:若数列{an}的前 n 项和 Sn=k·qn-k(k 为 常数且 k≠0,q≠0,1),则{an}是等比数列. 提醒:(1)前两种方法常用于解答题中,而后两种方法常用于 选择、填空题中的判定. (2)若要判定一个数列不是等比数列,则只需判定存在连续三 项不成等比数列即可.
高考AB卷
学法大视野
解析 (1)∵a4·a8=a26=4,又{an}的各项都是正数, ∴a6=2,∴a5·a6·a7=a36=8,故选 B. (2)∵a2n+1-6a2n=an+1·an, ∴(an+1-3an)(an+1+2an)=0, ∵an>0,∴an+1=3an,又 a1=2, ∴{an}是首项为 2,公比为 3 的等比数列, ∴Sn=2(11--33n)=3n-1.
a1(1-qn)
(2)当公比 q≠1 时,Sn= 1-q
a1-anq = 1-q
.
2.等比数列的性质
已知数列{an}是等比数列,Sn 是其前 n 项和. (1)若 m+n=p+q=2r,则 am·an= ap·aq = a2r ;
(2)数列 am,am+k,am+2k,am+3k,…仍是等比数列;
(3)数列 Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时{an}的
一、“超前思考,比较听课”
什么叫“超前思考,比较听课”?简单地说,就是同学们在上课的时候不仅要跟着老师的思路走,还要力争走在老师思路的前面,用自己的思路和老师的思路进行对 比,从而发现不同之处,优化思维。
比如在讲《林冲棒打洪教头》一文,老师会提出一些问题,如林冲当时为什么要戴着枷锁?林冲、洪教头是什么关系?林冲为什么要棒打洪教头?••••••
高考AB卷

2020届高三(文理)数学一轮复习《等比数列及前n项和》专题测试(学生版)

2020届高三(文理)数学一轮复习《等比数列及前n项和》专题测试(学生版)

《等比数列及其前n 项和》专题题型一 等比数列基本量的运算 1、在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为2、已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=3、在等比数列{a n }中,a 1=2,公比q =2,若a m =a 1a 2a 3a 4(m ∈N +),则m =4、在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=5、在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.6、等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=7、设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=8、在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为9、设{a n }是公比为正数的等比数列,S n 为{a n }的前n 项和,若a 1=1,a 5=16,则数列{a n }的前7项和为10、已知等比数列{a n }的公比为正数,且a 5·a 7=4a 24,a 2=1,则a 1=11、等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=12、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=13、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.14、在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.15、已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于 16、等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 17、若等比数列{a n }的前n 项和为S n ,且S n =m ·5n +1,则实数m =________.18、已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.19、已知等比数列{a n }满足a 1=1,a 3a 7=16,则该数列的公比为20、已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于21、已知等比数列{a n }的公比为-2,且S n 为其前n 项和,则S 4S 2等于22、数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n等于23、已知等比数列{a n }的前n 项和为S n ,且a 1=2 018,a 2+a 4=-2a 3,则S 2 019=________.24、已知各项均为正数的等比数列{a n }满足a 1=12,且a 2a 8=2a 5+3,则a 9=________. 25、设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=________.26、等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .题型二 等比数列的性质类型一 等比数列项的性质1、已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=2、在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于3、等比数列{a n }各项均为正数,a 3a 8+a 4a 7=18,则1+2+…+10= _____4、已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为5、等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.6、等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.7、在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为 8、已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.9、递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,前n 项和S n =42,则n 等于 类型二 等比数列前n 项和的性质1、设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6= 2、设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于3、设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=________. 4、已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于5、设等比数列{a n }的前n 项和为S n ,S 2=-1,S 4=-5,则S 6等于6、已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N). 题型三 等比数列的判定与证明1、已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n ,且a 1=8.(1)证明:数列{a n -3n }为等比数列,并求数列{a n }的通项公式;(2)记b n =a n 3n ,求数列{b n }的前n 项和T n .2、设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.设b n =a n +1-2a n ,证明:数列{b n }是等比数列;3、已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N +. (1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求数列{a n }的通项公式.题型四 等差、等比数列的综合问题1、在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .2、设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.3、在数列{a n }中,a 1=2,a n +1=n +12n a n(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n 4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2.。

2020年高考理科数学一轮总复习:等比数列及其前n项和教师版

2020年高考理科数学一轮总复习:等比数列及其前n项和教师版

2020年高考理科数学一轮总复习等比数列及其前n 项和[基础梳理]1.等比数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数. ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab (a 、G 、b 不为零). 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q ,则a m ·a n =a p ·a q . 特别地,若m +n =2p ,则a m ·a n =a 2p .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1).(4)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列. (5)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n+2k,a n +3k ,…为等比数列,公比为q k .1.(1)在等比数列求和时,要注意q =1和q ≠1的讨论. (2)当{a n }是等比数列且q ≠1时,S n =a 11-q -a 11-q ·q n=A -A ·q n .2.当项数是偶数时,S 偶=S 奇·q ;当项数是奇数时,S 奇=a 1+S 偶·q . [四基自测]1.等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16 D .32答案:C2.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( ) A .63 B .64 C .127 D .128答案:C3.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案:12,484.设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案:345.记S n 为数列{a n }的前n 项和,若S n =2a n +1,则a n =________. 答案:-2n -1考点一 等比数列的基本运算及性质◄考基础——练透 角度1 利用基本量进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.解析:∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1, ∴a n =S n -S n -1=2a n -2a n -1, 即a n =2a n -1,当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1为-1,公比q 为2的等比数列, ∴S n =a 1(1-q n )1-q =-1(1-2n )1-2=1-2n ,∴S 6=1-26=-63. 答案:-63(2)(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和.若S m =63,求m . 解析:①设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. ②若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.角度2 利用性质进行计算[例2] (1)在等比数列{a n }中,已知a 3,a 7是方程x 2-6x +1=0的两根,则a 5=( ) A .1 B .-1 C .±1D .3解析:在等比数列{a n }中,因为a 3,a 7是方程x 2-6x +1=0的两个根,所以a 3+a 7=6>0,a 3·a 7=1>0,所以a 3>0,a 7>0,a 5>0,因为a 3·a 7=a 25=1,所以a 5=1. 答案:A(2)已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.解析:因为数列1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10;因为数列1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,又b 2=1×q 2>0(q 为等比数列的公比),所以b 2=3,则b 2a 1+a 2=310. 答案:310解决等比数列的基本运算常用方法1.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________.解析:设等比数列{a n }的公比为q ,则⎩⎨⎧a 3=a 1q 2=3,①a 10=a 1q 9=384,②②÷①,得q 7=128,即q =2,把q =2代入①,得a 1=34,所以数列{a n }的通项公式为a n =a 1q n -1=34×2n-1=3×2n -3.答案:3×2n -32.等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解析:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.答案:323.(2019·哈尔滨模拟)等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12 B .10 C .8D .2+log 3a 5解析:由题a 5a 6+a 4a 7=18,所以a 5a 6=9,log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=5log 39=10. 答案:B4.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .80解析:由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32.所以a 7+a 8=40×(32)3=135. 答案:A考点二 等比数列的判定与证明◄考能力——知法[例3] (1)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8, 即a 26=a 3·a 9. 答案:D(2)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .①求b 1,b 2,b 3;②判断数列{b n }是否为等比数列,并说明理由; ③求{a n }的通项公式.解析:①由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.②{b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. ③由②可得a nn =2n -1, 所以a n =n ·2n -1.等比数列的判断与证明的常用方法续表1.已知数列{a n }的前n 项和为S n =a n -1(a 是不为0的实数),则{a n }( ) A .一定是等比数列 B .一定是等差数列 C .是等差数列或是等比数列D .既不可能是等差数列,也不可能是等比数列解析:当a =1时,{a n }的各项都为0,这个数列是等差数列,但不是等比数列;当a ≠1时,由S n =a n -1知,{a n }是等比数列,但不是等差数列,故选C. 答案:C2.(2019·泰安模拟)数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),设b n =a n +1-2a n .(1)求证:{b n }是等比数列;(2)设c n =a n 3n -1,求证:{c n }是等比数列.证明:(1)a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n . b n +1b n =a n +2-2a n +1a n +1-2a n =(4a n +1-4a n )-2a n +1a n +1-2a n=2a n +1-4a n a n +1-2a n=2. 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是公比为2,首项为3的等比数列.(2)由(1)知b n =3·2n -1=a n +1-2a n ,所以a n +12n -1-a n 2n -2=3.所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -2是等差数列,公差为3,首项为2.所以a n2n -2=2+(n -1)×3=3n -1. 所以a n =(3n -1)·2n -2,所以c n =2n -2.所以c n +1c n=2n -12n -2=2.所以数列{c n }为等比数列.考点三 等比数列前n 项和及综合应用◄考素养——懂理 角度1 等比数列前n 项和性质及应用[例4] (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18 C.578D.558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18. 答案:A(2)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.解析:由题意,得⎩⎨⎧ S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎨⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 答案:2角度2 等比数列通项与和的综合应用[例5] 已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式. (2)证明:S n +1S n≤136(n ∈N *).解析:(1)设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×(-12)n -1=(-1)n -1·32n . (2)证明:由(1)知,S n =1-(-12)n , S n +1S n=1-(-12)n +11-(-12)n =⎩⎪⎨⎪⎧2+12n (2n+1),n 为奇数,2+12n (2n -1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n≤136.1.涉及到a n 与S n 的单独值,可以用基本量a 1和q 进行转化.2.涉及到等比数列“a p ·a k ”型问题,可利用性质转化.3.涉及到S n 与a n 的关系时,可利用a n =S n -S n -1(n ≥2)转化.4.涉及到等比数列部分项的和,可利用性质转化.1.(2019·沈阳模拟)在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=__________.解析:因为S 99=30,即a 1(299-1)=30.又因为数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,所以a 3+a 6+a 9+…+a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207. 答案:12072.设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .解析:(1)证明:由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1. 故对一切n ∈N *,a n +2=3a n .(2)由(1)知,a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列,因此a 2n -1=3n -1,a 2n =2×3n-1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=3(3n -1)2,从而S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1=32(5×3n -2-1). 综上所述,S n =⎩⎪⎨⎪⎧32(5×3n -32-1),n 是奇数,32(3n2-1),n 是偶数.数学建模、数学运算——等比数列的传统文化的学科素养[例1] (2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题 :“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A.1盏B .3盏 C.5盏 D .9盏解析:本题主要考查数学文化及等比数列基本量的计算.由题意可知,由上到下灯的盏数a 1,a 2,a 3,…,a 7构成以2为公比的等比数列,∴S 7=a 1(1-27)1-2=381,∴a 1=3.故选B. 答案:B[例2] (2018·高考北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ) A.32f B.322f C.1225f D.1227f 解析:本题主要考查等比数列的概念和通项公式及等比数列的实际应用. 由题意知,十三个单音的频率构成首项为f ,公比为122的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=1227f ,故选D. 答案:D[例3] 中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( )A.a,b,c依次成公比为2的等比数列,且a=50 7B.a,b,c依次成公比为2的等比数列,且c=50 7C.a,b,c依次成公比为12的等比数列,且a=507D.a,b,c依次成公比为12的等比数列,且c=507解析:由题意可知b=12a,c=12b,∴ba=12,cb=12.∴a、b、c成等比数列且公比为12.∵1斗=10升,∴5斗=50升,∴a+b+c=50,又易知a=4c,b=2c,∴4c+2c+c=50,∴7c=50,∴c=507,故选D.答案:D[例4]《张邱建算经》是我国古代内容极其丰富的数学名著.书中有如下问题:“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”其意思是:“现有一匹马,行走的速度逐渐变慢,每天走的里程是前一天的一半,连续行走7天,共走700里路,问每天走的里数为多少?”则该马第4天走的里数为()A.128127 B.700127C.5 600127 D.44 800127解析:依题意,马每天走的里程形成一个等比数列,设其首项为a1,公比为q,则q=12,又S7=a1(1-q7)1-q=700,解得a1=44 800127,从而a4=44 800127×(12)3=5 600127,故选C.答案:C课时规范练1.在公比为2的等比数列{a n}中,若sin(a1a4)=25,则cos(a2a5)的值是()A.-75 B.1725C.75 D.725解析:由等比数列的通项公式可知a 2a 5=(a 1a 4)q 2=2(a 1a 4),cos(a 2a 5)=1-2sin 2(a 1a 4)=1-2×⎝ ⎛⎭⎪⎫252=1725. 答案:B2.(2019·重庆模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( )A .16B .32C .64D .128解析:由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎨⎧a 1(1+q +q 2)=14,a 3=a 1q 2=8,解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C. 答案:C3.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:设等差数列的公差为d ,d ≠0,a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),d 2=-2d (d ≠0),所以d =-2,所以S 6=6×1+6×52×(-2)=-24. 答案:A4.(2019·临沂模拟)已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12 D.12解析:当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,又因为{a n }是等比数列,所以a +16=a 2,所以a =-13. 答案:A5.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B6.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由题意得-1+3d =-q 3=d =3,q =-a 2b 2=-1+3-1×(-2)=1.答案:17.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=________.解析:设数列{a n }的公比为q ,则q 3=a 5a 2=18,解得q =12,a 1=a 2q =4.易知数列{a n a n +1a n +2}是首项为a 1a 2a 3=4×2×1=8,公比为q 3=18的等比数列,所以a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=8⎝ ⎛⎭⎪⎫1-18n 1-18=647(1-2-3n ). 答案:647(1-2-3n )8.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式.(2)若S 5=3132,求λ.解析:(1)由题意得a 1=S 1=1+λa 1,故a 1=11-λ, 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,所以a n +1a n=λλ-1, 因此数列{a n }是以a 1=11-λ为首项,以λλ-1为公比的等比数列,a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n ,又因为S 5=3132, 所以3132=1-⎝ ⎛⎭⎪⎫λλ-15,即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1. 9.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 证明:(1)由a n +1=3a n +1得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. 所以a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n<32.。

2020版高考数学一轮复习第六章数列6.3等比数列及其前n项和课件新人教A版

2020版高考数学一轮复习第六章数列6.3等比数列及其前n项和课件新人教A版

知识梳理
-6-
知识梳理 双基自测
12345
1.下列结论正确的打“√”,错误的打“×”.
(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列. ( (2)G为a,b的等比中项⇔G2=ab.( )
(3)等比数列中不存在数值为0的项.( )
(4)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数 列.( )

������1 < 0, 0 < ������ <
1时,{an}是
②满足
������1 > 0, 0 < ������ <
1

������������1><10,时,{an}是
③当 ������������1=≠10,时,{an}为 常 数列;
递增 递减
数列; 数列;
④当q<0时,{an}为摆动数列. (5)当q≠-1或q=-1,且n为奇数时,Sn,S2n-Sn,S3n-S2n仍成等比数列,其 公比为 qn .
a4=
.
(3)等比数列{an}的各项均为实数,其前 n 项和为 Sn.已知
S3=74,S6=643,则 a8=
.
思考解决等比数列基本运算问题的常见思想方法有哪些?
答案: (1)B (2)-8 (3)32
-12-
考点1
考点2
考点3
考点4
解析:(1)由题意可知公比q≠1.

������2������4 ������3 =
6.3 等比数列及其前n项和
知识梳理
-2-
知识梳理 双基自测
12
1.等比数列
(1)等比数列的定义

2020版高考数学一轮复习第5章数列第3节等比数列及其前n项和教学案含解析理20190627336

2020版高考数学一轮复习第5章数列第3节等比数列及其前n项和教学案含解析理20190627336

等比数列基本量的运算 1.(2019 ·太原模拟 ) 已知公比 q≠1的等比数列 { an} 的前 n 项和为 Sn,若 a1= 1,S3=3a3, 则 S5= ( )
A. 1
B
.5
31 C. 48
11 D. 16
D [ 由 S3= 3a3 得 a1+ a2= 2a3,
∴1+ q= 2q2,解得
1 q=- 或 q= 1( 舍 ) .
那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母
q 表示,定义的
表达式为
an+ 1 an =
q(n

N* , q
为非零常数
).
(2) 等比中项:如果 a,G, b 成等比数列,那么 G叫做 a 与 b 的等比中项.即 G是 a 与 b 的等比中项 ? a,G, b 成等比数列 ? G2= ab.
[ 解 ] (1) 设 { an} 的公比为 q,由题设得 an= qn-1.
由已知得 q4= 4q2,解得 q= 0( 舍去 ) , q=- 2 或 q= 2.

an= ( - 2) n- 1 或
an=
n-
2
1
.
n
(2)

an= ( - 2) n-1,则
1- Sn=
- 3
.
由 Sm= 63 得 ( - 2) m=- 188,此方程没有正整数解. 若 an= 2n-1,则 Sn= 2n- 1. 由 Sm=63 得 2m=64,解得 m= 6.
2
C
[ 公比
a4 18 3
q=
= a3
= 12
2
,则
a6= a4q2=18×
3 2
81 = .]

2020版高考数学大一轮复习第五章数列第3节等比数列及其前n项和理解析版新人教A版

2020版高考数学大一轮复习第五章数列第3节等比数列及其前n项和理解析版新人教A版

第3节 等比数列及其前n 项和考试要求 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.体会等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列. 数学语言表达式:a na n -1=q (n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q.3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n 也是等比数列.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(必修5P53A1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.(必修5P54A8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n)1-2=126,解得n =6. 答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n =1的情形进行验证.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n)1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________. 解析 (1)根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73. 答案 (1)B (2)73[思维升华]1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.(1)方程思想:如求等比数列中的基本量.(2)分类讨论思想:如求和时要分q =1和q ≠1两种情况讨论,判断单调性时对a 1与q 分类讨论. [易错防范]1.特别注意q =1时,S n =na 1这一特殊情况.2.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1时且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想. 类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2. 又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d . 由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q nS m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0. 则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案 (1)2 (2)3116基础巩固题组 (建议用时:40分钟)一、选择题1.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C2.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( ) A.16B.8C.2 2D.4解析 因为a 4与a 14的等比中项为22, 所以a 4·a 14=a 7·a 11=(22)2=8, 所以2a 7+a 11≥22a 7a 11=22×8=8, 所以2a 7+a 11的最小值为8. 答案 B3.(2019·上海崇明区模拟)已知公比q ≠1的等比数列{a n }的前n 项和为S n ,a 1=1,S 3=3a 3,则S 5=( ) A.1B.5C.3148D.1116解析 由题意得a 1(1-q 3)1-q =3a 1q 2,解得q =-12或q =1(舍),所以S 5=a 1(1-q 5)1-q=1-⎝ ⎛⎭⎪⎫-1251-⎝ ⎛⎭⎪⎫-12=1116. 答案 D4.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏B.3盏C.5盏D.9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B5.(2019·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则ab=( )A.-3B.-1C.1D.3解析 ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3, ∴(2a )2=(a +b )×6a ,解得a b=-3.答案 A 二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 13+a 14a 14+a 15=________.解析 设{a n }的公比为q .由题意得a 1+2a 2=a 3,则a 1(1+2q )=a 1q 2,q 2-2q -1=0,所以q =1+2(舍负). 则a 13+a 14a 14+a 15=1q=2-1.答案2-17.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n . 答案12n 8.(2018·南京模拟)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022. 答案 1 022 三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2.故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.10.已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个首项为1,公差为2的等差数列,a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n1-3=3n-12.T n ≤S n 即3n-12≤n 2,又n ∈N *,所以n =1或2.能力提升题组 (建议用时:20分钟)11.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( ) A.4B.5C.6D.7解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6.答案 C12.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n-1)2B.12(9n-1)C.9n-1D.14(3n-1) 解析 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n-3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).答案 B13.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25, ∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.答案 8314.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n-1,所以n (a n +1)=n ×2n,T n =2+2×22+3×23+…+n ×2n ,①2T n =22+2×23+3×24+…+n ×2n +1,②①-②得:-T n =2+22+23+ (2)-n ×2n +1=2(1-2n)1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2.所以T n=(n-1)2n+1+2.新高考创新预测15.(创新思维)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=e a1+a2+a3.若a1>1,则下列选项可能成立的是( )A.a1<a2<a3<a4B.a1=a2=a3=a4C.a1>a2>a3>a4D.以上结论都有可能成立解析构造函数f(x)=e x-x-1,f′(x)=e x-1=0,x=0,得极小值f(0)=0,故f(x)≥0,即e x≥x+1恒成立(x=0取等号).a1+a2+a3+a4=e a1+a2+a3>a1+a2+a3+1⇒a4>1⇒q>0,且a2>1,a3>1,若公比q∈(0,1],则4a1≥a1+a2+a3+a4=e a1+a2+a3>e2+a1>7e a1>7a1+7>4a1,产生矛盾.所以公比q>1,故a1<a2<a3<a4.故选A.答案 A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列(5)等比数列及其前n 项和A
1、已知等比数列{}n a ,11a =,且1234,2,a a a 成等差数列,则234a a a ++=( ) A. 7
B. 12
C. 14
D. 64
2、在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132
314
l o g l o g ......l o g b b b +
++

于( ) A.5
B.6
C.7
D.8
3、已知数列{}n a 是等比数列,且141
,18a a ==-,则{}n a 的公比q 为( ) A. -2 B.2 C. 12- D. 1
2
4、已知下列结论:
①若数列{}n a 的前n 项和2
1n S n =+,则数列{}n a 一定为等差数列 ②若数列{}n a 的前n 项和21n
n S =-,则数列{}n a 一定为等比数列
③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111
,,a b c 可能构成等差数列 ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111
,,a b c
一定构成等比数列
则其中正确的结论是( )
A.②④
B.①③
C.②③
D.①④
5、等比数列{}n a 的各项均为正数,公比q 满足2
4q =,则
34
45
a a a a +=+( )
A.
12
B. 12
±
C.
14
D.2
6、正项等比数列{}n a 中, 201820162017a a a =+.若2
116m n a a a =,则
41
m n
+的最小值等于( ) A. 1
B.
35 C. 136
D. 32
7、等比数列{}n a 的各项均为正数,且385618a a a a +=,则3132310log log log a a a +++=
( ) A. 12 B. 10 C. 8 D. 32log 5+
8、已知{}n a 是由正数组成的等比数列, n S 表示{}n a 的前n 项的和.若1243,144a a a ==则
10S 的值是( )
A. 511
B. 1023
C. 1533
D. 3069
9、已知数列{}n a 的前n 项和21n
n S =-,则26a a ⋅= ( )
A. 164
B. 116
C. 16
D. 64
10、在正项等比数列{}n a 中,若1321
3,
,22a a a 成等差数列,则2016201820152017
a a a a --的值为( )
A.3或-1
B.9或1
C.3
D.9
11、等比数列{}n a 的公比大于1,514215,6a a a a -=-=,则3a =_______.
12、等比数列{}n a 的各项均为正数, n S 是其前n 项和,且满足312283S a a =+,416a =,则
4S =__________
13、已知函数12,02
()121,12
x x f x x x ⎧
≤<⎪⎪=⎨⎪-≤<⎪⎩,若数列{}n a 满足1()n n a f a +=,且123,,a a a 成等比
数列, *
0(4,N )n a n n =≥∈,则1a 的值为_______.
14、设等比数列{n a }的前n 项和为n S ,若36270a a -=,则
6
3
S S =__________ 15、已知数列{}n a 的前n 项和为n S ,且2*
2N n S n n n =+∈,,数列{}n b 满足
*24log 3N .n n a b n =+∈,
1.求,n n a b ;
2.求数列{}·
n n a b 的前n 项和n T .
答案以及解析
1答案及解析: 答案:C 解析:
2答案及解析: 答案:C 解析:
3答案及解析: 答案:A 解析:
4答案及解析: 答案:A
解析:①若数列{}n a 的前n 项和2
1n S n =+,
可得111a S ==;2n ≥时, 2211(1)121n n n a S S n n n -=-=+---=-, 上式对1n =不成立,则数列{}n a 不为等差数列,故①错;
②若数列{}n a 的前n 项和21n
n S =-,
可得111a S ==,2n ≥时, 11121212n n n n n n a S S ---=-=--+=, 则数列{}n a 为首项为1,公比为的等比数列,故②对; ③非零实数,,a b c 不全相等,若,,a b c 成等差数列, 可得1111,,a b b c
b a
c b b a ab c b bc
---=--=-=,
由ab bc =,即a c =,即为a b c ==,不成立,则
111
,,a b c
不可能构成等差数列,故③错; ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,
可得2
2
11,
b a
c ac b ==
,则111
,,a b c
一定构成等比数列,故④对. 故选:A
5答案及解析: 答案:A 解析:
6答案及解析: 答案:D
解析:由题设2
22,1q q q q =+⇒==- (舍去),则
222111624m n m n a a a q a m n +-==⇒+-=,所以
6m n +=,
()()41141141341546662n m m n m n m n m n ⎛⎫⎛
⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝
⎭,应选答案D
7答案及解析: 答案:B 解析:
8答案及解析: 答案:D 解析:
9答案及解析: 答案:D 解析:
10答案及解析: 答案:C
解析:设正项等比数列{}n a 的公比为0q >, ∵1321
3,
,22
a a a 成等差数列, ∴32123a a a =+,
化为211123a q a q a =+,即2
230q q --=,解得3q =.
则22016201820162
201520172015(1)
3(1)
a a a q q a a a q --===--, 故选:C .
11答案及解析: 答案:4 解析:
12答案及解析: 答案:30
解析:设数列{}n a 的公比为q ,则0q >, 由题意得()12312283a a a a a ++=+, 得31226a a a =+,
即2260q q --=,得2q =或3
2
q =- (舍去) 又34116a a q ==,得12a =, 则()()4414121230112
a q S q
-⨯-==
=--.
13答案及解析: 答案:
18
解析:由题意得112,02
121,12n n n n n a a a a a +⎧
≤<⎪⎪=⎨⎪-≤<⎪⎩,当4320a a ==时,显然不合题意,所以
43210a a =-=,所以312a =
,由递推公式得214a =或23
4
a =,根据123,,a a a 成等比数列,可分别求得118a =或198a =(舍去),则118a =,经检验符合题意,故11
8a =.
14答案及解析: 答案:28 解析:
15答案及解析: 答案:
1.由2
2n S n n =+,可得
当2n ≥时,
()()()2
21221141,n n n a S S n n n n n -⎡⎤⎣=-=+--+-=-⎦
当1n =时,13a =符合上式,所以*
41N ()n a n n =-∈.
由24log 3n n a b =+,可得2414log 3n n b -=+,
解得1*
(2N )n n b n -=∈.
2.()1
41?
2n n n a b n -=-,
()1231372112152412n n T n -∴=+⨯+⨯+⨯+⋯+-⨯,① ()123423272112152412n n T n =⨯+⨯+⨯+⨯+⋯+-⨯,②
①-②可得
()123413422222[412]n n n T n --=+++++⋯+--⨯
()n 12(12)
12
34412n n -=+⨯--⨯--
()5542n n =-+-⨯, ()5452n n T n ∴=+-⨯.
解析:。

相关文档
最新文档