堆焊的特点
堆焊的原理特点方法及应用

堆焊的原理特点方法及应用1. 堆焊的原理堆焊是一种将焊接材料堆积在工件表面,通过热源加热使其熔化并与工件表面融合的焊接方法。
其原理基于以下几个关键点:•熔化:堆焊过程中,通过高热源对堆积的焊接材料进行熔化。
•融合:熔化的焊接材料与工件表面进行融合,形成牢固的连接。
•金属冷却:焊接完成后,通过冷却使焊接部位达到稳定的结构和性能。
2. 堆焊的特点堆焊具有以下几个特点:•高温熔化:堆焊过程需要高温热源,一般使用电弧、激光、等离子等方法进行加热,以达到焊接材料的熔化点。
•大变形:堆焊过程中,焊接材料经过熔化和融合,会在工件表面形成一层比较厚的堆焊层,从而改变了工件的尺寸和形状。
•易控制:堆焊过程中,可以根据需要精确控制焊接材料的堆积量和位置,以满足工件表面的修复、增强或改善要求。
3. 堆焊的方法堆焊方法主要有以下几种:•弧焊堆焊:使用电弧进行热源加热,常用的弧焊堆焊方法有手工电弧焊、埋弧焊、氩弧焊等。
•激光堆焊:使用激光进行热源加热,通过激光束的聚焦和扫描完成焊接,具有高能量密度和高精度的特点。
•等离子堆焊:使用等离子进行热源加热,通过等离子电弧的高温和高能量,熔化堆积的焊接材料,并与工件表面进行融合。
•电阻堆焊:利用电阻热效应,将电流通过焊接材料和工件表面产生热量,并使其熔化和融合。
4. 堆焊的应用堆焊方法在工业领域中有广泛的应用,主要包括以下几个方面:•修复和增强:堆焊可用于修复磨损、腐蚀或破损的工件,如轴承座、轴颈等重要零部件的修复,并可以通过堆焊增加零件的使用寿命和强度。
•表面改性:通过堆焊可以改变工件表面的性能和特性,如抗磨损、抗腐蚀、耐高温等,从而提高工件的使用寿命和耐用性。
•零件制造:堆焊可用于制造特殊形状或特殊材料的零件,如合金、复合材料等,通过堆焊可以在基础材料上堆积所需的材料,以满足特定的使用要求。
•化工工业:堆焊在化工工业中应用广泛,如石油化工设备、管道、反应器等重要设备的修复、增强和防腐蚀。
堆焊工艺标准厚度1.6

堆焊工艺标准厚度1.6堆焊是一种在金属表面熔敷一层耐磨、耐腐蚀、抗氧化或其他特殊性能的金属层的焊接工艺。
在工业生产中,堆焊广泛应用于修复损坏的零件、制造新零件或增强现有零件的性能。
本文将详细介绍堆焊工艺标准厚度1.6的相关内容,包括堆焊的定义、优点、焊接材料的选择、焊接工艺的选择、质量评估和安全注意事项等。
一、堆焊的定义和优点堆焊是一种将具有一定厚度的金属材料熔敷在母材(基体)上,以增加其耐磨、耐腐蚀、抗氧化或其他特殊性能的焊接工艺。
堆焊具有以下优点:1.延长零件使用寿命:通过在零件表面熔敷一层具有耐磨、耐腐蚀等性能的金属层,可以有效地提高零件的使用寿命。
2.恢复零件尺寸:对于一些损坏的零件,可以通过堆焊来恢复其尺寸,从而继续使用。
3.增强零件性能:通过在零件表面熔敷一层具有特殊性能的金属层,可以有效地增强零件的性能。
4.降低生产成本:堆焊工艺可以有效地降低生产成本,因为可以在原有的零件上直接熔敷金属层,而不需要重新制造整个零件。
二、焊接材料的选择堆焊工艺的关键之一是选择合适的焊接材料。
根据所需熔敷的金属层的性能要求,可以选择不同的焊接材料。
常用的堆焊材料包括碳化钨、镍基合金、钴基合金、不锈钢等。
在选择焊接材料时,需要考虑以下因素:1.耐磨性:对于需要提高耐磨性能的零件,可以选择具有高硬度和高耐磨性的碳化钨或镍基合金等材料。
2.耐腐蚀性:对于需要提高耐腐蚀性能的零件,可以选择具有良好耐腐蚀性的不锈钢等材料。
3.抗氧化性:对于需要提高抗氧化性能的零件,可以选择具有良好抗氧化性的钴基合金等材料。
4.成本:在选择焊接材料时,还需要考虑其成本和可用性。
一些高价值的材料可能会增加生产成本,因此需要在性能和成本之间进行权衡。
三、焊接工艺的选择堆焊工艺有多种方法,包括手工电弧堆焊、气体保护堆焊、埋弧堆焊等。
在选择焊接工艺时,需要考虑以下因素:1.母材类型和尺寸:不同的母材类型和尺寸需要选择不同的焊接工艺。
例如,对于大型零件,可以选择埋弧堆焊;对于小型零件,可以选择手工电弧堆焊或气体保护堆焊。
堆焊

第九章堆焊随着科学技术的进步,各种产品、机械装备正向大型化、高效率、高参数的方向发展,对产品的可靠性和使用性能要求越来越高。
材料表面堆焊作为焊接技术的一个分支,是提高产品和设备性能、延长使用寿命的有效技术手段。
堆焊是用焊接方法在金属材料或零件表面上熔敷一层有特定性能的材料的工艺过程。
第一节堆焊的特点及应用一、堆焊的特点堆焊的物理本质、热过程、冶金过程以及堆焊金属的凝固结晶与相变过程,与一般的焊接方法相比是没有什么区别的。
然而,堆焊主要是以获得特定性能的表层、发挥表面层金属性能为目的,所以堆焊工艺应该注意以下特点:1.根据技术要求合理地选择堆焊合金类型被堆焊的金属种类繁多,所以,堆焊前首先应分析零件的工作状况,确定零件的材质。
根据具体的情况选择堆焊合金系统。
这样才能得到符合技术要求的表面堆焊层。
2.以降低稀释率为原则,选定堆焊方法由于零件的基体大多是低碳钢或低合金钢,而表面堆焊层含合金元素较多,因此,为了得到良好的堆焊层,就必须减小母材向焊缝金属的熔入量,也就是稀释率。
3.堆焊层与基体金属间应有相近的性能由于通常堆焊层与基体的化学成分差别很大,为防止堆焊层与基体间在堆焊、焊后热处理及使用过程中产生较大的热应力与组织应力,常要求堆焊层与基体的热膨胀系数和相变温度最好接近,否则容易造成堆焊层开裂及剥离。
4.提高生产率由于堆焊零件的数量繁多、堆焊金属量大,所以应该研发和应用生产率较高的堆焊工艺。
总之,只有全面考虑上述特点,才能在工程实践中正确选择堆焊合金系统与堆焊工艺,获得符合技术要求的经济性好的表面堆焊层。
二、堆焊的应用堆焊工艺是焊接领域中的一个重要分支,它在矿山、电站、冶金、车辆、农机等工业部门的零件修复和制造中都有广泛的使用。
其主要用途有以下两个方面:1.零件修复由于零件常因为磨损而失效,例如石油钻头、挖掘机齿等,可以选择合适的堆焊材料对其进行修复,使其恢复尺寸和进一步提高其性能。
而且用堆焊技术进行修复比制造新零件的费用低很多,使用寿命也较长,因此堆焊技术在零件修复中得到广泛。
堆焊

三、埋弧堆焊 1、特点:生产率高、劳动条件好、堆焊合金成分稳定,因此得到大量 应用。 2、应用:尤其对于轧辊、车轮轮缘、曲轴、化工容器和核反应堆压力 容器衬里等中、大型零件应用较多。 3、具体工艺有四种: (1)单丝埋弧堆焊 (2)多丝埋弧堆焊 (3)带极堆焊 (4)串联电弧堆焊
对于高合金的堆焊金属,可采用各种管状焊丝气体保护堆焊 工艺获得。 我国还采用 C02 气体保护焊在自动送进 H08Mn2Si焊丝的同时, 向 熔 池 送 入 YG8(W(wc)92%、W(Co)8%) 合 金 粉 末 , 得 到 了 WC+α固溶体的堆焊层。
22
※2、非熔化极惰性气体保护堆焊,主要以手工送进 各种合金焊丝进行堆焊。 ※这种方法保护效果好,合金元素过渡系数高,稀 释率比熔化极气体保护堆焊低,但生产率低,保 护气体贵,因而使用受到限制。 ※3、不加保护气体的自保护管状焊丝明弧堆焊,在 国外应用较广。其中半自动明弧堆焊用得较多。 ※这种方法的突出优点是设备简单、方便灵活,并 可堆焊多种成分的合金。其缺点中飞溅较大。
2、分类:根据所使用的热源不同,一般将热喷涂工艺分为燃烧法和电加热法两大类。 目前常用的热喷涂技术是线材火焰喷涂、粉末火焰喷涂、电弧喷涂、等离子弧喷涂、 爆炸喷涂和超音速火焰喷涂技术。
23
五、等离子弧堆焊 1、优点:等离子弧温度高,能顺利堆焊各种难熔材料和提高堆焊速度;熔深可以调 节,稀释率最低可达 5%左右。因此等离子弧堆焊是一种难得的低稀释率和高熔敷率 的堆焊方法。另外,等离子弧堆焊可采用各种渗合金方式进行堆焊。 2、缺点:设备成本较高,有强烈的弧光辐射和臭氧污染,因此必须采取防护措施。 3、等离子弧堆焊主要有以下形式: (1)冷丝等离子弧堆焊 (2)热丝等离子弧堆焊 (3)预制型等离子弧堆焊 (4)粉末等离子弧堆焊
常用堆焊工艺方法及特点

常用堆焊工艺方法及特点堆焊是一种材料表面改性的经济而又快速的工艺方法,为了有效发挥堆焊层的作用,希望堆焊方法有较小的母材稀释率,较高的熔敷速率和优良的堆焊层性能,即优质、高效、低稀释率的堆焊技术。
几乎任何一种焊接方法都可以用于堆焊,从最早使用的气焊堆焊、焊条电弧焊堆焊,到目前已发展了各种半自动、自动化的堆焊方法。
每种堆焊方法都各有其优缺点,常用堆焊方法特点如下:1. 焊条电弧焊堆焊具有设备简单、操作灵活、可达性好的优点,但是工件温度梯度大,易出现裂纹,且稀释率高,适用于小批量和不规则工件堆焊以及现场修复。
2. 钨极氩弧焊堆焊具有可见度好,堆焊层形状容易控制、电弧稳定、无飞溅、堆焊层质量优良,手工钨极氩弧焊堆焊工件吸热少,变形小等优点,自动钨极氩弧焊堆焊可获得更高质量的堆焊层,堆焊材料可以是实芯焊丝、药芯焊丝,但是堆焊效率低,适用于堆焊小的和形状复杂的工件。
3. 熔化极气体保护电弧堆焊可见度好,可半自动或全自动堆焊。
工艺规范直接影响稀释率,短路过渡熔深较浅,稀释率仅10%;喷射过渡时稀释率达40%,向熔池送入辅助填充金属,可以减少熔深,稀释率可降至3%-5%,且提高熔敷效率。
自保护药芯焊丝堆焊,焊丝伸出长度可加大,焊丝直径可用2.4mm,有利于提高熔敷效率。
4. 埋弧焊堆焊无飞溅、无电弧辐射,劳动条件好,外观成形光滑,易实现机械化、自动化。
可分为单丝、多丝、单带极、多带极埋弧堆焊。
大面积耐蚀堆焊中用得最多的是带极埋弧堆焊,比丝极埋弧堆焊具有更低的稀释率和更高的熔敷速率,带宽已从30mm发展至60mm、75mm甚至120mm的宽带极。
随着带宽的增加,设备必须有磁控装置,以防止由于磁偏吹引起的咬肉缺陷。
5. 电渣堆焊是利用导电熔渣的电阻热来熔化堆焊材料和母材的堆焊过程。
目前用得较多的是带极电渣堆焊,具有比带极埋弧堆焊高50%的生产效率和更低的稀释率(可控制在10%以下)及良好的焊缝成型,不易有夹渣等缺陷。
等离子堆焊技术

等离子堆焊技术
等离子堆焊技术是一种常用于金属焊接的高能密度焊接方法。
它利用带电粒子(通常是氩等稀有气体)在高温高能环境下,产生强烈的等离子体放电,从而将金属材料加热至熔化状态。
等离子堆焊技术具有以下特点:
1. 高能量密度:等离子堆焊技术可提供高达1000焦耳/平方厘
米的能量密度,从而能够实现快速、高效的焊接。
2. 低热输入:由于焊接瞬间完成,等离子堆焊技术能够大大降低热输入,减少对工件的影响,尤其适用于对热敏感材料的焊接。
3. 无需填充材料:等离子堆焊技术可实现金属材料之间的直接焊接,不需要额外的填充材料,从而节约成本。
4. 焊接质量高:通过控制等离子体放电的参数,可以实现焊接熔池的精确控制,从而获得高质量的焊接接头,具有良好的抗拉强度和耐腐蚀性。
5. 应用广泛:等离子堆焊技术适用于不同种类的金属材料焊接,包括钢、铝、铜等,可广泛应用于汽车制造、航空航天、电子设备等领域。
总之,等离子堆焊技术以其高能量密度、低热输入、无需填充材料等优点,成为金属焊接中的重要技术之一,为工业生产提供了高效、高质量的焊接解决方案。
焊接技师培训教材(堆焊技术)

碳化钨种类
组织和性能
制造方法
铸造碳化钨
WC+W2C共晶,呈不规则 粒状和球状。硬度高、耐 磨性好,但脆性大,抗高 温氧化性差
熔炼→浇注后破碎(呈 不规则粒状)或熔炼→ 离心法分离(呈球状)
烧结碳化钨
呈不规则粒状和球状。硬 度高、耐磨性好,脆性大 小视粘结剂钴的多少;高 钴型韧性好,低钴型脆性 大,但抗高温氧化性好
2.氧乙炔火焰堆焊
1)氧乙炔火焰堆焊的特点
• 堆焊层薄,表面平滑美观、质量良好。氧乙炔火 焰堆焊所用的设备简单,可随时移动,操作工艺 简便,灵活、成本低,尤其是堆焊需要较少热容 量的中、小工件时,具有明显的优越性。而且可 调整火焰能率,焊时熔深浅,母材熔化量少,能 获得非常小的稀释率(1%~10%)。
采用堆焊可以延长零 部件的使用寿命,降 低成本。
四.堆焊金属的基本类型
根据堆焊金属的成分分为:
• 铁基堆焊合金 • 碳化钨堆焊合金 • 铜基堆焊合金 • 镍基堆焊合金 • 钴基堆焊合金
根据堆焊合金层的使用目的分为:
耐蚀堆焊
防止发生腐蚀而在其工作表面上熔敷一层 一定厚度、有耐腐蚀性能金属层。也称为包层 堆焊。
• 这类堆焊合金由大量碳化钨颗粒分布于金属 基体(如碳钢、低合金钢、镍基合金、钴基 合金和青铜等)上构成,堆焊层中钨的质量 分数45%以上、碳的质量分数1.5%~2%。 碳化钨由WC和W2C组成,有很高的硬度和 熔点。
• 碳质量分数3.8%的碳化钨硬度达2500HV, 熔点接近2600℃。
碳化钨堆焊合金表
碳当量Cep /(%)
0.4
0.5
0.6
0.7
0.8
最低预热温度/ ℃
100
150
堆焊的工艺特点

堆焊的工艺特点堆焊是一种常见的焊接修复工艺,其特点主要体现在以下几个方面:1. 高温熔融:堆焊是在工件表面进行焊接修复的过程,需要使用高温熔融的焊接材料来填充和修复工件表面的缺陷或磨损部位。
这种高温熔融的特点使得焊接材料能够与工件基体充分融合,并形成具有良好力学性能的焊接接头。
2. 精细控制:堆焊过程需要对焊接参数进行精细控制,以确保焊接材料能够在正确的温度范围内熔融并与工件表面充分结合。
焊接参数包括焊接电流、电压、速度等,需要根据工件材料和缺陷情况进行合理选择和调整,以保证焊接质量。
3. 高能量输入:由于堆焊需要在短时间内完成大量的焊接材料熔融和填充,因此需要提供足够高的能量输入。
常见的堆焊方法包括电弧堆焊、激光堆焊、等离子堆焊等,这些方法都能够提供高能量输入,使得焊接材料能够充分熔融和填充。
4. 高温热循环:堆焊过程涉及高温熔融和快速冷却,这种高温热循环会对工件和焊接材料产生一定的影响。
在熔融过程中,焊接材料会受到高温作用,可能发生相变和晶粒尺寸的改变,这会对焊接接头的性能产生影响。
而在冷却过程中,由于温度梯度和残余应力的存在,焊接接头可能会出现变形和开裂等问题,需要合理控制冷却速率和采取适当的焊后处理措施。
5. 适应性广泛:堆焊工艺适用于各种材料的焊接修复,包括金属材料、陶瓷材料、复合材料等。
不同的材料对于堆焊工艺的要求和参数可能有所不同,但基本原理和方法是相通的。
因此,堆焊工艺具有很强的适应性,可以用于不同材料的焊接修复。
6. 精细表面处理:在进行堆焊之前,通常需要对工件表面进行一些准备工作,以确保焊接接头的质量。
这包括清洁、除锈、打磨等表面处理工艺,以去除表面的污染物和氧化层,并提供良好的焊接接触和结合条件。
总结起来,堆焊工艺具有高温熔融、精细控制、高能量输入、高温热循环、适应性广泛和精细表面处理等特点。
这些特点使得堆焊工艺成为一种常用的焊接修复方法,能够有效地修复各类工件的缺陷和磨损,并恢复其原有的功能和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)堆焊时应严格控制工艺规范参数,如电流、堆焊速度、送丝速度和焊枪摆动。
(3)用衰减电流的方法控制堆焊层的凝固速度,可以减少缩孔和弧坑裂纹。
(4)采用摆动焊枪、脉动电流、尽量减少电流或者将电弧主要对着熔敷层等办法来降低稀释率。
(5)将堆焊材料以颗粒状输送到电弧区,随着工件表面被电弧熔化,如将碳化钨颗粒导入到熔化的表面上,碳化钨颗粒基本不熔解,当熔化金属凝固时,就得到碳化钨均匀地分散在工件表面的堆焊层。
用这种方法可堆焊钻管接头。
六、钨极氩弧堆焊工艺
字体[大][中][小]钨极氩弧堆焊是一种非熔化极的堆焊方法,一般用下降特性的直流电源,也可以用带有连续高频电流的交流电源。
由于氩气的良好保护性,有效地防止了合金元素的烧损和氧化。
适用于钛作稳定剂的不锈钢、含铝的镍基合金、不允许碳吸附和易挥发材料的堆焊。
严格控制堆焊电流、堆焊速度、送丝速度和焊枪摆动等工艺参数,可以获得高质量堆焊层。
为了减少渗钨现象,需采用直流正接方式。
为了降低稀释率可以采用焊枪摆动、脉冲电流、减小电流、电弧主要对着熔敷层等工艺措施。
为了减少缩孔和弧坑裂纹倾向,可采用电流衰减,控制收尾时熔池凝固速度的办法。
为了使某些硬化相颗粒均匀分布在堆焊层中,还研究采用了将强化相颗粒直接送到电弧区。
随着工件表面被熔化,强化相颗粒基本不熔化,而又由于熔池的扰动作用,使之均匀的分散在熔池中,随着熔池的凝固得到优良的耐磨堆焊层。
如堆焊钻管接头时用这种方法,得到碳化钨强化相颗粒均匀分布的堆焊层。
字数:406
知识来源:王文翰主编.焊接技术手册.郑州:河南科学技术出版社.2004.第490页
七、堆焊金属材料的选择
字体[大][中][小]堆焊金属材料的选择是一个综合性的技术问题。
首先考虑工件的要求和经济性,还要考虑工件的材质、批量及所用的堆焊方法等因素。
二、堆焊前的准备及焊后热处理
字体[大][中][小]
1.堆焊前准备
做好堆焊前的准备工作是保证堆焊质量的重要因素,主要内容有以下几点:
(1)确定零件堆焊部位的要求。
堆焊过程中,部分母材金属要熔入堆焊金属中,堆焊金属中的部分合金元素也要烧损,这些都会使堆焊硬度改变和力学性能下降。
因此在选择堆焊方法时,要进行比较,尽量选择稀释率低的焊接方法。
6.减少焊件堆焊后的变形
对细长轴和大直径的薄壁筒,堆焊时容易产生弯曲和波流变形。
对这类零件堆焊时应采取以下措施:
(1)尽量选择熔深小、线能量小的堆焊方法。
(2) 采用夹具或焊上临时支撑板,以增加焊件刚度。
(3) 采用预先反变形法。
(4) 选取合理的施焊顺序。
(5) 采用较细焊条,小电流及快焊速,并采取间歇冷却等方法,防止堆焊部位局部过热。
7.堆焊后的处理
堆焊后,堆焊层的性能达不到要求时,需要将焊件重新进行热处理。
热处理工艺要根据堆焊层合金的成分和要求而定。
在焊后热处理时,要注意防止产生再热裂纹。
字数:1322
知识来源:张应立主编.焊工便携手册.北京:中国电力出版社.2007.
第797-799页.。