遗传算法多目标优化matlab源代码

合集下载

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。

本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。

在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。

因此,这些猴子需要“无限的时间"。

而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。

当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。

下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。

之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。

这里就直接用框架。

把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。

MATLAB课程遗传算法实验报告及源代码

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷考试科目:考生姓名:考生学号:学院:专业:考生成绩:任课老师(签名)考试日期:年月日午时至时《MATLAB 教程》试题:A 、利用MATLAB 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。

要求设计遗传算法对该问题求解。

ae h kB 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。

以上四题任选一题进行实验,并写出实验报告。

选择题目:B 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

一、问题分析(10分)这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。

实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。

在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。

二、实验原理与数学模型(20分)(1)试验原理:用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。

其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。

每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。

MATLAB多目标优化计算

MATLAB多目标优化计算

MATLAB多目标优化计算多目标优化是指在一个优化问题中同时优化多个目标函数,这些目标函数往往存在冲突,不能同时达到最优。

MATLAB提供了许多工具和函数,可以帮助解决多目标优化问题。

在MATLAB中,多目标优化问题可以用以下形式表示:min f(x)s.t.g(x)≤0h(x)=0lb ≤ x ≤ ub其中,f(x)表示待优化的多个目标函数,g(x)和h(x)分别表示不等式约束和等式约束条件,lb和ub分别表示x的下界和上界。

1. paretofront函数:可以用来判断一组给定解的非支配解集合。

```index = paretofront(F)```其中,F是一个m×n矩阵,每一行表示一个解的m个目标函数值。

index是一个逻辑向量,长度为n,表明对应位置的解是否为非支配解。

2. paretofun函数:可以用来对非支配解集进行排序。

```rank = paretofun(F)```其中,F同样是一个m×n矩阵,每一行表示一个解的m个目标函数值。

rank表示对应位置的解在非支配解集中的排序。

3. gamultiobj函数:使用遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = gamultiobj(fun, nvars, A, b, Aeq, beq, lb, ub)```其中,fun是一个函数句柄,表示待优化的目标函数。

nvars表示决策变量的个数。

A、b、Aeq、beq、lb和ub分别表示不等式约束、等式约束、下界和上界。

x是优化后的决策变量值,fval是优化后的目标函数值。

exitflag是优化器的退出标志,output包含了优化算法的输出结果,population包含了所有迭代过程中的解集。

4.NSGA-II函数:使用非支配排序遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = nsga2(fun, nvars, A, b, Aeq, beq, lb, ub)```参数和返回结果的含义同gamultiobj函数相似。

研究生作业_基于遗传算法优化多元多目标函数的MATLAB实现

研究生作业_基于遗传算法优化多元多目标函数的MATLAB实现

南京航空航天大学共 8 页第 1 页学院:航空宇航学院姓名: 魏德宸基于遗传算法优化多元多目标函数的MATLAB实现0.引言现实生活中的很多决策问题都要考虑同时优化若干个目标,而这些目标之间有时是彼此约束,甚至相互冲突,这样就需要从所有可能的方案中找到最合理、最可靠的解决方案。

而遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的一种新的迭代的全局优化搜索算法,它能够使群体进化并行搜寻多个目标,并逐渐找到问题的最优解。

1.问题描述变量维数为5,含有2个优化目标的多目标优化问题表达式如下对于该问题,利用权重系数变换法很容易求出最优解,本题中确定f1和f2的权重系数都为0.5。

2.遗传算法2.1遗传算法简述遗传算法的基本原理是通过作用于染色体上的基因寻找好的染色体来求解问题,它需要对算法所产生的每个染色体进行评价,并基于适应度值来选择染色体,使适应性好的染色体有更多的繁殖机会,在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下一代新的种群,对这个新的种群进行下一轮的进化。

2.2遗传算法的过程遗传算法的基本过程是:1.初始化群体。

2.计算群体上每个个体的适应度值3.由个体适应度值所决定的某个规则选择将进入下一代个体。

4.按概率Pc进行交叉操作。

5.按概率Pm进行变异操作。

6.没有满足某种停止条件,则转第2步,否则进入第7步。

7.输出种群中适应度值最优的染色体作为问题的满意解或最优界。

8.遗传算法过程图如图1:图1 遗传算法过程图3.遗传算法MATLAB代码实现本题中控制参数如下:(1)适应度函数形式FitnV=ranking(ObjV)为基于排序的适应度分配。

(2)交叉概率取为一般情况下的0.7,变异概率取其默认值.(3)个体数目分别为2000和100以用于比较对结果的影响。

matlab多目标优化遗传算法

matlab多目标优化遗传算法

matlab多目标优化遗传算法Matlab多目标优化遗传算法引言:多目标优化是在现实问题中常见的一种情况,它涉及到在多个目标函数的约束下,寻找一组最优解,从而使得多个目标函数达到最优状态。

遗传算法是一种常用的优化方法,它模拟了自然界中的遗传和进化过程,通过不断迭代、选择和交叉变异等操作,逐步搜索最优解。

本文将介绍如何使用Matlab中的遗传算法工具箱来实现多目标优化。

多目标优化问题描述:在传统的单目标优化问题中,我们寻找的是一组参数,使得目标函数的值最小或最大。

而在多目标优化问题中,我们需要考虑多个目标函数的最优化。

具体来说,我们假设有m个目标函数,目标向量为f(x)=(f1(x), f2(x), ..., fm(x)),其中x是决策变量向量。

我们的目标是找到一组解x∗,使得f(x∗)在所有可行解中最优。

然而,由于多目标问题中的目标函数之间往往存在冲突,即改善一个目标函数的同时可能会导致其他目标函数的恶化,导致不存在一个唯一最优解。

因此,我们常常追求一组非劣解,即无法通过改变解的一个目标值而不改变其他目标值。

Matlab多目标优化遗传算法工具箱:Matlab提供了一个强大的工具箱,即Multiobjective Optimization Toolbox,可用于解决多目标优化问题。

该工具箱基于遗传算法,并结合了其他优化策略和算子,能够高效地搜索多目标优化问题的非劣解集合。

使用Matlab多目标优化遗传算法工具箱的步骤如下:1. 定义目标函数:根据具体问题,编写目标函数,输入为决策变量向量,输出为目标函数向量。

2. 设置优化参数:包括种群大小、迭代次数、交叉概率、变异概率等。

3. 定义决策变量的上下界:根据问题的约束条件,设置决策变量的取值范围。

4. 运行遗传算法:使用Matlab中的gamultiobj函数来运行多目标优化遗传算法,得到非劣解集合。

5. 分析结果:根据具体问题,分析非劣解集合,选择最优解。

nsga-ⅲ算法matlab代码及注释

nsga-ⅲ算法matlab代码及注释

nsga-ⅲ算法matlab代码及注释一、NSGA-Ⅲ算法简介NSGA-III算法是多目标优化领域的一种经典算法,它是基于非支配排序的遗传算法。

该算法通过模拟自然选择的过程,不断改进种裙中的个体,以寻找Pareto前沿上的最优解。

NSGA-III算法在解决多目标优化问题方面表现出色,广泛应用于工程、经济和管理等领域。

二、代码实现下面是NSGA-III算法的Matlab代码示例,包含了代码的注释和解释。

```matlab初始化参数pop_size = 100; 种裙大小max_gen = 100; 最大迭代次数p_cross = 0.8; 交叉概率p_mut = 0.1; 变异概率n_obj = 2; 目标函数数量初始化种裙pop = initialization(pop_size);进化过程for gen = 1:max_gen非支配排序和拥挤度距离计算[fronts, cd] = non_dominated_sort(pop);种裙选择offspring = selection(pop, fronts, cd, pop_size);交叉和变异offspring = crossover(offspring, p_cross);offspring = mutation(offspring, p_mut);合并父代和子代种裙pop = merge_pop(pop, offspring, pop_size);end结果分析pareto_front = get_pareto_front(pop);plot_pareto_front(pareto_front);```三、代码解释1. 初始化参数:设置种裙大小、最大迭代次数、交叉概率、变异概率和目标函数数量等参数。

2. 初始化种裙:调用初始化函数,生成初始的种裙个体。

3. 进化过程:在每一代中,进行非支配排序和拥挤度距离计算,然后进行种裙选择、交叉和变异操作,最后合并父代和子代种裙。

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法多目标优化matlab源代码
遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

在多目标优化问题中,GA也可以被应用。

本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。

一、多目标优化
1.1 多目标优化概述
在实际问题中,往往存在多个冲突的目标函数需要同时优化。

这就是多目标优化(Multi-Objective Optimization, MOO)问题。

MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。

Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。

因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。

1.2 MOO方法
常见的MOO方法有以下几种:
(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。

(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。

(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

1.3 MOO评价指标
在MOO中,我们需要使用一些指标来评价算法的性能。

以下是常见的MOO评价指标:
(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。

(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。

(3)收敛性:算法是否能够快速收敛到Pareto前沿。

二、遗传算法
2.1 遗传算法概述
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜
索问题的最优解。

GA具有全局寻优能力、适应性强、并行性好等特点,因此在实际问题中得到了广泛应用。

2.2 GA基本流程
GA基本流程如下:
(1)初始化群体:随机生成一组初始个体作为群体,并计算每个个体适应度值。

(2)选择操作:根据个体适应度值,选择一些个体作为繁殖对象。

(3)交叉操作:将繁殖对象进行交叉操作,生成新的个体。

(4)变异操作:对新的个体进行变异操作,产生新的群体。

(5)评价适应度值:计算新群体中每个个体的适应度值。

(6)判断终止条件:如果满足终止条件,则输出最优解;否则返回步骤2。

2.3 GA参数设置
在使用GA时,需要设置一些参数。

以下是常见的GA参数:
(1)种群大小:决定了每一代有多少个个体参与运算。

(2)交叉概率:两个繁殖对象进行交叉操作的概率。

(3)变异概率:对新的个体进行变异操作的概率。

(4)终止条件:GA运行结束的条件,如达到指定迭代次数、Pareto 前沿覆盖率达到100%等。

三、遗传算法多目标优化Matlab源代码
以下是使用Matlab实现遗传算法多目标优化的源代码:
% 多目标优化问题
function [x, fval] = MOO_GA(fitnessfcn, nvars, LB, UB)
% 参数设置
options = gaoptimset('PopulationSize', 50,...
'Generations', 100,...
'CrossoverFraction', 0.8,...
'MutationFcn', {@mutationuniform, 0.05},...
'StallGenLimit', Inf,...
'Display', 'off');
% 运行GA算法
[x, fval] = gamultiobj(fitnessfcn, nvars, [], [], [], [], LB, UB, options);
end
其中,fitnessfcn为适应度函数句柄,nvars为变量个数,LB和UB 分别为变量下限和上限。

在使用时,只需将自己的适应度函数传入即可。

四、总结
本文介绍了多目标优化问题及其解决方法,并详细介绍了遗传算法的基本流程、参数设置及Matlab实现方法。

希望对读者有所帮助。

相关文档
最新文档