8心肌生理特性.
心肌电生理特性

参与维持静息电位和动作电位的平衡,在各 种类型的心肌细胞中均有分布。
心肌细胞的兴奋性与传导性
01
02
03
兴奋性
心肌细胞受到刺激后能够 产生动作电位,从而触发 肌肉收缩和传导电信号。
传导性
心肌细胞之间能够通过缝 隙连接相互传导动作电位 ,从而将电信号传导至整 个心脏。
传导速度
心肌细胞的传导速度受到 多种因素的影响,如细胞 直径、离子浓度、温度等 。
心肌电生理特性
汇报人: 日期:
目录
• 心肌电生理特性概述 • 心律失常的电生理机制 • 心肌缺血与再灌注的电生理特性 • 心脏起搏与除颤的电生理基础 • 心律失常的诊断与治疗
01
心肌电生理特性概述
心肌细胞的类型与特点
心室细胞
主要负责收缩和泵血功能,分 为工作细胞和自律细胞。
心房细胞
主要负责传导和节律功能,分为传 导细胞和特殊传导细胞。
收缩力增强。
心肌再灌注后,心肌细胞内代谢 恢复正常,能量生成增加,进一
步促进心肌细胞的恢复。
心肌缺血与再灌注的损伤与保护
心肌缺血与再灌注过程中,会产生一系列损伤效应,包括氧 化应激、炎症反应、钙离子过载等,这些因素可导致心肌细 胞坏死和凋亡。
针对心肌缺血与再灌注的损伤效应,可以采取一些保护措施 ,如使用药物(如硝酸酯类药物)、介入治疗(如经皮冠状 动脉介入治疗)等,以减轻心肌细胞的损伤和促进心肌细胞 的恢复。
窦性心律失常
由窦房结异常引起的心律 失常,包括窦性心动过速 、窦性心动过缓等。
房性心律失常
由心房肌异常引起的心律 失常,包括房性早搏、房 颤等。
室性心律失常
由心室肌异常引起的心律 失常,包括室性早搏、室 颤等。
心肌的生理特性PPT课件

(二)心的泵血过程
心室泵血过程中的四个要素:心室内
压变化、瓣膜的开启、心室内容积变化、血液
方向。
等容收缩期
心动周期
心室收缩期 心室舒张期
快速射血期 减慢射血期 等容舒张期 快速充盈期
减慢充盈期
(心房收缩期)
思考:在心脏泵血的过程中,心室的压 力、容积、瓣膜、血液的方向有何变化?各时 期的特点是什么?
一、各类血管的功能特点 弹性贮器血管、分配血管、毛细血管前阻
力血管、毛细血管前括约肌、交换血管、容量 血管、短路血管。 二、血液量、血液阻力和血压
1. 血压 指血管内流动的血液对单 位面积血管壁的侧压力。
2. 血液量 指单位时间内血液渡过 某一截面积的血量。
3. 血液阻力 指血液流动时,血液 与血管壁之间的摩擦阻力以及血液内血液量。
(二)心肌的兴奋性
1. 决定和影响兴奋性的因素:静息电 位与阈电位之间的距离,Na+通道的开放状态。
2. 一次兴奋过程中兴奋性的周期变化
有效不应期:由0期开始到3期复极达到- 60 mV 的时期。
相对不应期:从-60 mV 复极到-80 mV 的时期。
超常期:膜电位从-80 mV 复极到-90 mV 时期。
2.心率及其对心输出量的调节 在一定范围内心率增加,心输出量也会增加。
四、体表心电图
(一)心电图:心脏的兴奋引起体表各部 位在心动周期中也发生有规律的电变化,将这 种电的变化测量并在体表记录出来的心脏电变 化曲线,即体表心电图。
(二)心电图的各波及意义
P波:反映左、右两心 房的去极化过程。 QRS波群:代表左、右 两心室去极化过程的电
(三)传导性 传导的结构基础:闰盘和心脏的传导
系统。 兴奋传导的顺序:窦房结→左右心房肌 →房室交界区→房室束及左右束枝→浦肯野纤 维→左右心室肌。
《运动生理学》复习参考资料

《运动生理学》复习参考资料一、名词解释;1、时值:是指以2倍基强度刺激组织,刚能引起组织兴奋所需要的最短时间。
2、基强度:当刺激的强度低于某一强度时,无论刺激的作用时间怎样延长,都不能引起组织兴奋,这个最低的或最基本阈强度,称为基强度。
★3、静息电位与动作电位:静息时细胞膜处出于某种极化状态,表现为膜的两侧存在着一个膜内为负,膜外为正的电位差。
反之,细胞受到有效刺激时,在静息电位的基础上电位发生暂时迅速的倒转,为动作电位。
4、肌肉收缩:(一)缩短收缩:张力大于外力(二)等动收缩:张力等于外力(三)拉长收缩:张力小于外力★5、牵张反射:在脊髓完整的情况下,一块骨骼肌如果受到外力牵拉使其伸长,能反射性地引起受牵扯的同一肌肉收缩。
(维持躯体的基本姿势)6、屈肌反应:当皮肤或肌肉受到伤害性刺激时,引起受刺激一侧的肢体快速的回撤★7、贫血:外周血中单位容积内血红蛋白浓度、红细胞计数及(或)红细胞积压低于相同年龄、性别和地区的正常标准。
8、肌电图:记录深层肌肉电活力。
(有损伤,有痛苦)9、受体:在生物膜、细胞浆、细胞核中对特定生物活性物质能有选择性的识别递质和活性效应器。
10、心力储备:心输出量可以随着机体代谢需要而增加,具有一定的储备11、博出量:一次心脏博动由一侧心室射出的血量。
12、射血分数:博出量占心室舒张末充盈量的百分比称为射血分数。
★13、有氧耐力:指人体长时间进行有氧工作(糖、脂肪等氧化供能)的能力。
★14、最大吸氧量:人体在进行有大量肌肉参加的长时间激烈运动,心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间内所能摄取的最大氧气量称为最大摄氧量。
15、运动性疲劳:在运动过程中,机体生理过程不能继续保持在特定水平上和(或)不能维持预定的运动强度。
二、简答题:1、为什么最适初长度时肌肉产生最大张力?因为影响肌肉力量的生理因素主要有肌源性和神经源性两类,肌源性生理因素又包括关节运动角度、肌肉生理横断面积、肌纤维类型和肌肉初长度,在神经源性因素与其他生理因素不变的情况下,粗,细肌丝处于最理想的重叠状态,因而其作用的横桥数目最多,所以最适初长度时肌肉产生最大张力。
心脏的电生理特性(完美版)ppt

心肌兴奋(Fen)性的周期性变化
*有效不应期effective refractory period ERP: ①绝对不应期absolute refractory period ARP : 膜电位-55mv以前,钠通(Tong)道失活 ②局部反应 local reaction: 膜电位-55mv~-60mv
第八页,共四十五页。
心肌细(Xi)胞分类
快反应自律细胞
心房肌细胞 心室肌细胞
快反应非自律细胞 慢反应自律细胞
房室束细胞 浦肯野细胞 窦房结细胞 房结区细胞
第九页,共四十五页。
慢反应非自律细胞
结希区细胞 结区细胞
心脏各部(Bu)分心肌细胞的跨膜电位
SAN:窦房结 AM:心房肌
AVN:结区 BH:希氏区
第二十九页,共四十五页。
心肌兴(Xing)奋性的周期性变化
•a,b: 局部反应
•c,d,e: 可扩(Kuo)布的 动作电位
第三十页,共四十五页。
心肌(Ji)兴奋性的周期性变化
概念
兴奋性 与膜电位关系 Na 通道
ARP
ERP
RRP
SP
任何刺激不能引 任何刺激不能引 大于阈值刺激才 小于阈值刺激即
起动作电位
窦房结细(Xi)胞动作电位特征
第二十页,共四十五页。
Pacemaker Potentials
Leaky membrane auto-depolarization
autorhythmicity
the membrane is more permeable to K+ and Ca++
ions
2 期(Qi)
平台期,是心肌动作电位时程较(Jiao)长的主要原因,也
心肌细胞的电生理特性

2.最大舒张电位水平 “4”时相舒张电位是自 动除极化而不断减小的电位,正常以其最大值为 标准,称为最大舒张电位。最大舒张电位减小(负 度),则和阈电位的差距缩短,自律性增高;最大 舒张电位增大,达到阈电位所需时间增加,则自 律性降低。
3.阈电位水平 如果最大舒张电位和舒张期 自动除极化的速度不变,阈电位增高,则舒张除 极达到阈电位需要的时间延长,自律性降低;反 之,如阈电位水平降低(负度增大),则从最大舒 张电位到达阈电位的差距缩小,自律性增高。
心脏内自律性最高的组织往往决定整个心脏的兴 奋节律,也即在正常情况下,窦房结自动地、有 节律地发出的兴奋向外扩散传导,依次兴奋心房、 房室交界区、房室束、束支、浦肯野纤维和心室 肌,引起整个心脏的收缩(搏动)。因此,窦房结 是心脏内发生兴奋和搏动的起点,称为心脏正常 的起搏点,其所形成的心脏节律称为窦性节律。
易颤期 在相对不应期的前半部分,心肌复极程度、兴奋 性和传导速度常有悬殊差别,处于电异步状态。在此期间 再给予刺激,容易发生多处的折返激动而引起颤动,故称 为易颤期或易损期。心房的易损期相当于R波的下降肢处, 心室的易颤期大致在T波的上升肢处。 超常期 在某些心肌细胞中,从-80mV到复极完毕的这 段期间内,兴奋性会高于该细胞动作电位的第“4”时相。 在这期间,给予阈下刺激也可引起心肌细胞兴奋,但其动 作电位的“0”时相除极化速度和幅度仍小于正常。超常期 (-80~-90mV)期间,膜电位比复极完毕更接近阈电位, 故引起兴奋所需的阈刺激较正常为小。超常期相当于心电 图中的T波末部的U波。
.1.心肌细胞自律性和各自律组织的相互关系 心脏内的特殊传导组织大都含自律细胞,为自律 组织。 自律组织包括:窦房结、心房传导组织(结间束和 房间束)、房室交界(房室结的结区除外)区和心室 内传导组织(房室束、束支及浦肯野纤维)。
心肌的生理特征

心肌的生理特征
心肌的生理特征:
1、形态特征:
a. 构造:心肌细胞由残余质原杆质蛋白和三种肌肉纤维组成:心肌细胞,肌膜细胞和胞质外分泌物质。
b. 大小:心肌细胞的大小在10~20微米之间,长度为50~200微米。
2、收缩特征:
a. 心肌有自发性收缩和被动性收缩两种收缩特性,自发性收缩能对外界刺激作出反应;而被动性收缩则可吸收紧缩力及回复缩短力,可把肌腱扭紧和释放收缩力。
b. 梗阻性心肌可以形成持久性收缩(Stasket's Law),是一种受控的、持续发生的收缩。
3、电性特征:
a. 心肌细胞的膜上有一种特殊的电导体,可以通过外源电刺激形成极化。
b. 心肌细胞有两个膜电位:安体膜电位和心肌收缩膜电位,两者之差就是心肌内电压。
4、代谢特征:
a. 心肌的代谢特点主要体现在能量生成和分子消耗上,其能量主要是来自糖酵解,氧消耗也比其他肌肉高。
b. 心细胞可以将6脂肪酸中的2个脂肪酸分解,也可以将肝胆糖原代谢为水解葡萄糖,可以调节收缩周期。
5、合成功能:
a. 心肌细胞具有酶系统,能够产生钠、钙离子和磷脂质,合成许多蛋白质,如RNA及DNA合成、细胞色素c合成以及胆碱选择性接受蛋白的合成等。
b. 它还可以分泌一种类似胰岛素的肽激素,可以促进脂肪酸、糖酵解,增强心脏合成蛋白的能力,调节心率及心室收缩力量等。
8心肌生理特性

0期幅度→ 的电位差→部电流→速度→产生
快高 大 大 快 易
慢 低 小 小 慢 不易
②邻近未兴奋部位膜的兴奋性
只有邻近部位膜的兴奋性正常,兴奋才能正常地传导
通过。
邻近部位膜兴奋性 处于绝对不应期
处于相对不应期
Na+通道状态
失活状态
部分失活状态 (0期慢、小)
(二)自动节律性,简称自律性
定义:组织或细胞在无外来刺激的情况下,能自动 发生节律性兴奋的特性。
衡量自律性高低的指标:兴奋的频率(次/分)
1.心脏的起搏点
窦房结 > 房室交界 > 房室束及左右束支> 浦肯野纤维
100次/分 50次/分 40次/分
25次/分
窦房结是心脏的正常起搏点,称窦性心律。
潜在起搏点 异位起搏点 异位心律
3期复极化: Ca2+内流停止, K+外流
4期自动去极化: ①K+外流进行性衰减; ②Na+内流(If电流) 进行性增
加; ③Ca2+内流(I Ca-T )。
二、心肌生理特性
生理特性
电生理特性
兴奋性 自律性 传导性
机械特性 —— 收缩性
(一)兴奋性
心肌的兴奋性是指心肌细胞对适宜刺激能够产生 兴奋(AP)的能力或特性。
传导性 阻滞
减慢
二、心肌细胞的机械特性——收缩性
心肌收缩的特点 (一)同步收缩(全或无式收缩)
为什么在静脉窦和心房之间结扎后,心室停止跳 动? 过几分钟之后,为什么心室又开始跳动?为什么 心室跳动比静脉窦慢得多? 在心室和房室结处结扎后,为什么心室又停止跳 动?
窦房结控制潜在起搏点的方式:
《心肌的生理特性》课件

Part One
单击添加章节标题
Part Two
心肌的结构和功能
心肌细胞的形态和结构
心肌细胞呈梭形, 有横纹
心肌细胞有收缩性 和舒张性
心肌细胞有自律性 ,可以自动节律性 收缩
心肌细胞有传导性 ,可以传递兴奋
心肌的功能概述
心肌是心脏的主要组成部分,负责心脏的收缩和舒张 心肌具有自动节律性,能够自主地、有规律地收缩和舒张 心肌具有兴奋性,能够对刺激产生反应,并传导兴奋 心肌具有收缩性,能够产生力量,推动血液流动
心脏起搏点的作用
控制心脏跳动的频率和节奏 产生心脏跳动的电信号 维持心脏的正常功能 调节心脏的收缩和舒张
心肌自动节律性的影响因素
离子通道:心肌细胞膜上的离子通道对心肌的自动节律性有重要影响 细胞内钙离子浓度:细胞内钙离子浓度的变化会影响心肌的自动节律性 神经调节:自主神经系统对心肌的自动节律性有调节作用 激素调节:激素水平对心肌的自动节律性有影响 心肌细胞膜电位:心肌细胞膜电位的变化会影响心肌的自动节律性
心肌的电生理特性
心肌细胞:心肌细胞是心肌的主要组成细胞,具有兴奋性和传导性
心肌电生理特性:心肌细胞具有自动节律性、传导性、兴奋性和收缩性
心肌电生理特性的生理意义:心肌电生理特性是心肌正常生理功能的基 础,也是心肌疾病诊断和治疗的重要依据 心肌电生理特性的研究进展:近年来,心肌电生理特性的研究取得了重 要进展,为心肌疾病的诊断和治疗提供了新的思路和方法。
能量供应
心肌细胞具有较高的线粒体 密度,以适应其高代谢率的
需求
心肌的能量来源
心肌细胞通过氧化磷酸化过程产生能量 主要能量来源是葡萄糖和脂肪酸 心肌细胞通过糖酵解和脂肪酸氧化获取能量 心肌细胞在缺氧状态下,主要通过糖酵解获取能量