第三节-心肌的生理

合集下载

心肌的生理特性课件

心肌的生理特性课件

学习交流PPT
17
(2)期前收缩与代偿间歇
(正常情况下)窦房结——发放的兴奋
心房肌和心室肌 接受 节律性收缩和舒张
如果在心房肌和心室肌有效不应期之后,在下一次窦房结传来
的兴奋到达之前,受到一次人工的刺激或异位节律点发放的冲
动的作用, 则心房肌和心室肌而可产生一次期前兴奋,引起一
次提前出现的收缩,称期前收学习缩交流(PPTpremature systole)或早搏
18
期前兴奋也存在有效不应期。当紧接在期前收
缩后的一次窦房结的兴奋传至心室时,常恰好落在
期前兴奋的有效不应期内,因而不能引起心室肌和
心房肌的兴奋,要等再次窦房结兴奋传来时才发生
兴奋和收缩。故在一次期前收缩之后,常伴有一段
较长的心室舒张期,
代偿间歇:一次期前收缩之后所出现的一段较
长的舒张期称为代偿性间歇。
但在同一心肌细胞,•兴奋传导快慢主要受 局部电流形成和邻近部位膜兴奋性的影响。
(2)0期去极化的速度和幅度
0期速度 与邻旁间 产生局 RP距 新AP 传导
0期幅度→的电位差→部电流→阈电位→产生→速
快高 大 慢低 小
大 近 易快 小 远 不易 慢
学习交流PPT
24
(3)邻旁部位细胞膜的兴奋性
心肌细胞的兴奋传导是沿着细胞膜的兴奋扩散 的过程,只有邻近未兴奋部位膜的兴奋性正常,兴奋 才能正常地传导通过。
6
(3)阈电位水平
在上述因素不变的前提下:
阈电位水平
下移(图中TP1) 上移(图中TP2)


最大舒张电位→阈电位
距离近 距离远


自动去极化达到阈电位
时间短 时间长

骨骼肌、心肌和平滑肌细胞生理

骨骼肌、心肌和平滑肌细胞生理
当新刺激落在前一次收缩的缩短期,所出现的强而持 久的收缩过程。 •机制:强直收缩是各次单收缩的机械叠加现象(并非 动作电位的叠加,动作电位始终是分离的),所以,强 直收缩的收缩幅度和收缩力比单收缩大。
(二) 单收缩 肌肉受到一次刺激,引起一次收缩和舒张的过程。
(三) 复合收缩 肌肉受到连续刺激,前一次收缩和舒张尚未结束,
参与活动的离子种类多有效不应期长na泵活动增加复极完毕静息电位恢复大量外流0mv至90mv持续时间约100150ms快速复极化末期ca外流0mv附近持续100至150ms外流30mv至0mv持续时间10ms快速复极化初期na快速内流90mv至30mv持续时间1ms去极化期离子基础形态特点心肌中有titin蛋白使得肌节在很短时其被动张力已开始缓慢上升对心肌的过度牵拉有保护作用
(一)单位平滑肌和自发电活动电位 单位平滑肌:能产生自发动作电位,无恒定 的静息膜电位,主要存在于腔器官壁和内脏 器官中,如消化道、呼吸道、生殖器官等。
起搏点电位和慢波电位
起搏点电位:膜自动除极化达到阈电位的膜 电位变化,一旦产生,便会传遍合胞体细胞, 并引起收缩(肌源性收缩)
慢波电位:膜自动周期性交替发生超极化和 复极化电位的波动
电子显微镜下观察 粗肌丝
肌凝蛋白(肌球蛋白) 组成,呈端部膨大(横 桥)的长杆状。 细肌丝 肌动蛋白 原肌球蛋白
亚单位C 肌钙蛋白 亚单位I
亚单位T
粗肌丝:由肌球或称肌凝蛋白
组成,其头部有一膨大部--横桥: ①能与细肌丝上的结合位点发生 可逆性结合;②具有ATP酶的作 用 , 与 结 合 位 点 结 合 后 ,• 分 解 ATP提供横桥扭动(肌丝滑行)和 作功的能量。•
新的收缩在此基础上出现的过程。 不完全强直收缩: 在刺激频率较低时,描记的收缩曲线呈锯齿状。 完全强直收缩:

《心肌的生理特性》演示PPT

《心肌的生理特性》演示PPT

时间短 时间长
-60
↓↓
自律性高 自律性低
0.1 0.2 0.3 0.4 0.5 0.6 0.7
时间(s)
10
⑵4期自动除极的速度
若自动除极速度
从最大舒张电位到达阈 电位所需的时间缩短
单位时间内自动兴奋发 生的次数
自律性
儿茶酚胺可加速窦房结细
反之,4期自动除极速度 胞4期自动去极化速度,
缓慢,则使自律降低。 提高自律性,使心率 。




兴奋性正常 兴奋性=0
兴奋性低 兴奋性高
20
心肌兴奋时兴奋性变化的主要特点是有效不 应期特别长(平均250ms),相当于心肌整个收缩期 和舒张早期。
它 是 骨 骼 肌 与 神 经 纤 维 有 效 不 应 期 的 100 倍 和 200倍。
这一特性是保证心肌能收缩和舒张交替进行,不 出现强直收缩的生理学基础。
大部复活 Na+通道基本 恢复到备用状态
不能产生 仅能产生 局部电位 阈上刺激
阈下刺激
14
1 兴 奋 性 的 周 期 性 变 化
15
2、影响兴奋性的因素
(1)静息电位或最大复极电位的水平 (2)阈电位的水平 (3)引起0期去极化的离子通道性状
16
⑴静息电位或最大复极电位的水平
17
⑵阈电位的水平
4
2.窦房结对潜在起搏点的控制
①抢பைடு நூலகம்占领 也称夺获。 在潜在起搏点4期自动去极化尚未达到阈电位水平之前,已 被自律性最高的窦房结传来的兴奋抢先激动,使之产生与窦 房结节律相一致的动作电位,从而使潜在起搏点自身的节律 兴奋不能出现。
②超驱动阻抑 窦房结的快速节律活动,对潜在起搏点较低 频率的兴奋有直接抑制作用,称为超驱动阻抑。当窦房结停 止发放冲动或下传受阻后,则首先由自律性相对较高、受超 驱动阻抑较轻的房室交界来替代,而不是由自律性更低的心 室传导组织来替代。人工起搏器。

生理学之心肌生理特性

生理学之心肌生理特性
√E.使心房和心室不会同时收缩
4、心室肌的有效不应期较长,一直持续到:
A. 收缩早期结束 D. 舒张中期末
√ B. 收缩期末 C. 舒张早期结束
E. 舒张期结束
5、心室肌有效不应期的长短主要取决于:
√ A. 动作电位0期去极的速度 B. 动作电位2期的长短
C. 动作电位3期的长短
D. 阈电位水平的高低
• 代偿间歇
一次期前收缩之后往往出现一段较长时间的心室舒张期,称为代偿 间歇
(二)传导性
定义:心肌具有传导兴奋的能力,称传导性。 传导方式:局部电流。 传导特点:
①闰盘(缝隙连接)为低电阻区,局部电流很容易通过特殊传导系统。故心 肌细胞在结构上虽互相隔开,但在功能上却如同一个细胞,构成一个功能 性合胞体。
思考:差值越大,心肌兴奋性? 差值↑ →需刺激阈值↑→兴奋性↓
例:血钾浓度对心肌兴奋性的影响。
(血钾浓度轻度升高 ---兴奋性升高; 血钾浓度明显升高---膜电位显著减小,部分钠通道失活,兴奋性降低)
(2)引起0期去极化的离子通道状态
引起0期去极化的离子通道所处的机能状态,是决定兴奋性正 常、低下和丧失的主要因素。以快反应细胞为例,
心肌生理特性
学习目标
掌握: • 心肌细胞的生理特性有? • 心室肌细胞有效不应期特别长的意义 • 房室延搁的概念及意义 • 自律性产生的基础及自律性高低划分标准 • 心脏的正常起搏点
二、心肌的生理特性
心肌细胞的四大生理特性:
兴奋性(excitability) 传导性(conductivity) 自律性(autorhythmicity) 收缩性(contractility)
收缩性
1、窦房结能成为心脏正常起搏点的原因是: A. 最大复极电位仅为-70mV B. 阈电位为-40mV C. 0期去极速度快 D. 动作电位没有明显的平台期

心 脏 生 理

心 脏 生 理

心脏生理
3.兴奋性
图 3-5 心室肌细胞动作电位与兴奋性变化
心脏生理
1) 心肌细胞兴奋性的周期性变化
有效不应期
周期性变化
相对不应期
超常期
心脏生理
(1) 有效不应期
绝对不应期
局部反应期
心脏生理
2) 影响心肌兴奋性的因素
静息电位与阈电位之 间的差距
Na+通道的活性
期前收缩和代偿性间 歇
心脏生理
(b)浦肯野细胞的动作电位
图 3-2 窦房结及浦肯野细胞的动作电位
心脏生理
1
自律性
2
传导性
3
兴奋性
4
收缩性
心脏生理
1.自律性
自动节律性(autorhythmicity)简称自律性, 是指组织或细胞在没有外来因素作用下,自动地产 生节律性兴奋的特性。
心脏生理
1) 心脏的起搏点
在正常情况下,因窦房结自律性最高,由窦房结 发出的兴奋按一定的顺序传播,心脏各部分按顺序 接受由窦房结传来的冲动而发生兴奋和收缩,故把 窦房结称为心脏的正常起搏点(pacemaker)。
心脏生理
1.心动周期与心率
图 3-7 心动周期中心房心室活动顺序
心脏生理
2.心脏的泵血过程
图 3-8 心脏泵血过程示意图
2.心脏的泵血过程
心脏生理
泵血过程
心室收缩期
心室舒张 期
心脏生理
1) 心室收缩期
等容收缩期
快速射血期
减慢射血期
心脏生理
2) 心室舒张期
1
等容舒张期
2
快速充盈期
3
减慢充盈期
2) 影响心肌传导性的因素

心肌的生理特性通用课件

心肌的生理特性通用课件

β受体拮抗剂
普萘洛尔 美托洛尔 阿替洛尔
钙通道阻滞剂
维拉帕米 地尔硫䓬
抗心律失常药物
利多卡因
利多卡因是一种局部麻醉药和抗心律失常药,主要用于治疗室性心律失常,可抑 制心肌收缩和传导神经,减慢心率。
胺碘酮
胺碘酮是一种广谱抗心律失常药物,可用于治疗各种心律失常,如房性、室性和 交界性心律失常等,可抑制心肌收缩和传导神经,减慢心率。
适量的有氧运动有助于提食有助于控制体重,预防心血管疾病。
戒烟限酒
戒烟有助于预防心血管疾病,限制酒精摄入对心脏健康也有益。
预防心血管疾病
控制血压
01
控制血脂
02
控制血糖
03
治疗心肌疾病的方法
药物治疗
介入治疗
手术治疗
THANK YOU
03
心肌的生物化学特性
心肌的能量代 谢
01
02
03
04
心肌的物质代谢
心肌的荷尔蒙调节
04
心肌的病理生理特性
心肌缺血与缺氧
心肌缺血 心肌缺氧
心肌肥厚与扩张
心肌肥厚
心肌扩张
心肌扩张是指心肌细胞体积增大,但 数目不变,导致心室腔扩大,心脏体 积增大。
心肌炎与心肌病
心肌炎
心肌病
05
心肌的药物治疗
心肌的生理特性通用件
• 心肌的生物化学特性 • 心肌的病理生理特性 • 心肌的药物治疗 • 心肌疾病的预防与治疗
01
心肌的概述
心肌的细胞构成
心肌细胞
工作细胞 自律细胞
心肌的功能特点
01
02
收缩性
节律性
03 传导性
心肌的电生理特性
01

心肌的生理特性思维导图-高清简单脑图模板-知犀思维导图

心肌的生理特性思维导图-高清简单脑图模板-知犀思维导图

心肌的生理特性
兴奋性
周期性变化
有效不应期
绝对不应期
0-3期
Na通道全部失活
局部反应期
3期
Na少量复活
相对不应期
阈上刺激
兴奋
阈下刺激
不兴奋超常期
兴奋性高于正常
阈下刺激
影响因素
静息电位或最大复极电位阈电位
引起0期去极化的离子通道性状
周期性变化与收缩的关系
不发生强直收缩
有效不应期长代偿性间歇
期前兴奋期前收缩
自律性
起搏点
窦房结P细胞
自律性最高正常起搏点
窦性节律
机制
抢先占领
超速驱动压抑
浦肯野纤维
自律性最低
影响因素
最大复极电位与阈电位的差距4期自动去极化的速率
传导性
途径
窦房结-心房肌-房室交界区-房室束-左右束支-浦肯野纤维网-心室肌
房室延搁
房室交界区
传导阻滞好发部位
兴奋在房室交界处传导最慢
正常时兴奋由心房进入心室的唯一通道
影响因素
结构因素
细胞直径
细胞间缝隙连接
生理因素
0期去极化的速度和幅度
邻旁未兴奋部位膜的兴奋性
收缩性
收缩特点
同步收缩合胞体
不发生强直收缩对细胞外Ca的依赖性
体表心电图
P波左右两心房的去极化QRS波左右两心室的去极化
T波两心室复极过程
U波意义和成因还不十分清楚
12个导联。

《心肌的生理特性》课件

《心肌的生理特性》课件

Part One
单击添加章节标题
Part Two
心肌的结构和功能
心肌细胞的形态和结构
心肌细胞呈梭形, 有横纹
心肌细胞有收缩性 和舒张性
心肌细胞有自律性 ,可以自动节律性 收缩
心肌细胞有传导性 ,可以传递兴奋
心肌的功能概述
心肌是心脏的主要组成部分,负责心脏的收缩和舒张 心肌具有自动节律性,能够自主地、有规律地收缩和舒张 心肌具有兴奋性,能够对刺激产生反应,并传导兴奋 心肌具有收缩性,能够产生力量,推动血液流动
心脏起搏点的作用
控制心脏跳动的频率和节奏 产生心脏跳动的电信号 维持心脏的正常功能 调节心脏的收缩和舒张
心肌自动节律性的影响因素
离子通道:心肌细胞膜上的离子通道对心肌的自动节律性有重要影响 细胞内钙离子浓度:细胞内钙离子浓度的变化会影响心肌的自动节律性 神经调节:自主神经系统对心肌的自动节律性有调节作用 激素调节:激素水平对心肌的自动节律性有影响 心肌细胞膜电位:心肌细胞膜电位的变化会影响心肌的自动节律性
心肌的电生理特性
心肌细胞:心肌细胞是心肌的主要组成细胞,具有兴奋性和传导性
心肌电生理特性:心肌细胞具有自动节律性、传导性、兴奋性和收缩性
心肌电生理特性的生理意义:心肌电生理特性是心肌正常生理功能的基 础,也是心肌疾病诊断和治疗的重要依据 心肌电生理特性的研究进展:近年来,心肌电生理特性的研究取得了重 要进展,为心肌疾病的诊断和治疗提供了新的思路和方法。
能量供应
心肌细胞具有较高的线粒体 密度,以适应其高代谢率的
需求
心肌的能量来源
心肌细胞通过氧化磷酸化过程产生能量 主要能量来源是葡萄糖和脂肪酸 心肌细胞通过糖酵解和脂肪酸氧化获取能量 心肌细胞在缺氧状态下,主要通过糖酵解获取能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节心肌的生理在循环系统中,心脏起着泵血的功能,推动血液循环。

心脏的这种功能是由于心肌进行节律性的收缩与舒张及瓣膜的活动而实现的。

心肌的收缩活动又决定心肌具有兴奋性,传导性等生理特性。

心肌细胞膜的生物电活动是兴奋性和传导性等生理特性的基础。

故本节先讨论心肌细胞的生物电活动,进而阐明心肌的生理特性。

在此基础上,再进一步讨论心脏的生理功能。

心肌的生理特性心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。

兴奋性、自律性和传导性是以肌膜的生物电活动为基础的,故又称为电生理特性。

心肌细胞的生物电现象和神经组织一样,心肌细胞在静息和活动时也伴有生物电变化(又称跨膜电位)。

研究和了解心肌的生物电现象,对进一步理解心肌生理特性具有重大意义。

从组织学,电生理特点和功能可将心肌细胞分为两大类。

一类是普通细胞,含有丰富的肌原纤维,具有收缩功能,称为工作细胞,工作细胞属于非自律性细胞,它不能产生节律性兴奋活动,但它具有兴奋性和传导兴奋的能力。

它们包括心房肌和心室肌。

另一类是一些特殊分化了的心肌细胞,它们含肌原纤维很少或完全缺乏;故已无收缩功能,它们除具有兴奋性、传导性外,还具有自动产生节律性兴奋的能力,故又称自律细胞。

主要包括P细胞和浦肯野细胞。

它们与另一些既不具有收缩功能又无自律性,只保留很低的传导性的细胞组成心脏中的特殊传导系统。

特殊传导系统是心脏中发生兴奋和传导兴奋的组织,起着控制心脏节律性活动的作用。

特殊传导系统包括窦房结、房室交界、房室束和末梢浦肯野纤维。

一、心肌的兴奋性心肌细胞有两类,一类是具有收缩能力的心房肌和心室肌,称工作细胞即非自律细胞;另一类是特殊分化的细胞,自律细胞,构成心脏的特殊传导系统(一)心室肌细胞跨膜电位(非自律细胞)静息电位(Rp)及其形成机制心肌细胞和骨骼肌一样在静息状态下膜内为负,膜外为正,呈极化状态。

这种静息状态下膜内外的电位差称为静息电位。

不同心肌的静息电位的稳定性不同,人和哺乳类动物心脏的非自律细胞的静息电位稳定,膜内电位低于膜外电位/90mV左右(以膜外为零电位,膜内侧为-90mV)。

在自律性细胞如窦房结细胞和浦肯野细胞的静息电位不稳定,称为舒张期电位,不同部位的自律细胞舒张期最大电位不同,浦肯野细胞的最大舒张电位为-90mV,窦房结细胞的最大舒张电位较小,约为-70mV左右。

心肌细胞静息电位产生的原理基本上与神经、骨骼肌相似,主要是由于K+外流所形成。

动作电位(Ap)心肌细胞兴奋过程中产生的並能扩布出去的电位变化称为动作电位。

与骨骼肌相比心肌细胞动作电位升支与降支不对称。

复极过程比较复杂。

不同部分心肌细胞动作电位形态波幅都有所不同。

按照心肌细胞电活动的特点,可以分为快反应细胞和慢反应细胞。

快反应细胞包括:心室肌、心房肌和浦肯野细胞,前二者属非自律细胞,后者属自律细胞。

快反应细胞动作电位的特点是去极化速度快,振幅大,复极过程缓慢並可分几个时相(期)。

由于去极速度快、波幅大,所以兴奋传导快。

慢反应细胞包括窦房结和房室结。

慢反应细胞的主要特点是去极化速度慢,波幅小,复极缓慢且无明显的时相区分,传导速度慢。

1.快反应细胞动作电位及其形成机制快反应细胞的动作电位可分为五个时相(期):0期又称除极或去极过程,心肌细胞受到刺激发生兴奋时出现去极。

膜内电位迅速由静息状态的-80~-90mV上升到+30mV左右,即膜两侧原有的极化状态被消失並呈极化倒转,从去极化到倒极化形成动作电位的升支,其超过0电位的电位称为超射。

0期短暂,仅占1~2ms,而上升幅度大,可达120mV。

其最大除极速度在心房心室肌约为200~300V/S,而浦肯野细胞可达400~800V/S。

1期(快速复极化期),在动作电位去极完毕后,转入复极期在复极初期,膜电位迅速由30mV下降到0mV左右,占时约2ms,1期在不同的快反应细胞明显程度不同,在浦肯野细胞很明显。

2期(缓慢复极化期又称平台期),在2期内,复极速度极为缓慢,几乎停滞在同一膜电位水平,因而形成平台,故又称平台期,平台期是心肌细胞动作电位的主要特征。

不同心肌细胞平台期的电位水平和时程长短不同。

心室肌和房室束近端的浦肯野细胞平台期的电位为零电位附近。

在束支远端或末梢的浦肯野细胞为-40mV。

心室肌细胞平台期时程约占100ms、浦肯野细胞为200~300ms。

平台期的存在是心肌快反应细胞动作时程明显长于神经、骨骼肌的主要原因。

3期(快速复极化末期),2期复极结束后,复极过程又加速,膜内电位下降至静息电位或舒张电位水平,完成复极化过程,占时约为/100~150ms。

4期(动作电位复极完毕后的时期)又称之为电舒张期。

在非自律细胞如心房肌,心室肌细胞4期内膜电位稳定于静息电位,称为静息期。

在自律细胞4期内膜电位不稳定,有自发的缓慢去极倾向称为舒张除极。

当4期除极达到阈电位水平就可产生一次新的动作电位。

形成机制:快反应心肌细胞动作电位形成的原理与骨骼肌基本相似,也是与离子在细胞两侧不均匀分布所形成的浓度梯度和细胞膜上存有特殊离子通道有关。

已知细胞外Na+浓度大于细胞内(约大4倍多)。

而细胞外的K-浓度则比细胞内小30多倍。

相应离子经细胞膜上特殊离子通道的越膜扩散,是形成心肌动作电位的基础。

但心肌跨膜电位形成中涉及的离子远比骨骼肌要复杂得多。

在心肌细胞动作电位的形成除由于离子越膜被动扩散外,由细胞膜上离子泵活动所产生的离子主动转运,在细胞的电活动中也起着重要作用。

以下具体讨论快反应细胞动作电位形成的离子基础。

快反应细胞0期去极与Na+快速内流有关,而Na+的内流除与膜内外Na+浓度梯度有关外,更主要的是决定于Na+通道的状态。

如前所述Na+通道可表现为激活、失活和备用三种状态。

在适当的刺激作用下,首先引起Na+通道的部分开放,少量Na+内流,而引起膜内电位上升。

当膜电位由-90mV升至-70mV时,则Na+通道被激活而开放,通透性增高。

此电位水平即称为阈电位。

由于膜外Na+浓度大于膜内和膜内外电位梯度的影响,大量Na+快速进入膜内,膜内电位急剧上升,由负变为正(-90mV→+30mV)。

而形成动作电位的上升支。

当膜电位负值减少至-55mV以上时,则/Na+通道失活关闭,Na+内流迅速终止。

Na+通道的激活与失活十分迅速故称为快通道。

由快通道开放而出现的电位变化称为快反应电位。

故具有这种特性的心肌细胞称为快反细胞。

关于心肌动作电位1期的形成原理,过去认为是C1-内流所引起,近年研究表明,1期电位可被K+通道阻滞剂四乙基胺和4-氨基吡啶所阻断,因之认为K+的跨膜外流是引起1期的主要离子。

2期(平台期)形成的原因主要是Ca2+的缓慢内流和少量K+外流所形成。

已经证明,心肌膜上存在一种慢Ca2+通道。

慢Ca2+通道的激活,以及再复活所需时间均比Na+通道要长,故称慢通道。

慢通道也是电压依从性,激活慢通道的阈电位水平是-50~-35mV。

由于慢钙通道的选择性不如快钠通道那样专一,它虽然对Ca2+的通透性较高,但也有一定的Na+通透性,约为Ca2+内流的1/70~100。

故在平台期也有一定量的Na+内流。

在平台期早期,Ca2+的内流与K+外流所负载的跨膜正电荷量相等,故膜电位稳定于1期复极的电位水平,随着时间推移,慢Ca2+通道逐渐失活,K+外流逐渐增多,膜内电位缓慢下降,而形成平台期晚期。

3期的形成主要是由于Ca2+通道完全失活,而膜对K+通透性增高,K+外流随时间而递增导至膜的复极愈来愈快,直至复极完成。

在4期内,工作细胞膜电位基本上稳定于静息电位水平。

但膜内外离子分布都与静息电位时不同,即由于前一阶段的变化,膜内Na+,Ca2+有所增加,而K+有所减少。

因此只有把动作电位期间进入细胞内的Na+、Ca2+排出去,把外流出去的K+摄取回来,才能恢复细胞内外正常的离子浓度梯度,保持心肌的正常兴奋能力。

这些离子的转运都是逆浓度梯度进行的主动转运过程。

这种主动转运过程主要也是通过Na+-K+泵的作用,形成Na+-K+交换而实现的。

关于进入膜内Ca2+的转运一般认为与Na+顺浓度梯度的内流相耦合而进行的。

即Na+的内流促使Ca2+外流形成Na+Ca2+交换。

由于Na+的内向性浓度梯度的维持是依靠Na+-K+泵而实现的,故Ca2+的主动转运的能量也是由Na+-K+泵提供的,Ca2+的转运决定于膜两侧Na+的浓度梯度。

故当细胞内Na+的浓度增加时(导致Na+内向性浓度梯度减小),Ca2+的外运也相应减少,细胞内Ca2+将因此而增加。

快反应自律细胞(浦肯野细胞),在4期内膜电位不稳定,研究资料表明,在浦肯野细胞4期出现主要是Na+随时间推移而渐增的内向流动所引起,这种Na+内流的膜通道在3期复极电位达-60mV左右,开始激活开放,其激活程度随膜电位复极化,膜内负电位的增加而增加,至-100mV就充分激活。

因此,Na+内流逐步增大,膜的除极程度逐渐增加,一旦达阈电位水平即能产生另一次动作电位,虽然这种通道允许Na+通过,但与快钠通道不同,因为二者激活的电位水平不同,此外具有阻断快钠通道的河琢毒素(TTX)也不能阻断此通道。

(二)影响心肌兴奋性的因素1.Rp与阈电位差值:与兴奋性成反比2.Na通道状态1)Na通道功能状态:激活、失活、备用2)兴奋性→取决于Na通道的备用状态→取决于膜Rp 是否正常(三)一次兴奋过程中兴奋性的周期性变化(四)兴奋性周期性变化与心肌收缩活动关系1、ERP特别长→保证心肌收 / 舒交替进行不发生强直收缩2、期前收缩(早搏)和代偿间歇特殊情况下,心肌可以接受在窦性节律之外又效不应期之后的刺激,将此额为刺激的收缩称为期前收缩(早搏),在下一个窦性节律未到之前,常常出现一段较长的心室舒张期,成为代偿间歇二. 心肌的自动节律性(一)心肌细胞的分类心肌细胞按有无自律性分:1. 工作细胞(非自律细胞)心房、心室肌→兴、传、收(无自)2. 自律细胞P 细胞、浦肯野细胞等→兴、传、自(无收缩性)(二)自律细胞与自律细胞的跨膜电位1. 自律细胞分类1)快反应自律细胞:去极化因快Na通道开放引起2)慢反应自律细胞:去极化因慢Ca通道开放引起2. 自律性产生基础:自律细胞有4期缓慢自动去极化1)自律细胞没有稳定静息电位(4期),表现为自动发生缓慢去极化无稳定的静息状态,其静息电位在前一个动作电位复极化完毕时为最大(绝对值)称最大舒张电位2)4期缓慢自动去极化产生原因:复极化末期外向电流逐渐减弱(K离子),内向电流逐渐增强 (多为Na离子)3. 自律细胞跨膜电位根据自律细胞Ap 0期去极化速度和产生机制不同,心脏自律细胞可分为窦房结,房室交界的自律细胞属慢反应细胞。

与快反应细胞跨膜电位相比,慢反应细胞电位具有以下特点:(1)慢反应细胞的静息电位和阈电位比快反应电位低。

相关文档
最新文档