关于高考文科数学导数专题复习

关于高考文科数学导数专题复习
关于高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算

知 识 梳 理

1.导数的概念

(1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0

lim x ?→f (x 0+Δx )-f (x 0)

Δx .

(2)函数f (x )的导函数f ′(x )=0

lim

x ?→f (x +Δx )-f (x )

Δx 为f (x )的导函数.

2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0).

3.基本初等函数的导数公式

4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算

【例1】 求下列函数的导数:

(1)y =e x

ln x ;(2)y =x ?

??

??x 2+1x +1x 3;

解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ??

??ln x +1x e x .(2)因为y =x 3

+1+1x

2,

所以y ′=(x 3)′+(1)′+? ??

??1x

2′=3x 2

-2x

3.

【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e

解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1

x

,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B

(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.

(2)f ′(x )=a ? ??

??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3

考点二 导数的几何意义 命题角度一 求切线方程

【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1

-x ,则曲线y =f (x )在点(1,2)处的

切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1

+x .又f (x )为偶函数,f (x )=f (-x )=e

x -1

+x ,

所以当x >0时,f (x )=e

x -1

+x .因此,当x >0时,f ′(x )=e

x -1

+1,f ′(1)=e 0

+1=2.则曲线y =f (x )在点(1,

2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0

【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

(2)∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,

∴?

????y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.答案 B

命题角度二 求切点坐标

【例3】 (2017·西安调研)设曲线y =e x

在点(0,1)处的切线与曲线y =1x

(x >0)上点P 处的切线垂直,则P 的坐

标为________.

解析 由y ′=e x ,知曲线y =e x 在点(0,1)处的切线斜率k 1=e 0

=1.设P (m ,n ),又y =1x (x >0)的导数y ′=-1x

2,

曲线y =1x (x >0)在点P 处的切线斜率k 2=-1

m

2.依题意k 1k 2=-1,所以m =1,从而n =1.

则点P 的坐标为(1,1).答案 (1,1)

【训练3】若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析 (1)由题意得y ′=ln x +x ·1

x

=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以

n =eln e =e ,即点P 的坐标为(e ,e). 答案 (1)(e ,e)

命题角度三 求与切线有关的参数值(或范围)

【例4】 (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2

+(a +2)x +1相切,则a =________.

解析 由y =x +ln x ,得y ′=1+1

x

,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y

-1=2(x -1),即y =2x -1.又该切线与y =ax 2+(a +2)x +1相切,消去y ,得ax 2

+ax +2=0,∴a ≠0且Δ=

a 2-8a =0,解得a =8.答案 8

【训练4】1.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________. 函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a 在(0,+∞)上有解,a =2-1x ,因为a >0,所以2-1

x

<2,所以a 的取值范围是(-∞,2).答案

(2)(-∞,2)

2.点P 是曲线x 2

-y -ln x =0上的任意一点,则点P 到直线y =x -2的最小距离为( ) A.1 B.

32

C.

5

2

D. 2 解析 点P 是曲线y =x 2

-ln x 上任意一点,当过点P 的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2

-ln x ,得y ′=2x -1x =1,解得x =1或x =-12(舍去),故曲线y

=x 2

-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y =x -2的距离等于2,∴点P 到直线y =x -2的最小距离为 2.答案 D

第2讲 导数在研究函数中的应用

知 识 梳 理

函数的单调性与导数的关系函数y =f (x )在某个区间内可导,则:(1)若f ′(x )>0,则f (x )在这个区间内单调递增;(2)若f ′(x )<0,则f (x )在这个区间内单调递减;(3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 考点一 利用导数研究函数的单调性

【例1】设f (x )=e x (ax 2

+x +1)(a >0),试讨论f (x )的单调性.

解 f ′(x )=e x

(ax 2

+x +1)+e x (2ax +1)=e x [ax 2+(2a +1)x +2]=e x

(ax +1)(x +2)

=a e x ? ????x +1a (x +2)①当a =12时,f ′(x )=12e x (x +2)2

≥0恒成立,∴函数f (x )在R 上单调递增;

②当0<a <12时,有1a >2,令f ′(x )=a e x ? ??

??x +1a (x +2)>0,有x >-2或x <-1a ,

令f ′(x )=a e x ? ??

??x +1a (x +2)<0,有-1a

<x <-2,∴函数f (x )在? ??

??-∞,-1a 和(-2,+∞)上单调递增,在

? ????-1a ,-2上单调递减;③当a >12时,有1a <2,令f ′(x )=a e x ? ????x +1a (x +2)>0时,有x >-1a 或x <-2,令f ′(x )=a e x ? ??

??x +1a (x +2)<0时,有-2<x <-1a

∴函数f (x )在(-∞,-2)和? ????-1a ,+∞上单调递增;在? ??

??-2,-1a 上单调递减.

【训练1】(2016·四川卷节选)设函数f (x )=ax 2

-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的

底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.

(1)解 由题意得f ′(x )=2ax -1x =2ax 2

-1

x

(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0

时,由f ′(x )=0有x =

1

2a

,当x ∈?

?

???0,

12a 时,f ′(x )<0,f (x )单调递减;当x ∈? ??

??12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )

=1x -1

e

x -1>0. 考点二 求函数的单调区间

【例2】 (2015·重庆卷改编)已知函数f (x )=ax 3+x 2

(a ∈R )在x =-43处取得极值.

(1)确定a 的值;(2)若g (x )=f (x )e x

,求函数g (x )的单调减区间.

解 (1)对f (x )求导得f ′(x )=3ax 2

+2x ,因为f (x )在x =-43处取得极值,所以f ′? ????-43=0,即3a ·169+

2·? ????-43=16a 3-8

3

=0,解得a =12.

(2)由(1)得g (x )=? ????12x 3+x 2e x 故g ′(x )=? ????32x 2+2x e x +? ????12x 3+x 2e x =? ??

??12x 3+52x 2+2x e x =12x (x +1)(x +4)e x

.令

g ′(x )<0,得x (x +1)(x +4)<0.解之得-1

【训练2】 已知函数f (x )=x 4+a x -ln x -3

2

,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y

=1

2

x .(1)求a 的值;(2)求函数f (x )的单调区间. 解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-3

4-a

=-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,(x >0).则f ′(x )=x 2

-4x -5

4x 2

.令f ′(x )=0,解得x =-1或x =5.但-1?(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5). 考点三 已知函数的单调性求参数

【例3】 (2017·西安模拟)已知函数f (x )=ln x ,g (x )=12ax 2

+2x (a ≠0).

(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.

解 (1)h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1

x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0

时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x

,所以只要a >G (x )min .(*)又G (x )=? ??

??1x -12-1,所以G (x )min

=-1.所以a >-1.即实数a 的取值范围是(-1,+∞).

(2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,(**)则a ≥1x 2-2

x

恒成立,

所以a ≥G (x )max .又G (x )=? ????1x -12

-1,x ∈[1,4]因为x ∈[1,4],所以1x ∈??????14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2

-32x 16x =(7x -4)(x -4)

16x ,∵x ∈[1,4],

∴h ′(x )=(7x -4)(x -4)

16x

≤0,当且仅当x =4时等号成立.(***)

∴h (x )在[1,4]上为减函数.故实数a 的取值范围是????

??-716,+∞. 【训练3】 已知函数f (x )=x 3

-ax -1.

(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )的单调减区间为(-1,1),求a 的值. 解 (1)因为f (x )在R 上是增函数,所以f ′(x )=3x 2

-a ≥0在R 上恒成立,即a ≤3x 2

对x ∈R 恒成立.因为3x 2

≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2

≥0,当且仅当x =0时取等号.∴f (x )=x 3

-1在R 上是增函数.所以实数a 的取值范围是(-∞,0].(2)f ′(x )=3x 2-a .当a ≤0时,f ′(x )≥0,f (x )在(-∞,+∞)上为增函数, 所以a ≤0不合题意.当a >0时,令3x 2

-a <0,得-3a 3

,3a 3, 依题意,

3a

3

=1,即a =3. 第3讲 导数与函数的极值、最值

知 识 梳 理

1.函数的极值与导数的关系(1)函数的极小值与极小值点:若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点:若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数的极大值点,f (b )叫做函数的极大值.

2.函数的最值与导数的关系(1)函数f (x )在[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 考点一 用导数研究函数的极值 命题角度一 根据函数图象判断极值

【例1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )

A.函数f (x )有极大值f (2)和极小值f (1)

B.函数f (x )有极大值f (-2)和极小值f (1)

C.函数f (x )有极大值f (2)和极小值f (-2)

D.函数f (x )有极大值f (-2)和极小值f (2)

解析 由题图可知,当x <-2时,1-x >3,此时f ′(x )>0;当-22时,1-x <-1,此时f ′(x )>0,由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.答案 D 命题角度二 求函数的极值

【例2】 求函数f (x )=x -a ln x (a ∈R )的极值. 解 由f ′(x )=1-a x =

x -a

x

,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )

无极值;(2)当a >0时,令f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞),f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 命题角度三 已知极值求参数

【例3】 已知关于x 的函数f (x )=-13x 3+bx 2

+cx +bc 在x =1处有极值-43

,试求b ,c 的值.

解 ∵f ′(x )=-x 2

+2bx +c ,由f (x )在x =1处有极值-43,可得?

????f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43.解得???

??b =1,c =-1或?

????b =-1,c =3.若b =1,c =-1,则f ′(x )=-x 2+2x -1=-(x -1)2

≤0,f (x )没有极值.若b =-1,c =3,则f ′(x )=-x 2

-2x +3=-(x +3)(x -1).当x 变化时,f (x )与f ′(x )的变化情况如下表:

∴当x =1时,f (x )有极大值-4

3,满足题意.故b =-1,c =3为所求.

【训练1】 设函数f (x )=ax 3

-2x 2

+x +c (a >0).

(1)当a =1,且函数图象过(0,1)时,求函数的极小值;(2)若f (x )在R 上无极值点,求a 的取值范围. 解 由题意得f ′(x )=3ax 2

-4x +1.(1)函数图象过(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2

-4x +1.令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13

-2×12

+1+1=1.

(2)若f (x )在R 上无极值点,则f (x )在R 上是单调函数,故f ′(x )≥0或f ′(x )≤0恒成立.当a =0时,f ′(x )=-4x +1,显然不满足条件;当a ≠0时,f ′(x )≥0或f ′(1)≤0恒成立的充要条件是Δ=(-4)2

-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围是??????43,+∞.

考点二 利用导数求函数的最值

【例4】 (2017·郑州模拟)已知函数f (x )=(x -k )e x

. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.

解 (1)由f (x )=(x -k )e x

,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1. 当x 变化时,f (x )与f ′(x )的变化情况如下表:

所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).

(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0

k -1

.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区

间[0,1]上的最小值为f (1)=(1-k )e.

综上可知,当k ≤1时,f (x )min =-k ;当1

k -1

;当k ≥2时,f (x )min =(1-k )e.

【训练2】 设函数f (x )=a ln x -bx 2

(x >0),若函数f (x )在x =1处与直线y =-12

相切,(1)求实数a ,b 的值;

(2)求函数f (x )在????

??1e ,e 上的最大值. 解 (1)由f (x )=a ln x -bx 2

,得f ′(x )=a x -2bx (x >0).∵函数f (x )在x =1处与直线y =-12

切.∴?????f ′(1)=a -2b =0,f (1)=-b =-1

2,解得?

????a =1,b =12.(2)由(1)知f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e

??1e ,1上单调递增,在(1,e)上单调递减,

∴f (x )max =f (1)=-1

2

.

考点三 函数极值与最值的综合问题 【例5】 已知函数f (x )=

ax 2+bx +c

e

x

(a >0)的导函数y =f ′(x )的两个零点为-3和0.

(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3

,求f (x )在区间[-5,+∞)上的最大值.

解 (1)f ′(x )=(2ax +b )e x

-(ax 2

+bx +c )e x (e x )2=-ax 2

+(2a -b )x +b -c e

x

.令g (x )=-ax 2

+(2a -b )x +b -c ,由于e x >0.令f ′(x )=0,则g (x )=-ax 2+(2a -b )x +b -c =0,∴-3和0是y =g (x )的零点,且f ′(x )与g (x )的符号相同.又因为a >0,所以-30,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,

所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).

(2)由(1)知,x =-3是f (x )的极小值点,所以有????

?9a -3b +c e

-3

=-e 3

,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,

解得a =1,b =5,

c =5,所以f (x )=

x 2+5x +5

e

x

.因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).

所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,又f (-5)=5e -5=5e 5>5=f (0),所数f (x )在区间[-5,+∞)上的最大值是5e 5.

【训练3】 (2017·衡水中学月考)已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;

(2)若函数f (x )在x =1处取得极值,?x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的最大值.

解 (1)f (x )的定义域为(0,+∞),f ′(x )=a -1x =ax -1

x

.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数

f (x )在(0,+∞)上单调递减.∴f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0,得0

a

;由f ′(x )>0,

得x >1a

,∴f (x )在? ????0,1a 上递减,在? ??

??1a ,+∞上递增,即f (x )在x =1a

处有极小值.综上,当a ≤0时,f (x )在(0,

+∞)上没有极值点;当a >0时,f (x )在(0,+∞)上有一个极值点.

(2)∵函数f (x )在x =1处取得极值,∴f ′(1)=a -1=0,则a =1,从而f (x )=x -1-ln x .因此f (x )≥bx -2?1+1x -ln x x ≥b ,令g (x )=1+1x -ln x x ,则g ′(x )=ln x -2x

2

,令g ′(x )=0,得x =e 2,则g (x )在(0,e 2

)上递减,在(e 2,+∞)上递增,∴g (x )min =g (e 2

)=1-1e 2,即b ≤1-1e 2.故实数b 的最大值是1-1e

2.

第4讲 导数与函数的综合应用

考点一 利用导数研究函数的性质

【例1】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ).

(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.

解 (1)f (x )的定义域为(0,+∞),f ′(x )=1

x

-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.

若a >0,则当x ∈?

??

??0,1a 时,f ′(x )>0;当x ∈? ????1a ,+∞时,f ′(x )<0.所以f (x )在? ???

?0,1a 上单调递增,在? ??

??1a ,+∞上单调递减.(2)由(1)知,当a ≤0,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1

a

取得最大值,最大值

为f ? ??

??1a =ln 1a

+a ? ????1-1a =-ln a +a -1.因此f ? ??

??1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )

在(0,+∞)上单调递增,g (1)=0.于是,当01时,g (a )>0.因此,a 的取值范围是(0,1).

【训练1】设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在? ????23,+∞上存在单调递增区间,求a 的取值范围;

(2)当0<a <2时,f (x )在[1,4]上的最小值为-16

3

,求f (x )在该区间上的最大值.

解 (1)由f ′(x )=-x 2

+x +2a =-? ????x -122

+14+2a ,当x ∈??????23,+∞时,f ′(x )的最大值为f ′? ????23=2

9

+2a ;

令29+2a >0,得a >-19.所以,当a >-19时,f (x )在? ??

??23,+∞上存在单调递增区间.

(2)已知0<a <2,f (x )在[1,4]上取到最小值-163,而f ′(x )=-x 2

+x +2a 的图象开口向下,且对称轴x =12,

∴f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减,f (1)=-13+12+2a =16+2a >0,∴f (4)=-1

3×64

+12×16+8a =-403+8a =-163?a =1.此时,由f ′(x 0)=-x 2

0+x 0+2=0?x 0=2或-1(舍去),所以函数f (x )max

=f (2)=103

.

考点二 利用导数研究函数的零点或方程的根

【例2】 (2015·北京卷)设函数f (x )=x 2

2

-k ln x ,k >0.

(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.

(1)解 由f (x )=x 2

2-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-k

x

.由f ′(x )=0,解得x =k (负值舍去).f (x )

与f ′(x )在区间(0,+∞)上的情况如下:

所以f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=

k (1-ln k )

2

.

(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=

k (1-ln k )

2

.因为f (x )存在零点,所以

k (1-ln k )

2

≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )

在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k

2<0,

所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 【训练2】 (2016·北京卷节选)设函数f (x )=x 3

+ax 2

+bx +c .

(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围.

解 (1)由f (x )=x 3

+ax 2

+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .

(2)当a =b =4时,f (x )=x 3

+4x 2

+4x +c ,所以f ′(x )=3x 2

+8x +4.令f ′(x )=0,得3x 2

+8x +4=0,解得x =-2或x =-2

3

.当x 变化时,f (x )与f ′(x )的变化情况如下:

所以,当c >0且c -3227<0,存在x 1∈(-4,-2),x 2∈? ????-2,-23,x 3∈? ??

??-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈? ??

??0,3227时,函数f (x )=x 3+4x 2

+4x +c 有三个不同零点.

考点三 导数在不等式中的应用 命题角度一 不等式恒成立问题

【例3】 (2017·合肥模拟)已知f (x )=x ln x ,g (x )=x 3

+ax 2

-x +2.

(1)如果函数g (x )的单调递减区间为? ??

??-13,1,求函数g (x )的解析式; (2)对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.

解 (1)g ′(x )=3x 2+2ax -1,由题意3x 2

+2ax -1<0的解集是? ??

??-13,1,

即3x 2+2ax -1=0的两根分别是-13,1.将x =1或-13

代入方程3x 2+2ax -1=0,得a =-1.所以g (x )=x 3-x 2

-x +2.

(2)由题意2x ln x ≤3x 2+2ax -1+2在x ∈(0,+∞)上恒成立,可得a ≥ln x -32x -12x ,设h (x )=ln x -32x -1

2x ,

则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2

,令h ′(x )=0,得x =1或-1

3

(舍),当00,当

x >1时,h ′(x )<0,所以当x =1时,h (x )取得最大值,h (x )max =-2,所以a ≥-2,所以a 的取值范围是[-2,

+∞).

【训练3】已知函数f (x )=x 2

-ln x -ax ,a ∈R .

(1)当a =1时,求f (x )的最小值;(2)若f (x )>x ,求a 的取值范围.

解 (1)当a =1时,f (x )=x 2

-ln x -x ,f ′(x )=(2x +1)(x -1)x

.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,

+∞)时,f ′(x )>0.所以f (x )的最小值为f (1)=0.

(2)由f (x )>x ,得f (x )-x =x 2-ln x -(a +1)x >0.由于x >0,所以f (x )>x 等价于x -ln x x >a +1.令g (x )=x -ln x x

则g ′(x )=x 2-1+ln x x 2

.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )有最小值g (1)=1.

故a +1<1,a <0,即a 的取值范围是(-∞,0). 命题角度二 证明不等式

【例4】 (2017·昆明一中月考)已知函数f (x )=ln x -(x -1)

2

2.

(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )

(1)解 f ′(x )=1x -x +1=-x 2

+x +1x ,x ∈(0,+∞).由f ′(x )>0得?

????x >0,x 2+x +1>0.解得0

2.故f (x )的

单调递增区间是? ????

0,1+52.(2)证明 令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2

x .当x ∈(1,

+∞)时,F ′(x )<0,所以F (x )在(1,+∞)上单调递减,故当x >1时,F (x )1时,f (x )1时,f (x )

f (x )x +12=ln x x +12,F ′(x )=1-ln x x 2

,当F ′(x )>0时,0e ,故F (x )在(0,e)上是增函数,在(e ,+∞)上是减函数,故F (x )max =F (e)=1e +1

2

.

(2)证明 令h (x )=x -f (x )=x -ln x ,则h ′(x )=1-1x =x -1

x

,当h ′(x )<0时,00时,x >1,

故h (x )在(0,1)上是减函数,在(1+∞)上是增函数,

故h (x )min =h (1)=1.又F (x )max =1e +12<1,故F (x )

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

北大附中高考数学专题复习导数与微分经点答疑(四)

学科:数学 教学内容:导数与微分经点答疑(四) 11.什么是高阶导数? 我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有: 函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称 ()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx y d y '' ().dx dy dx d dx y d y y 22??? ??=' '=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数. 同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作 ()即或,dx y d x y 33''' ()()()()().dx y d dx d dx y d y y ,x f x f ,y y 22333???? ??=''''''=''''''='''或又记作 …… 一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶 导数.记作()()即或n n n n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ??? ? ??==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数. 若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导. 由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

高中数学文科导数练习题

数学导数练习(文) 一、1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( )A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在 ),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内 有极小值点( ) A. 1个 B.2个 C.3个 D.4个 二、11.函数3 2 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________. 14. 曲线3 x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为 __________。 15. 已知曲线3 1433 y x = + ,在点(2,4)P 的切线方程是______________ a b x y ) (x f y '=O

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考文科数学导数知识点总结

2014高考文科数学:导数知识点总结 (4) x x sin )(cos -='. (5) x x )(ln = ';e a x x a log )(log ='. (6) x x e e =')(; a a a x x ln )(='.(7)' ' ' ()u v u v ±=±. (8)' ' ' ()uv u v uv =+. (9)'' '2 ()(0)u u v uv v v v -= ≠. (10)2' 11x x -=?? ? ?? (11) ()x x 21' = 5.导数的应用 ①单调性:如果0)(' >x f ,则)(x f 为增函数;如果0)(' 'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(“左增右减↗↘”) 如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.(“左减右增↘↗”) 附:求极值步骤 )(x f 定义域→)(' x f →)(' x f 零点→列表: x 范围、)(' x f 符号、)(x f 增减、)(x f 极值 ③求[]b a ,上的最值:)(x f 在()b a ,内极值与)(a f 、)(b f 比较

6. 三次函数 d cx bx ax x f +++=23)( c bx ax x f ++=23)(2 / 图象特征:(针对导函数)0,0>?>a 0,0>??有极值;)(0x f ?≤?无极值 (其中“?”针对导函数) 练习题: 一. 选择题 1. 3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( ) A . 319 B .316 C .313 D .3 10 2. 一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度 是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 函数3 y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4. 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 5. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6. 函数344 +-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 7. 函数()3 2 3922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值 8. 曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 9. 若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A .3- B .6- C .9- D .12- 10. ()f x 与()g x 是定义R 上的可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则()f x 与()g x 满足( )

(完整word版)高中文科数学导数练习题.doc

专题 8:导数(文) 经典例题剖析 考点一:求导公式。 例 1. f (x) 是 f (x) 1 x3 2x 1 的导函数,则 f ( 1) 的值是。 3 解析: f ' x x 2 2 ,所以 f ' 1 1 2 3 答案: 3 考点二:导数的几何意义。 例 2. 已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1 x 2 ,则2 f (1) f (1) 。 解析:因为 k 1 ,所以2 5 ,所以 f 1 5 ,所以2 2 1 f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为 2 f 1 f ' 1 3 答案: 3 例 3.曲线y x3 2x2 4x 2 在点 (1, 3) 处的切线方程是。 解析: y' 3x2 4x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y 5x b ,将点 (1, 3) 带入切线方程可得 b 2 ,所以,过曲线上点(1,3) 处的切线方程为:5x y 2 0 答案: 5x y 2 0 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线 C :y x3 3x 2 2x ,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x0 0 ,求直线l的方程及切点坐标。 解析:直线过原点,则 k y 0 x0 0 。由点x0, y0 在曲线 C 上,则x0

y 0 x 0 3 3x 0 2 2x 0 , y 0 x 0 2 3x 0 2。又 y' 3x 2 6x 2 , 在 x 0 x 0 , y 0 处 曲 线 C 的 切 线 斜 率 为 k f ' x 0 3x 0 2 6x 0 2 , 2 3x 0 2 2 6x 0 2 ,整理得: 2 x 0 3x 0 0 ,解得: x 0 3 0 x 0 3x 0 或 x 0 2 (舍),此时, y 0 3 , k 1 。所以,直线 l 的方程为 y 1 x ,切点坐标是 8 4 4 3 , 3 。 2 8 答案:直线 l 的方程为 y 1 x ,切点坐标是 3 , 3 4 2 8 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不 是必要条件。 考点四:函数的单调性。 例 5.已知 f x ax 3 3x 2 x 1在 R 上是减函数,求 a 的取值范围。 解析:函数 f x 的导数为 f ' x 3 26 x 1 。对于 x R 都有 f ' x 0 时, f x ax 为减函数。由 3ax 2 6x 1 0 x R 可得 a 12a ,解得 a 3 。所以, 36 0 当 a 3 时,函数 f x 对 x R 为减函数。 x 1 3 x 1 3 8 。 ( 1) 当 a 3时, f x 3x 3 3x 2 3 9 由函数 y x 3 在 R 上的单调性,可知当 a 3 是,函数 f x 对 x R 为减函数。 ( 2) 当 a 3 时,函数 f x 在 R 上存在增区间。 所以, 当 a 3 时,函数 f x 在 R 上不是单调递减函数。 综合( 1)( 2)( 3)可知 a 3 。 答案: a 3

高考理科数学数学导数专题复习考试

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义: (1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点

相关文档
最新文档