2018考研数学:关于“极限”问题的整理_毙考题

合集下载

18年考研数学三真题

18年考研数学三真题

18年考研数学三真题18年考研数学三真题是考研数学备考的重要参考资料之一。

通过解析这些真题,考生可以更好地了解考试的难度和考点,有针对性地进行复习和训练。

本文将对18年考研数学三真题进行分析和解析,帮助考生更好地备考。

首先,我们来看一道典型的选择题。

18年考研数学三真题中的一道选择题是关于极限的。

该题给出了一个数列的递推公式,要求求出该数列的极限值。

这道题考察了考生对极限的理解和运用能力。

解答这道题的关键在于找到数列的通项公式,然后求出其极限。

考生需要运用数列的性质和极限的定义,进行推导和计算,最终得出答案。

通过解析这道题,考生可以加深对极限的理解,并且掌握运用极限的方法和技巧。

接下来,我们来看一道典型的填空题。

18年考研数学三真题中的一道填空题是关于微分方程的。

该题给出了一个微分方程和一个初始条件,要求求解出该微分方程的特解。

这道题考察了考生对微分方程的理解和解题能力。

解答这道题的关键在于将微分方程进行变换和化简,然后利用初始条件求解出常数。

考生需要熟练掌握微分方程的基本概念和解法,运用微积分的知识进行推导和计算,最终得出特解。

通过解析这道题,考生可以加深对微分方程的理解,并且掌握解决微分方程问题的方法和技巧。

最后,我们来看一道典型的计算题。

18年考研数学三真题中的一道计算题是关于概率统计的。

该题给出了一个随机变量的概率分布和一个事件的概率,要求求出该事件的期望值。

这道题考察了考生对概率统计的理解和计算能力。

解答这道题的关键在于计算随机变量的期望值,需要利用概率分布和事件的定义进行计算。

考生需要熟练掌握概率统计的基本概念和计算方法,运用数学统计的知识进行推导和计算,最终得出期望值。

通过解析这道题,考生可以加深对概率统计的理解,并且掌握计算概率统计问题的方法和技巧。

综上所述,18年考研数学三真题是考生备考的重要参考资料。

通过解析这些真题,考生可以更好地了解考试的难度和考点,有针对性地进行复习和训练。

2018考研数学(三)真题

2018考研数学(三)真题

代入已知条件
f x dx 0, 得
0
1
2 1 1 f 1 1 0 f f x x dx 0 2 2 2 2 2 1 2 2 1 f x 1 1 1 x f f x dx 2 2 2 2 2 0 0 2 1 2 1 1 1 f f x dx 2 2 0 2 2 1 f 1 1 f x dx, 0 2 2 2
1 1 0 (5) 下列矩阵中, 与矩阵 0 1 1 相似的为 0 0 1 1 1 1 (A) 0 1 1 . 0 0 1 1 0 1 (B) 0 1 1 . 0 0 1


1 1 1 (C) 0 1 0 . 0 0 1
x
lim
0 x
x
2 x
2
0,
f 0 lim
x 0
cos x 1 lim x 0 x
x
2 x
2
1 , 2
f 0 lim
x 0
cos x 1 lim x 0 x

x 2 x

2
lim
1 ,Y 服从参数为 的泊松 2
设总体 X 的概率密度为 f x;
1 e , 其中 0, 为未知参数, X1 , X 2 X n 为来自总体 2
x
X 的简单随机样本,记 的最大似然估计量为 .
(Ι )求 ; (Ⅱ)求 E 和 D .
1 , 则 P AC A B 2

2018年考研数学一真题及全面解析(Word版)

2018年考研数学一真题及全面解析(Word版)

2021年全国硕士研究生入学统一考试数学一考研真题与全面解析一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 以下函数中在0x=处不可导的是〔 〕〔A 〕()sin f x x x = 〔B〕()sin f x x =〔C 〕()cos f x x = 〔D〕()f x =【答案】(D )【解析】根据导数定义,A. 000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-=== ,可导; B.000()(0)lim0x x x x x f x f x x→→→-===, 可导; C. 20001cos 1()(0)2lim lim lim 0x x x x x f x f x x x→→→---=== ,可导;D. 20001122lim limx x x x x x→→→--== ,极限不存在。

应选〔D 〕. 2. 过点(1,0,0),(0,1,0),且与曲面22z x y =+相切的平面为〔 〕〔A 〕01zx y z =+-=与 〔B 〕022z x y z =+-=与2 〔C 〕1x y x y z =+-=与 〔D 〕22x y x y z =+-=与2【答案】〔B 〕【解析一】设平面与曲面的切点为000(,,)x y z ,那么曲面在该点的法向量为00(2,2,1)n x y →=-,切平面方程为000002()2()()0x x x y y y z z -+---=切平面过点(1,0,0),(0,1,0),故有000002(1)2(0)(0)0x x y y z -+---=,〔1〕 000002(0)2(1)(0)0x x y y z -+---=,〔2〕又000(,,)x y z 是曲面上的点,故22000z x y =+ ,〔3〕 解方程 〔1〕〔2〕〔3〕,可得切点坐标(0,0,0) 或 (1,1,2)。

2018年考研(数学三)真题试卷(题后含答案及解析)

2018年考研(数学三)真题试卷(题后含答案及解析)

2018年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.下列函数中,在x=0处不可导的是( )A.f(x)=|x|sin|x|B.C.f(x)=cos|x|D.正确答案:D解析:对D选项,由于f+’(0)≠f-’(0),因此f(x)在x=0处不可导.2.设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( )A.当f’(x)<0时,B.当f”(x)<0时,C.当f’(x)>0时,D.当f”(x)>0时,正确答案:D解析:对于A选项:.此时f’(x)=一1<0,但对于B、D选项:,由∫01f(x)dx=0,可得当f”(x)=2a<0时,=b>0;当f”(x)=2a>0时,对于C选项:取f(x)=此时f’(x)=1>0,但故D选项正确.3.设则( )A.M>N>KB.M>K>NC.K>M>ND.K>N>M正确答案:C解析:由于而由定积分的性质,可知即K>M>N.故C选项正确.4.设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则( )A.C’(Q0)=0B.C’(Q0)=C(Q0)C.C’(Q0)=Q0C(Q0)D.Q0C’(Q0)=C(Q0)正确答案:D解析:平均成本函数其取最小值时,则导数为零,即从而C’(Q0)Q0—C(Q0)=0,即C’(Q0)Q0=C(Q0).5.下列矩阵中,与矩阵相似的为( )A.B.C.D.正确答案:A解析:本题考查矩阵相似的定义及相似矩阵的性质(相似矩阵的秩相等).若存在可逆矩阵P,使得P-1AP=B,则A~B.从而可知E一A~E一B,且r(E—A)=r(E一B).设题中所给矩阵为A,各选项中的矩阵分别为B1,B2,B3,B4.经验证知r(E—B1)=2,r(E—B2)=r(E一B3)=r(E—B4)=1.因此A~B1,即A相似于A选项下的矩阵.6.设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( )A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(AT,BT)正确答案:A解析:解这道题的关键,要熟悉以下两个不等关系.①r(AB)≤min{r(A),r(B)};②r(A,B)≥max{r(A),r(B)}.由r(E,B)=n,可知r(A,AB)=r(A(E,B))≤min{r(A),r(E,B)}=r(A).又r(A,AB)≥max{r(A),r(AB)},r(AB)≤r(A),可知r(A,AB)≥r(A).从而可得r(A,AB)=r(A).7.设f(x)为某分布的概率密度函数,f(1+x)=f(1—x),∫02f(x)dx=0.6,则P{X<0}=( )A.0.2B.0.3C.0.4D.0.6正确答案:A解析:由于f(1+x)=f(1一x),可知f(x)图像关于x=1对称.而∫02f(x)dx=0.6,可得8.已知X1,X2,…Xn(n≥2)为来自总体N(μ,σ2)(σ>0)的简单随机样本,,则( )A.B.C.D.正确答案:B解析:解这道题,首先知道t分布的定义.假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,则的分布称为自由度为n的t分布,记为Z~t(n).填空题9.曲线y=x2+2lnx在其拐点处的切线方程是_______.正确答案:y=4x一3解析:首先求得函数f(x)=x2+2lnx的定义域为(0,+∞).求一阶、二阶导,可得f’(x)=令y”=0,得x=1.当x>1时f”(x)>0;当x<1时f”(x)<0.因此(1,1)为曲线的拐点.点(1,1)处的切线斜率k=f’(1)=4.因此切线方程为y一1=4(x一1),即y=4x一3.10.正确答案:解析:本题考查分部积分法。

2018考研数学二答案真题解析

2018考研数学二答案真题解析
0 1 1
5 / 11 第 5 页,共 11 页
梦想不会辜负每一个努力的人
101 所以 A 1 1 0 2 .
011
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过 程或演算步骤.
(15)(本题满分 10 分)
求不定积分 e2x arctan ex 1dx .

x0
(A) 1 , b 1 2
【答案】B
(B) 1 ,b 1 2
(C) a 1 , b 1 2
(D) a 1 ,b 1 2
【解析】由已知有原极限等于
lim[1
(ex
ax2
bx
1)]ex
1
ex
ax2 bx1
ax2 bx1 x2
x0
elim x0
e
x
ax2 bx1 x2
lim ex 2axb
1 2
(
1
1 )dx 1 ln
5 x 3 x 1
2
x3 x 1 5
1 ln 2 . 2
4 / 11 第 4 页,共 11 页
梦想不会辜负每一个努力的人
(12)曲线
x y
cos3 sin3 t

t
4
对应点处的曲率为___________.
【答案】 2 3
【解析】
dy dx
ቤተ መጻሕፍቲ ባይዱ
3sin2 t cos t 3cos2 t(sin t)
0
x
f (t)dt x
x
f (u)du
x uf (u)du ax2
0
0
0
x
f (x) 0 f (u)du xf (x) xf (x) 2ax

2018考研数学三参考答案

2018考研数学三参考答案
n ( )2 1 Xi − X , S ∗ = ∑ n − 1 i =1

1 n ( Xi − µ ) 2 n i∑ =1
( ) ) ) ) ) √ ( √ ( √ ( √ ( n X−µ n X−µ n X−µ n X−µ ∼ t (n) D. ∼ t ( n − 1) A. ∼ t (n) B. ∼ t (n − 1) C. ∗ S S S S∗ ( ) √ ( ) n ( ) ( )2 n X−µ σ2 1 【解析】首先 X ∼ N µ, σ2 ⇒ X ∼ N µ, ⇒ ∼ N (0, 1). 而样本方差 S2 = Xi − X 满足的 ∑ n σ n − 1 i =1 √ ( ) √ n( X −µ) n X−µ ( n − 1) 2 2 σ √ 分布为 S ∼ χ (n − 1), 根据 t 分布的定义知 ∼ t (n − 1), 选 B. = ( n −1) 2 σ2 S S
P { X < 0} =
∫ 1
f ( x )d x =
−∞
f ( x )d x −
f ( x )dx = 0.5 − 0.3 = 0.2
选 A. ( ) 8. 设 X1 , X2 , · · · , Xn (n ⩾ 2) 为来自总体 X ∼ N µ, σ2 (σ > 0) 的简单随机样本, 令 1 n X = ∑ Xi , S = n i =1 则 √

10.
1 − e2x dx = . √ sin t du, 原积分化为 【解析】令 arcsin 1 − e2x = t, 则 ex = cost, dx = − cos t ex arcsin



t cos t
sin t dt = − cos t

2018年考研数学(二)真题及答案解析(完整版)

2018年考研数学(二)真题及答案解析(完整版)

C. a 1 , b 1 2
D. a 1 , b 1 2
【答案】B
【解析】
1 lim e ax bx e e e x
2
1 x2
ln ex ax2 bx
lim
x0
x2
lim ex 2axb x0 2 x ex ax2 bx
lim ex 2axb x0 2x
x0
lim
f 0
lim
x0
cos
x x
1
lim
x0
1 x2 2 x
0,
f
0
lim
x0
cos
x x
1
lim
x0
1 x2 2 x
0
D 不可导:
f
0
lim
x0
cos
x x
1
lim
x0
1 -x
2 x
1, 2
f
0
lim
x0
cos
x x
1
lim
1 2
x
1
x x0
2
f 0 f 0
3.设函数
f
x
1, 1,

A. a 3, b 1 C. a 3, b 1
g
x 1b
1 1 b b
2
lim
x1
f
x g x
lim x1
f
x lim x1
g
x 1 2 a
1 a
lim
x1
f
x g x
lim x1
f
x lim x1
g
x 1 1 2 2
1 a
a
3
4. .设函数 f x 在0,1 上二阶可导,且 1 f xdx 0, 则 0

考研数学二(函数、极限与连续)历年真题试卷汇编3(题后含答案及解析)

考研数学二(函数、极限与连续)历年真题试卷汇编3(题后含答案及解析)

考研数学二(函数、极限与连续)历年真题试卷汇编3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2011年] 已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则( ).A.k=1,c=4B.k=1,c=一4C.k=3,c=4D.k=3,c=一4正确答案:C解析:利用等价无穷小定义、等价无穷小代换及泰勒展开式求之.解一由题设有=1.即=1.因而k=3.当k=3时,由上式得到27/(6c)一1/(2c)=1,即c=4.仅(C)入选.解二当k一2=1即k=3时,=1,即c=4.仅(C)入选.知识模块:函数、极限与连续2.[2014年] 当x→0+时,若lnα(1+2x),(1一cosx)1/α均是比x高阶的无穷小,则α的取值范围是( ).A.(2,+∞)B.(1,2)C.(1/2,1)D.(0,1/2)正确答案:B解析:由lnα(1+2x),(1一cosx)1/α均是比x高阶的无穷小,分别求出α的取值范围即可.a>0时,显然有lnα(1+2x)~(2x)α=2αxα(x→0-),(1一cosx)1/α~(x→0+)因它们均是比x高阶的无穷小,由分别得到α一1>0,一l >0,即1<α<2,因而α的取值范围为(1,2).仅(B)入选.知识模块:函数、极限与连续3.[2000年] 若=0,则为( ).A.0B.6C.36D.∞正确答案:C解析:消去未知函数f(x),或求出其表达式,代入极限式求之.解一或=36.解二用带皮亚诺型余项的泰勒公式求之.题设相当于sin6x+xf(x)=o(x3),将sin6x=6x一(6x)3/3!+o(x3)代入,得到6+f(x)=36x2+o(x2),[6+f(x)]/x2=36+o(1),于是{[6+f(x)]/x2}=36.仅(C)入选.知识模块:函数、极限与连续4.[2017年] 设数列{xn}收敛,则( ).A.当sinxn=0时,xn=0B.当=0时,xn=0C.当(xn+xn2)=0时,xn=0D.当(xn+sinxn)=0时,xn=0正确答案:D解析:取特殊值法或反推法求之.解一对于选项(A),(B),(C)分别取xn=π,xn=一1,xn=一l,可排除(A),(B),(C).仅(D)入选.解二令xn=A,由(xn+sinxn)=A+sinA=0得A=0.仅(D)入选.知识模块:函数、极限与连续5.[2017年] 若函数f(x)=在x=0处连续,则( ).A.ab=B.ab=一C.ab=0D.ab=2正确答案:A解析:所给函数为分段函数,因其在分段点连续,可先求出其左右极限,然后利用函数在分段点处左右极限相等的性质求之.f(0+0)=f(0)一f(0—0)=b,因f(x)在x=0处连续,故f(0+0)=f(0一0)=f(0),从而=b,即ab=仅(A) 入选.知识模块:函数、极限与连续6.[2018年] 设函数f(x)=若f(x)+g(x)在R上连续,则( ).A.a=3,b=1B.a=3,b=2C.a=一3,b=1D.a=一3,b=2正确答案:D解析:由函数表达式易得分段点为x=一1,x=0.在x=一1点处,f(x)为连续函数,故只需考虑g(x)的连续性,而g(x)=g(一1)=2+a,g(x)=一1,所以2+a=一1,解得a=一3;在x=0点处,有[f(x)+g(x)]=f(0)+g(0)=1一b,[f(x)+g(x)]=一l+0=一1,从而1一b=一1,得b=2.故选(D).知识模块:函数、极限与连续7.[2015年] 函数f(x)=在(一∞,+∞)内( ).A.连续B.有可去间断点C.有跳跃间断点D.有无穷间断点正确答案:B解析:f(x)显然在x=0处无定义,因而x=0为其不连续点,至于是哪一类的不连续点,首先需考查其极限是否存在.因f(x)==ex(x≠0),而=1,又因f(x)在x=0处无定义,故x=0为其可去间断点.仅(B)入选.知识模块:函数、极限与连续8.[2005年] 设函数f(x)=,则( ).A.x=0,x=1都是f(x)的第一类间断点B.x=0,x=1都是f(x)的第二类间断点C.x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点D.x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点正确答案:D解析:找出间断点,让x趋向这些间断点时考察f(x)的左、右极限或其极限的存在情况.由于函数f(x)在x=0,x=1处无定义,这些点为f(x)的间断点,因=0,故f(x)=∞,因而x=0为f(x)的第二类间断点(无穷间断点).又因,所以=一1.因而x=1为f(x)的第一类间断点(跳跃间断点).仅(D)入选.知识模块:函数、极限与连续9.[2007年] 函数f(x)=在[一π,π]上的第一类间断点是x=( ).A.0B.1C.一π/2D.π/2正确答案:A解析:根据定义,应考察f(x)在上述诸点的左、右极限是否都存在.左、右极限都存在的点为第一类间断点,否则不是第一类间断点.解一函数f(x)虽不是分段函数,但因其含e1/x,需分f(0+0)及f(0—0)考察.f(0+0)==1,f(0一0)=×1=一1.因f(0+0),f(0—0)都存在,故x=0为第一类间断点.仅(A)入选.解二函数e1/x在x=l,x=±π/2处的极限存在,不必分左、右极限讨论,但需注意tanx=±∞.因故x=1,±π/2是f(x)的第二类间断点.由排除法可知,仅(A)入选.知识模块:函数、极限与连续10.[2009年] 函数f(x)=的可去间断点的个数为( ).A.1B.2C.3D.无穷多个正确答案:C解析:先求出f(x)的所有间断点,然后求x趋近这些点时哪些有极限,有极限的点即为可去间断点.f(x)的间断点为x=0,x=±1,x=±2,…,故f(x)的间断点有无穷多个,但可去间断点为极限存在的点.而分子中x—x3=0的点只有x=0,x=±1,极限存在的点只可能在这些点中去寻找.因则x=0,x=±1为f(x)的可去间断点,其余均为无穷间断点.仅(C)入选.知识模块:函数、极限与连续11.[2008年] 设函数f(x)=sinx,则f(x)有( ).A.1个可去间断点,1个跳跃间断点B.2个跳跃间断点C.1个可去间断点,1个无穷间断点D.2个无穷间断点正确答案:A解析:先求f(x)的间断点,再用f(x)在这些间断处的极限确定正确选项.f(x)的间断点为x=0,1,其中x=0为可去间断点.这是因为可见,x=1为f(x)的跳跃间断点.仅(A)入选.知识模块:函数、极限与连续12.[2010年] 函数f(x)=的无穷间断点的个数为( ).A.0B.1C.2D.3正确答案:B解析:先找出f(x)无定义的点.再进一步找出极限为无穷间断点.由题设已看出,f(x)除在x=0,x=1,x=一1处外处处有定义,因而f(x)只有3个间断点.而故x=1为f(x)的第一类间断点,且为可去间断点.而所以x=0为f(x)的第一类间断点,且为跳跃间断点.而故x=一1是f(x)的无穷间断点.仅(B)入选.知识模块:函数、极限与连续填空题13.[2004年] 设f(x)=,则f(x)的间断点为x=__________.正确答案:先求得f(x)的表达式,再求间断点.当x=0时,f(x)=0;当x ≠0时,f(x)=(n为自变量,x是常数),或f(x)=因(1/x)=∞≠f(0),故x=0为f(x)的第二类间断点.涉及知识点:函数、极限与连续14.[2008年] 已知函数f(x)连续,且=1,则f(0)=___________.正确答案:利用等价无穷小代换将所给极限用f(0)表示出来,由此求得f(0).当x→0时,xf(x)→0,故1一cos[xf(x)]~[xf(x)]2/2.由1=,得到f(0)/2=l,即f(0)=2.涉及知识点:函数、极限与连续15.[2002年] 设函数f(x)=在x=0处连续,则a=________.正确答案:f(x)为分段函数,先求出f(x)在分段点x=0处的左、右极限f(0—0),f(0+0),再根据f(0—0)=f(0+0)或f(0+0)=f(0)确定常数a.解一因f(x)=f(0+0)==—2.f(x)=f(0—0)==a,由f(x)在x=0处连续,有f(0+0)=f(0—0).因而一2=a,即a=一2.解二由题设有f(0)=ae2x∣x-0=a.又由解一知f(0+0)=一2,再由f(x)在x=0处连续得到f(0+0)=f(0),即a=一2.涉及知识点:函数、极限与连续16.[2006年] 设函数f(x)=在x=0处连续,则a=________.正确答案:利用函数在一点连续的定义求之.因,故a=f(x)=1/3.涉及知识点:函数、极限与连续解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毙考题APP
获取更多考试资料,还有资料商城等你入驻
2018考研数学:关于“极限”问题的整理
下面就高等数学重要知识点-极限在考研中的命题规律,题型,例题等方面给大家进行总结,希望能给你带来帮助。

极限的考查主要包含这几个角度:1.给定函数,求其极限;2.给定数列求极限;3.考查极限的应用;4.作为条件,解读信息。

1.函数极限:函数极限的求解,主要在于简化,拿到函数极限的问题,根据解题步骤:1)定型--判定未定式的类型,恒等变形为基本型来处理;2)简化--利用四则运算可以把存在的极限拆开,把非零的因式提取出来,整体因式的无穷小量进行等价替换;3)定法--若未定式是零比零形式,则考虑洛比达或者泰勒公式(出现了指数、三角函数、对数等优先利用泰勒相对简单)处理,若未定式是无穷比无穷,则考虑洛比达或者消去无穷大因式来解题。

2.数列极限:项无穷小的和,考虑定积分的定义;证明数列极限的存在性,优先考虑单调有界准则;求解未定式的数列极限,考虑连续化来求解;如果利用这些常规处理方法解决不了的问题,则利用夹逼准则进行计算。

3.会求函数极限,那么有关的应用:无穷小的比较、连续的问题、求间断点、渐近线、求某一点处的导数等问题,就迎刃而解,套相应的公式,计算极限即可。

4.如果题干当中给了极限作为条件,一般要从表达式中挖掘信息,下面就常考的几个形式给大家逐一讲解:
考试使用毙考题,不用再报培训班
邀请码:8806。

相关文档
最新文档