发酵罐对发酵过程中溶氧控制

合集下载

溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制
3、溶氧高有利于菌体生长和产物合成,但溶氧太大有时会抑 制产物合成。
QO2
C临界
CL
满足微生物呼吸的最低氧浓度叫临界溶氧浓度(c临界),当溶 氧溶度(cL)高于菌体生长的临界溶氧浓度(c临界)时,菌体 的各种代谢活动不受干扰,反之则反。
一般好氧微生物的c临界很低,大约为饱和氧浓度1%~25%。
定义:氧饱和度=发酵液中氧的浓度/临界溶氧溶度
提高罐压
Pi增加则与之平衡的Ci也会增加,对提高(c* - c) 是有一定作用的。
利用纯氧,可以提高(c* - cL)
缺点:价格较高 易引起爆炸
可见,提高KLa最有效的方法是提高N与Vs,并 协调两者之间的关系,其他方法效果不大,且受 限制较多。
2、发酵液的需氧量
发酵液的需氧量(OUR),受c(X) 、基质的种
式中
KL
(c
cL
)
OTR-氧由气相向液相的传递速率(传氧速率,
oxygen take rate),mmol O2 /(L·h);
KLα-液相体积氧传递系数,1/h;
c*-液相饱和溶氧浓度,mmol O2 /L;
cL-液相实际溶氧浓度,mmol O2 /L;
OUR-菌的耗氧速率(摄氧速率,oxygen uptake
但不能够无限的增加通风量,研究表明,当通风量 增加到一定的量后,(Pg/V)会随着Q的增加而下 降。
也就是说单位体积发酵液所拥有的搅拌功率会下 降,不但不能提高kLa,甚至会造成kLa值的下降。
(2)提高(c* - cL),即氧传递动力
c*,改变c*是没有太大的余地的。因为,发酵温 度、浓度等严格的受到菌体生长和发酵工艺的限 制。
OTR = kLa×(P*-P)

溶氧对发酵的影响及控制

溶氧对发酵的影响及控制

溶氧对发酵的影响及控制总述:溶氧(DO)是需氧微生物生长所必须,发酵过程中有多方面的限制因素,而溶氧往往是最易成为控制因素。

发酵液中的溶氧浓度对微生物的生长和产物形成有着重要的影响,在发酵液中溶氧的高低直接影响菌体的生长和代谢产物的积累,并最终决定着发酵产物产量的高低。

根据对氧的需求,微生物可分为专性好氧微生物、兼性好氧微生物和专性厌氧微生物。

以下则主要针对氧在好养微生物,需要微生物或兼性厌氧型微生物的一些影响。

1.溶氧在好氧微生物发酵过程的影响溶氧是发酵中的营养和环境因素,不同发酵阶段的需氧量通常不同。

根据溶氧调控策略对Alcaligenes.sp.NX-3 产威兰胶的发酵过程的影响(5)溶氧对好氧微生物发酵的影响主要分为两方面:是溶氧浓度影响与呼吸链有关的能量代谢,影响微生物生长代谢。

二是在氧直接参与产物合成,且通过溶氧控制条件对深层灵芝发酵生产灵芝酸产量的影响溶氧是好氧性微生物生长发酵的重要工艺参数,对菌体生长和积累代谢产物都有较大影响,定着代谢产物产量的高低。

溶氧过低,不利于菌体生长和代谢产物的积累,溶氧过高,只利于菌体大量生长,代谢产物的积累受到抑制,好氧微生物生长和代谢均需要氧气,此供氧必须满足微生物在不同阶段的需要,在不同的环境条件下,各种不同的微生物的吸氧量或呼吸强度是不同的。

因此,对于好氧性微生物发酵,溶氧参数的控制尤为重要。

而好氧微生物发酵过程中溶氧检测值受多种参数的影响,包括生物代谢过程本身,也包括外部补料、风量、搅拌转速、发酵罐温度、压力等。

可以针对不同的影响因素对发酵过程进行控制与调节。

2.溶氧在需氧菌或兼性厌氧菌微生物发酵过程的影响需氧发酵并不是溶氧愈大愈好,溶氧高虽然有利于菌体生长和产物合成,但溶氧太大有时反而抑制产物的形成。

因此,发酵处于限氧条件下,需要考查每一种发酵产物的临界氧浓度和最适氧浓度,并使发酵过程保持在最适浓度。

根据溶氧对氨基酸发酵的影响及控制(2)中可知发酵液中的氧(溶解氧)是菌体生长与代谢的必需品。

发酵的影响因素-溶氧

发酵的影响因素-溶氧
式中: r --- 微生物耗氧速率[molO2/(m3·s)];
Qo2---菌体呼吸强度(比耗氧速率), molO2/(kg干细胞·s ) ;
X ---发酵液中菌体浓度,(kg/m3);
1.溶氧对发酵过程的影响
溶氧对菌体生长和产物形成的影响:
一般对于微生物: 临界溶氧浓度: =1~15%饱和溶氧浓度 例:酵母 4.6*10-3 mmol.L-1, 1.8% 产黄青霉 2.2*10-2 mmol.L-1, 8.8%
影响供氧的因素: 影响发酵罐中Kla的因素
搅拌:效果明显 空气流速 罐压
空气分布器 温度 空气中含氧量
发酵液物理性质
控制溶氧的工艺手段主要是从供氧和需氧两方面来考虑。
思考题
1 摄氧率如何计算? 2 生产上,如何增加供氧量?
谢谢观看
生长 产物
头孢菌素
卷须霉素
5% (相对于饱和浓度) 13%
>13%
>8%
2. 发酵过程对溶氧的控制
2.发酵过程对溶氧的控制
影响需氧的因素:
菌体浓度
r= QO2 .X
QO2
➢ 遗传因素 ➢ 菌龄 ➢ 营养的成分与浓度 ➢ 有害物质的积累 ➢ 培养条件
2.发酵过程对溶氧的控制
影响供氧的因素:
Nv Kla(c * c)
所以对于微生物生长,只要控制发酵过程中氧浓度要大于 临界溶氧浓度.
1.溶氧对发酵过程的影响
问题:一般微生物的临界溶氧浓度很小,是不是发酵过程中 氧很容易满足。
例:以微生物的摄氧率0.052 mmol O2·L-1·S-1 计,
0.25/0.052=4.8秒
注意:由于产物的形成和菌体最适的生长条件,常常不一样:

发酵工程发酵过程控制

发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。

而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。

发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。

本文将介绍发酵工程发酵过程控制的主要内容和方法。

2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。

3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。

常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。

3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。

常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。

溶氧对发酵的影响及控制

溶氧对发酵的影响及控制

溶氧对发酵的影响及其控制The dissolved oxygen concentration in the fermentation broth (Dissolved Oxygen, referred to as DO) is the key factor to influence the fermentation, has an important influence on microbial growth and product formation. According to the demand of dissolution characteristics and microbial oxygen on oxygen, analysis of the effects of dissolved oxygen on the fermentation and the effect on fermentation, and then determine the control of dissolved oxygen in the fermentation broth and transfer, the maximum production efficiency.Compared with normal PID controller, the new controller is of small overshoot and quick response, improved stability of the system andincrease the yield of products. Study the influence of dissolved oxygen and controlling the fermentation to improve production efficiency, improve product quality, etc. are important.溶氧浓度(DO)作为发酵控制中的一个关键参数,直接影响着发酵生产的稳定性和生产成本,受到工业生产和实验室研究的重视,无论是厌氧还是需氧发酵,研究发酵液中溶氧对发酵的影响都有重要意义。

发酵工艺控制

发酵工艺控制



(4)搅拌功率(kW)
搅拌器搅拌时所消耗的功率(kW/m3),在发酵过 程中的转动速度。 其大小与液相体积氧传递系数有关。 (5)空气流量(m3空气/(m3发酵液· min)) 单位时间内单位体积发酵液里通入空气的体积,一 般控制在0.5~1.0(m3空气/(m3发酵液· min))

每种微生物对温度的要求可用最适温度、最高温度、最 低温度来表征。在最适温度下,微生物生长迅速;超过最高 温度微生物即受到抑制或死亡;在最低温度范围内微生物尚 能生长,但生长速度非常缓慢,世代时间无限延长。在最低 和最高温度之间,微生物的生长速率随温度升高而增加,超 过最适温度后,随温度升高,生长速率下降,最后停止生长, 引起死亡。 微生物受高温的伤害比低温的伤害大,即超过最高温度, 微生物很快死亡;低于最低温度,微生物代谢受到很大抑制, 并不马上死亡。这就是菌种保藏的原理。
还有就是根据化合物的燃烧值估算发酵过程生物 热的近似值。
(四)发酵温度的控制
发酵罐在发酵过程中一般不需加热,选用微生物能承受 稍高一些的温度进行生长和繁殖,这对生产有很大的好处, 即可减少污染杂菌的机会和夏季培养所需降温的辅助设备, 因此培养耐高温的菌种有一定的现实意义。
在发酵罐上安装夹套和蛇管,通过循环冷却水控制。 冷却介质:深井水或冷冻水 控制方式:手动控制或自动控制
(5)发酵热的测定
有三种发酵热测定的方法。一种是用冷却水进出 口温度差计算发酵热。在工厂里,可以通过测量冷却 水进出口的水温,再从水表上得知每小时冷却水流量 来计算发酵热。
另一种是根据罐温上升速率来计算。先自控,让 发酵液达到某一温度,然后停止加热或冷却,使罐温 自然上升或下降,根据罐温变化的速率计算出发酵热。
(二)最适温度的选择

发酵工艺控制(溶氧)

发酵工艺控制(溶氧)

(2)、降低发酵液中的CL
降低发酵液中的CL,可采取减少通气量或降低搅拌转速等方式来降低KLa,使发酵液中的CL降低。但是,发酵过程中发酵液中的CL不能低于C临界,否则就会影响微生物的呼吸。
目前发酵所采用的设备,其供氧能力已成为限制许多产物合成的主要因素之一,故此种方法亦不理想。
(一)影响氧传质推动力的因素
要想增加氧传递的推动力(C*一CL),就必须设法提高C*或降低CL。
1、提高饱和溶氧浓度C*的方法
A、温度:降低温度
B、溶液的性质:一般来说,发酵液中溶质含量越高,氧的溶解度越小。
C、氧分压:在系统总压力小于0.5MPa时,氧在溶液中的溶解度只与氧的分压成直线关系。气相中氧浓度增加,溶液中氧浓度也增加。
氨基酸合成的需氧程度产生上述差别的原因,是由它们的生物合成途径不同所引起的,不同的代谢途径产生不同数量的NAD(P)H,当然再氧化所需要的溶氧量也不同。第一类氨基酸是经过乙醛酸循环和磷酸烯醇式丙酮酸羧化系统两个途径形成的,产生的NADH量最多。因此NADH氧化再生的需氧量为最多,供氧愈多,合成氨基酸当然亦愈顺利。第二类的合成途径是产生NADH的乙醛酸循环或消耗NADH的磷酸烯醇式丙酮酸羧化系统,产生的NADH量不多,因而与供氧量关系不明显。第三类,如苯丙氨酸的合成,并不经TCA循环,NADH产量很少,过量供氧,反而起到抑制作用。肌苷发酵也有类似的结果。由此可知,供氧大小是与产物的生物合成途径有关
这个理论假定在气泡和包围着气泡的液体之间存在着界面,在界面的气泡一侧存在着一层气膜,在界面液体一侧存在着一层液膜,气膜内的气体分子与液膜中的液体分子都处于层流状态,分子之间无对流运动,因此氧分子只能以扩散方式,即借助于浓度差而透过双膜,另外,气泡内除气膜以外的气体分子处于对流状态,称为气流主体,在空气主流空间的任一点氧分子的浓度相同,液流主体亦如此。

发酵过程中溶氧的测量、调节和控制

发酵过程中溶氧的测量、调节和控制

影响需氧的因素
r= Q
遗传因素 菌龄 营养的成分与浓度 有害物质的积累 培养条件
发酵液溶解氧浓度的控制
• 微生物发酵中,通入发酵罐内的空气中的 氧气不断的溶解于培养液中,这种气态的 氧转变成溶解态的氧的速度,可以用下式 表示: OTR = KLa∙(C*-CL)
• 从供氧方面控制
1、影响C*-CL的因素及控制措施 (1)提高饱和溶氧浓度C* (2)降低发酵液中的CL 2、影响KLa的因素及控制措施 (1)搅拌 (2)空气流速 (3)发酵液的理化性质 (4)氧载体
• 从耗氧方面控制
发酵过程中溶氧的测 量、调节和控制
宋涛 3110520037
溶氧(DO)是需氧微生物生长所必需。在发 酵过程中有多方面的限制因素,而溶氧往往
是最易成为控制因素。
溶解氧的测量
亚硫酸盐氧化法 仅能测定发酵设备的通风供氧情况 取样极谱法 发酵液取出罐外,条件失真 排气法
非发酵状态的测定
复膜氧电极法: 实时、在线跟踪检测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵罐对发酵过程中溶氧控制
在微生物/细胞发酵过程中,溶氧是需氧发酵控制中最重要的参数之一。

溶氧的大小对发酵产物的形成及产量都会产生不同的影响,其结果直接影响整个发酵的效率。

现在市面上发酵罐对溶氧的控制,主流的方式是通过控制通入气体的量或者改变通入气体中氧气的比例来调节发酵液中溶氧%。

更高一级的控制是将发酵液中溶氧%和通入气体的量、搅拌桨的转速、添加的补料及罐压进行关联,从而通过发酵系统自动控制这些参数来调节溶氧%。

但是,直到今日,还没有任何一家发酵罐制造厂家的发酵罐能实现溶氧%与上述4个参数实现4级以上关联。

现在市场上普遍能实现的是二级关联,及溶氧%与搅拌转速和通气量的关联,而其中做的最好的是赛多利斯(贝朗)发酵罐,由于其柜式集成化自动关联控制系统,能对发酵总体要求进行自动化多级(最多4级)参数关联调节。

2012年香港环球分析测试仪器有限公司引进了意大利Solaris发酵罐/生物反应器,其智能化的控制系统和全自动化的设计,实现了溶氧%与上述参数4级以上关联,准确说是在参数上下限限制条件内,能实现无限制关联,从而使发酵过程中溶氧%的控制更加方便和精确,并为高密度培养中需要更高的溶氧浓度提供了可能。

意大利Solaris发酵罐/生物反应器的这一特点,在不同程度上超越了赛多利斯(贝朗)等同类厂家,使其在全球的用户感受到实实在在的技术革新。

Solaris发酵罐/生物反应器实现溶氧%无限制关联界面图如下:
上图设置方式是先设定一个你需要的溶氧%,然后,将其与搅拌桨转速关联,如果当转速达到设定的上限的时候实现了你需要的溶氧%,就不进行下一级的关联;如果没有达到你需要的溶氧%,那么你就可以设置2级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置3级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置4级关联,如此循环下去,直至达到你需要的溶氧%。

在此设置关联参数过程中,同一参数可重复多次设定。

相关文档
最新文档