信道化接收机的Simulink仿真
simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
AM解调AM信号的解调是把接收到的已调信号还原为调制信号。
AM信号的解调方法有两种:相干解调和包络检波解调。
AM相干解调原理框图如下。
相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
AM包络检波解调原理框图如下。
AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。
包络检波器一般由半波或全波整流器和低通滤波器组成。
DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。
DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。
滤波法SSB调制原理框图如下所示。
图中的为单边带滤波器。
产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。
产生上边带信号时即为,产生下边带信号时即为。
滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。
图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。
相移法SSB调制时域表达式如下。
式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。
SSB解调SSB只能进行相干解调。
设计报告---001---模拟通信系统的SIMULINK建模仿真

模拟通信系统的SIMULINK建模仿真一.调幅广播系统的仿真试对中波调幅广播传输系统进行仿真,模型参数指标参照实际系统设置。
(1)基带信号:音频,最大幅度为1.基带测试信号频率在100~6000Hz内可调。
(2)载波:给定幅度的正弦波,为简单起见,初相位设为0,频率为550~1605kHz 可调。
(3)接收机选频滤波器带宽为12kHz,中心频率为1000kHz.(4)在信道中加入噪声。
当调制度为0.3时,设计接收机选频滤波器输出信噪比为20dB,要求计算信道中应该加入噪声的方差,并能测量接收机选频滤波器实际输出信噪比。
根据仿真设计要求的输出信噪比SNRout可计算出相应信道中应加入的噪声方差值,计算程序和结果如下:程序: SNR_dB=20;SNR=10.^(SNR_dB/10);m_a=0.3;P=0.5+(m_a^2)/4;W=8025.7e3;B=12e3;sigma2=P/SNR*W/B运行后结果:sigma2 =3.4945根据以上计算仿真模型的参数设置。
测试仿真模型如图1-1所示。
其中,系统仿真步进以及零阶保持器采样时间间隔、噪声源采样时间间隔均设置为6.23e —8s,基带信号为幅度是0.3的1000Hz正弦波,载波为幅度为1的1MHz正弦波。
用加法器和乘法器实现调幅,用Random Number模型产生零均值方差等于3.4945的噪声样值序列,并用加法器实现AWGN信道。
接收带通滤波器用Analog Filter Design模块实现,可设置为2阶带通的,带通为2*pi*(1e6-6e3)~ 2*pi*(1e6+6e3)rad/sec.为了测量输出信噪比,已参数完全相同的另外两个滤波器模块分别对纯信号和纯噪声滤波,最后利用统计模块计算输出信号功率和噪声功率,继而计算出信噪比。
此次仿真执行后,测试信噪比为19.16dB,与设计值20dB相符。
接收滤波器输出的调幅信号以及发送调幅信号的波形对比仿真结果如图1-2所示。
基于Simulink的通信系统实现与仿真

Science &Technology Vision 科技视界1基本概念通信系统是用以完成信息传输过程的技术系统的总称,广义上共包括信源、信道和信宿三个部分。
信源是指通信过程中产生和发出信息的设备或计算机的总称,信宿与其相对,是指通信过程中接收、处理信息的终端设备或计算机的总称。
通信信道是数据传输的通路以及信号传输的媒质,是本文讨论的重点。
信道最重要的参数之一就是信息的传递能力,用带宽加以描述。
由于通信设备爆炸式的增加,传统的一个设备占用一个信道的传输方式因其效率低而不再适用。
新的传输方式要求若干个设备使用一个信道,并且安排合理的分配方式使得同一信道上各路通信互不干扰。
最广泛的三种复用方式是:频分复用、时分复用和码分复用。
(1)频分复用频分复用是将通信信道的整个频谱范围,划分成若干个频率范围,每一对通信设备只允许工作在某一个特定的频率范围之内,即不同的通信用户是依靠不同的频率范围来实现通信的。
早期的无线通信系统以及现在的无线广播、短波、大部分专用的通信王伦,仍然采用频分复用的技术加以实现。
(2)时分复用时分复用是将全部通信信道在时间轴上,划分成若干个相等长度的时间间隙。
将每一对通信设备分配在某一个指定的时隙上工作,那么不同的通信用户即可通过不同的时隙划分实现通信。
现在广泛应用的数字蜂窝无线通信系统(GSM)就是应用时分复用的典型实例。
(3)码分复用码分复用不同于频分复用和时分复用,它是利用码组的正交性,将承载着不同通信用户的通信信息加以区分。
每一对通信设备都被分配在特定码组上实现通信。
现在正在使用的数字蜂窝无线通信CDMA、第三代移动通信系统WCDMA,CDMA2000以及SC-CDMA 都采用了码分复用的技术。
码分复用的关键在于通信码组之间的正交性。
一种获得正交码组的方法是使用M 序列发生器。
M 序列是最大长度线性反馈移位寄存器序列的简称,具有很强的自相关特性和很弱的互相关性质。
并且M 序列可以提供与其周期长度相同个数的正交码组。
基于SIMULINK的OFDM通信系统的仿真

摘要在无线信道环境中可靠、高速的传输数据是无线通信技术的目标和要求。
OFDM技术能够大幅度的提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和噪声,有着广阔的应用前景。
本文在分析移动无线信道特性的基础上,基于OFDM系统的基本原理,研究了OFDM通信系统中同步实现和基于导频的信道估计问题,分析了几种经典信道估计算法以及相关的关键技术环节。
在此基础上,基于Simulink,讨论了如何构建完整的OFDM动态仿真系统,完成Simulink模块设置,确定搭建系统的主要参数,并对主要模块的构建方式进行了说明;就信道编码、多普勒频移及不同调制方式对OFDM系统性能的影响进行了全面的仿真分析和比较;参考COST-207多径信道模型,深入全面研究了瑞利衰落信道对OFDM通信系统性能的影响,对COST-207典型城市模型下OFDM系统性能仿真进行了有益的尝试;首次应用Simulink同时对不同导频方式、不同导频比、不同多普勒频移条件下的OFDM通信系统进行详细仿真分析。
研究结果表明,对于应用块状导频的OFDM通信系统,在Eb/N0较小时,加性高斯白噪声对性能起主导作用,Eb/N0较大时,ICI对性能起主导作用,形成了误比特率底限;仿真分析表明,OFDM通信系统采用块状导频方式时,适用的多普勒频移的范围为100Hz以下,对应的移动速度为静止或步行速度或较慢的汽车行驶速度;导频比为1/3或1/4时综合效果较好。
对于应用梳状导频的OFDM通信系统,其系统性能不如块状导频,但这种导频插入方式对多普勒频移及时间选择性衰落不敏感,若将梳状导频与其他形式的导频综合使用,可用于改善OFDM通信系统性能,尤其是具有较高相对移动速度的OFDM系统。
论文所得结论可为进一步研究提供仿真数据,也可为OFDM系统的仿真与研究提供重要的参考。
关键词:OFDM;导频;衰落信道;信道估计;Simulink;多普勒频移;仿真分析ABSTRACTData transmission in wireless channels with high speed and reliability is required in wireless communication technology. OFDM technology which has widely application prospects can not only increase the transmission rate and the capacity of the wireless communication system, but also effectively resist multi-path fading as well as restrain interference and noise.In this paper, synchronization and channel estimation based on pilot are researched; several classic channel estimation algorithm and relative key technology are analysised on the basis of principles of OFDM.Based on simulink, how to build a complete OFDM simulation systems is discussed; channel code, Doppler and different kinds of modulations influence on OFDM system performance is compared and analysised comprehensively; influence of Rayleigh fading channel which refer to COST-207 model is researched; a positive attempt on OFDM system performance simulation is made. It is the first time for OFDM communication system to be simulated and analysised in detail under condition of different pilot patterns, different pilot rate and different Doppler frequency shift at the same time.The research results indicate that, for OFDM communication system using block-type pilot, AWGN will play the leading role when Eb/N0 is smaller as well as ICI will play the leading role and the bottom bit error is formed when Eb/N0 is larger. The simulation analysis results imply that Doppler frequency shift should be smaller than 100Hz, the corresponding movement speed should be zero or walking pace or slow driving speed when using block-type pilot and the pilot rate should be 1/3 or 1/4 considering comprehensive performance.Performance of OFDM system using comb-type pilot is not good as block-type pilot, however, the comb-type pilot pattern is insensitive to Doppler frequency shift and time selective fading; OFDM system performance, especially the high speed system, could be improved if comb-type and other pattern pilots used together.The conclusion could provide simulation data for further research and provide reference for OFDM simulation and research.KEY WORDS: OFDM; Pilot; Fading channel; Channel Estimation; Simulink; Doppler Frequency Shift; Simulation Analysis作者声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作和取得的成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写的研究成果及专利。
(完整版)simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
AM解调AM信号的解调是把接收到的已调信号还原为调制信号。
AM信号的解调方法有两种:相干解调和包络检波解调。
AM相干解调原理框图如下。
相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
AM包络检波解调原理框图如下。
AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。
包络检波器一般由半波或全波整流器和低通滤波器组成。
DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。
DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。
滤波法SSB调制原理框图如下所示。
图中的为单边带滤波器。
产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。
产生上边带信号时即为,产生下边带信号时即为。
滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。
图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。
相移法SSB调制时域表达式如下。
式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。
SSB解调SSB只能进行相干解调。
(完整版)simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
AM解调AM信号的解调是把接收到的已调信号还原为调制信号。
AM信号的解调方法有两种:相干解调和包络检波解调。
AM相干解调原理框图如下。
相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
AM包络检波解调原理框图如下。
AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。
包络检波器一般由半波或全波整流器和低通滤波器组成。
DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。
DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。
滤波法SSB调制原理框图如下所示。
图中的为单边带滤波器。
产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。
产生上边带信号时即为,产生下边带信号时即为。
滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。
图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。
相移法SSB调制时域表达式如下。
式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。
SSB解调SSB只能进行相干解调。
simulink建模与仿真流程

simulink建模与仿真流程我们需要在Simulink中创建一个新的模型。
打开Simulink软件后,选择“File”菜单中的“New”选项,然后选择“Model”来创建一个新的模型。
接着,我们可以在模型中添加各种组件,如信号源、传感器、执行器等,以及各种数学运算、逻辑运算和控制算法等。
在建模过程中,我们需要定义模型的输入和输出。
在Simulink中,可以使用信号源模块来定义模型的输入信号,如阶跃信号、正弦信号等。
而模型的输出信号可以通过添加显示模块来实现,如示波器模块、作用域模块等。
接下来,我们需要配置模型的参数。
在Simulink中,可以通过双击组件来打开其参数设置对话框,然后根据需求进行参数配置。
例如,对于控制系统模型,我们可以设置控制器的增益、采样时间等参数。
完成模型的配置后,我们可以进行仿真运行。
在Simulink中,可以选择“Simulation”菜单中的“Run”选项来运行仿真。
在仿真过程中,Simulink会根据模型的输入和参数进行计算,并生成相应的输出结果。
我们可以通过示波器模块来实时显示模型的输出信号,以便进行结果分析和调试。
在仿真过程中,我们可以通过修改模型的参数来进行参数调优。
例如,可以改变控制器的增益值,然后重新运行仿真,观察输出结果的变化。
通过不断调整参数,我们可以优化模型的性能,使其达到设计要求。
除了单一模型的仿真,Simulink还支持多模型的联合仿真。
通过将多个模型进行连接,可以实现系统级的仿真。
例如,我们可以将控制系统模型和物理系统模型进行连接,以实现对整个控制系统的仿真。
在仿真完成后,我们可以对仿真结果进行分析和评估。
Simulink提供了丰富的分析工具,如频谱分析、时域分析和稳定性分析等。
通过对仿真结果的分析,我们可以评估模型的性能,并进行进一步的改进和优化。
Simulink建模与仿真流程包括创建模型、添加组件、定义输入输出、配置参数、运行仿真、参数调优、联合仿真和结果分析等步骤。
几个简单的simulink仿真模型

一频分复用和超外差接收机仿真目的1熟悉Simulink模型仿真设计方法2掌握频分复用技术在实际通信系统中的应用3理解超外差收音机的接收原理内容设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。
要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。
原理超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:图1-1超外差收音机基本原理框图从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下:混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。
其频谱搬移过程如下图所示:图1-2 超外差接收机混频器输入输出频谱中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。
解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。
步骤1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:图1-2 信源子系统模型图2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。
最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。
3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信道化接收机的Simulink仿真
07083119
一、题目要求:
⑴学习信道化接收机的基本原理
⑵使用Simulink模拟信道化接收机,判断BPSK信号处于哪一频率段.
二、实验方案及公式推导:
信道化接收机通过m个不同的滤波器将整个信道均匀的分成m个子信道分别进行处理.实验中将0-100频率分为5段,分别为0-20,20-40,40-60,60-80,80-100().
BPSK信号的产生:设二进制码流为k{-1,1},载波为c(t)=cos(t),所以BPSK信号s(t)=kcos(t).对于载波处于各个区间的信号分别使用本振10,30,50,70,90()下变频.
下变频公式推导:设本振信号为cos(t),与BPSK信号相乘得(t)=s(t)cos(t)={cos[(+)t]+
cos[(-)t]},使用低通滤波器滤去和频分量,得(t)=cos[(-)t].即对于0-100内的五段频
率经下变频后信号频率为-10-10.
低通滤波器的设计:对于需滤出带宽为10的信号,采样频率=400,则数字低通滤波器的通带
频率可以设为= =0.05,=0.06.
信号(t)的平均功率:求信号的平均功率的方法是先平方然后求均值,p=,假设x(t)=,则平均值p=.
三、Simulink框图及说明:
框图模块说明:
产生码率为1的二进制码流信号k
频率为,采样频率为400的载波
数字低通滤波器
自建的子系统,内部结构见下图1
用于显示功率值的大小
图 1
图1说明:从1输入的信号(t)通过数字低通滤波器滤去和频后,平方,然后通过寄存器Delay
求和,同样的常数1求得N,倒数后相乘既得平均功率p==.
模型框图(图2):
图2
四、模型仿真结果:
取0-100内的不同值时的仿真结果(图3): 当落入某一信道时,该信道显示的平均功率值
比较大,有图可得,模型基本能达到实验要求,反应信道化接收机的原理
五、实验结论和心得
①信道化接收机实现了并行搜索,能快速搜索信号,但若信号带宽超过单路信道的带宽,则可
能造成无法准确搜索信号
②在课本的理论学习基础上,进一步从实验中了解信道化接收机的原理
学会了如何使用simulink模拟求均值
③进一步熟悉和了解了Simulink的使用。