矩形花键校核
矩形花键拉刀设计说明书

矩形花键拉刀设计说明书(共20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--目录1.前言 (2)2.矩形花键拉刀的设计 (2)选定拉刀材料及热处理 (2)刀具结构参数、几何参数的选择与设计 (2)刀具的全部计算 (11)对技术条件的说明.......... .. (15)3. 心得体会 (16)4. 参考文献 (17)1.前言金属切削刀具课程设计是学生在学完“金属切削原理及刀具”等有关课程的基础上进行的重要的实践性教学环节,其目的是使学生巩固和深化课堂理论教学内容,锻炼和培养学生综合运用所学知识和理论的能力,是对学生进行独立分析、解决问题能力的强化训练。
刀具课程设计是在学完刀具课以后,进行一次学习设计的综合性练习,也是一次理论联系实际的训练。
通过设计,运用所学过的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。
同时学习查阅有关的设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。
本次课程设计完成了对成形车刀、矩形花键拉刀两种刀具的设计和计算工作,说明书包括刀具类型材料的选择,刀具结构参数、几何参数的选择,刀具的全部计算,对刀具的技术使用要求,安装使用要求,巩固深化了课堂理论教学内容,运用各种设计资料、手册和国家标准进行设计,培养了我们独立分析解决问题的能力。
2.矩形花键拉刀的设计选定拉刀材料及热处理拉刀用W18Cr4V高速工具钢制造。
热处理硬度为:刀齿和后导部 HRC63—66前导部 HRC60—66柄部 HRC40—52刀具结构参数、几何参数的选择和设计(1)拉刀的结构图1表1代号名称功用1柄部夹持拉刀,传递动力2颈部连接柄部和后面各部,其直径与柄部相同或略小,拉刀材料及规格等标记一般打在颈部。
3过度锥颈部到前导部的过渡部分,使拉刀容易进入工件孔中。
4前导部起引导拉刀切削部进入工件的作用,5切削部担负切削工作,包括粗切齿、过渡齿及精切齿。
课程设计说明书矩形花键拉刀设计

中北大学信息商务学院课程设计说明书学生姓名:宗俊鹏学号:X47学院:中北大学信息商务学院专业:机械设计制造及其自动化题目:矩形花键拉刀设计指导教师:庞俊忠职称: 教授指导教师:庞学慧职称: 教授2013年6月15日中北大学信息商务学院课程设计任务书学院:中北大学信息商务学院专业:机械设计制造及其自动化学生姓名:宗俊鹏学号:X47课程设计题目:矩形花键拉刀设计起迄日期:6月6日~6月16日课程设计地址:工字楼指导教师:庞学慧、庞俊忠系主任:王彪下达任务书日期: 2013年6月6日课程设计任务书课程设计任务书矩形花键拉刀,矩形花键铣刀的设计说明书目录引言 (6)金属切削刀具课程设计的目的 (6)设计内容和要求 (7)矩形花键拉刀的设计 (7)原始数据 (9)设计步骤 (9)总结 (14)致谢 (14)参考文献 (14)引言大学三年的学习即将结束,在咱们即将进入大四,踏入社会之前,通过课程设计来检查和考验咱们在这几年中的所学,同时对于咱们自身来讲,这次课程设计很贴切地把一些实践性的东西引入咱们的设计中和平时所学的理论知识相关联。
为咱们无论是在未来的工作或是继续学习的进程中打下一个坚实的基础。
我的课程设计课题是矩形花键拉刀,矩形花键铣刀的设计。
在设计进程当中,我通过查阅有关资料和运用所学的专业或有关知识,比如零件图设计、金属切削原理、金属切削刀具、和所学软件AUTOCAD、PRO/E的运用,设计了零件的工艺、编制了零件的加工程序等。
我利用这次课程设计的机缘对以往所有所学知识加以梳理查验,同时又可以在设计当中查找自己所学的不足从而加以弥补。
使我对专业知识取得进一步的了解和系统掌握。
由于编者等水平有限,设计编写时间也比较仓促,在咱们设计的进程中会碰到一些技术和其它方面的问题,再加上咱们对知识掌握的程度,所以设计中咱们的设计可能会有一些不尽如人意的地方, 为了一路提高此后设计编写的质量,希望在考核和答辩的进程中取得列位指导老师的谅解与批评指正,不胜感激之至.X47 宗俊鹏2013年6月15日金属切削刀具课程设计的目的金属切削刀具课程设计是学生在学完“金属切削原理及刀具”等有关课程的基础上进行的重要的实践性教学环节,其目的是使学生巩固和深化课堂理论教学内容,锻炼和培育学生综合运用所学知识和理论的能力,是对学生进行独立分析、解决问题能力的强化训练。
9.2.3矩形花键的公差与配合

• 配合种类的选择,首先应根据内、外花键之间是否有轴向 移动,确定是固定联结还是非固定联结。
对于内、外花键之间要求有相对移动,而且移动距离长, 移动频率高的情况,应选择配合间隙较大的滑动联结,
使配合面间有足够的润滑油层,以保证运动灵活。
图9-8
本课小结
➢ 平键联接是通过键的侧面分别与轴槽、轮毂槽的侧面接触来 传递的运动和转矩的,键的上表面和轮毂槽底面留有一定的 间隙。键宽和键槽宽b是决定配合性质和配合精度的主要参 数。
➢ 平键是标准件,所以键联结采用基轴制配合。键宽只规定一 种公差带,而键槽宽采用不同的公差带,形成松、正常和紧 密三种连接类型。
➢ 矩形花键联结由内花键和外花键构成。矩形花键主要尺寸有 小径d、大径D、键(槽)宽B。GB/Tll44—2001规定矩形花 健以小径结合面作为定心表面,即采用小径定心 。
➢ 矩形花键配合应采用基孔制。配合精度的选择,主要考虑定
心精度要求和传递转矩的大小。
➢ 矩形花键规格按N×d×D×B的方法表示,标记按花键规格 所规定的顺序书写,另需加上配合或公差带代号 。
作业:习题9 9-2、9-3、9-4、9-5
为满足不同的使用要求国家标准对平键与键槽和轮毂槽规定了正常联结紧密联结和松联结三种联结类型对轴和轮毂的键槽宽各规定了三种公差带对键宽规定了h9一种公差带图92因此构成了三组配合其配合性质及应用可参考表91尺寸b的公差带配合性质及适用场合h9h9d10用于导向平键轮毂可在轴上移动正常n9js9键在轴槽中和轮毂中均固定用于载荷不大的场合紧密p9p9键在轴槽中和轮槽毂中均牢固地固定用于载荷较大有冲击和双向转矩的场合表91键和键槽的配合913平键的形位公差和表面粗糙度为保证键与键槽的侧面具有足够的接触面积和避免装配困难应分别规定轴槽对轴线和轮毂槽对孔的轴线的对称度公差
花键强度校核程序

校核项目
计算值(MPa)许用值(MPa)
齿面接触强度 齿根弯曲强度 齿根剪切强度 扭转与弯曲强度 齿面耐磨损能力
σH 65 σF 132 τ Fmax 560 σv 336 σH 65
[σH] [σF] [τ F] [σv] [σH1]
275 432 216 344 205
长期无磨损能力
σH 65 [σH2] 24
F编程 值必须大于零,否则会报警。如果在一个序中没有编程 值必须大于零,否则会报警。如果在一个 一个序中没有编程 值必须大于零,否则会报警。如果在一个序中没有编程 值必须大于零,否则会报警。 报警。如果在一个序中没有编程 值必须大于零,否则会报警。如果在一个序中没有编程 值必须大于零, 于零,否则会报警。如果在一个序中没有编程 值必须大于零,否则会报警。如果在一个序中没有编程
于零,否则会报警。如果在一个序中没有编程 值必须大于零,否则会报警。如果在 编程 值必须大于零,否则会报警。如果在一个序中没有编程 值必须大于零,否则会 一个序中没有编程 值必须大于零,否则会报警。如果在一个序中没有编程 值必须大 报警。如果在一个序中没有编程 值必须大于零,否则会报警。如果在一个序中没有 F,则 F值为零,坐标 值为零,坐标 轴将不会运动。 轴将不会运动。
编程 值必须大于零,否则会报警。如果在一个序中没有F,则 F值为零,坐标 值为零,坐
花键基础输入数据
齿数 模数 压力角 外花键大径 外花键小径 内花键小径 结合长度 变位系数 齿根圆角半径
Z
18
M
1
αD
30
drg
Dee
19
mm
Die
16.1
mm
Dii
16.5 mm
L
矩形花键标准

矩形花键标准
矩形花键是一种常见的连接方式,用于连接机械零件。
它的设
计和制造需要遵循一定的标准,以确保连接的质量和可靠性。
本文
将介绍矩形花键的标准,包括设计要求、制造工艺和质量控制等方
面的内容。
首先,矩形花键的设计要求包括尺寸、材料和表面处理等方面。
尺寸的设计需要考虑到连接的零件的尺寸和载荷,以确保连接的稳
固和可靠。
材料的选择需要考虑到强度、耐磨性和耐腐蚀性等因素,以延长连接件的使用寿命。
表面处理则需要考虑到摩擦系数和耐磨性,以减少连接件的磨损和疲劳。
其次,矩形花键的制造工艺需要严格按照标准进行。
首先是原
材料的选择和加工,需要符合相关的材料标准和加工工艺要求,以
确保连接件的质量和性能。
其次是加工工艺的控制,包括车削、铣削、热处理和表面处理等环节,需要严格按照相关的工艺标准进行,以确保连接件的尺寸和表面质量符合要求。
最后,矩形花键的质量控制是确保连接件质量的关键。
质量控
制包括原材料的检验、加工工艺的控制和成品的检测等环节,需要
严格按照相关的标准进行,以确保连接件的质量和可靠性。
总之,矩形花键的标准涉及到设计、制造和质量控制等多个方面,需要严格遵循相关的标准和规范,以确保连接件的质量和可靠性。
只有这样,才能确保机械零件的连接稳固、可靠,从而保证整个机械设备的正常运行和安全性。
输入花键轴和花键设计方案校核

第四部分 轴的设计与校核4.1输入花键轴设计与校核4.1.1材料、性能参数选择以及输入花键轴的设计计算(1)已经确定的运动学和动力学参数假设转速min /900r n =;轴所传递的扭矩mm N T ⋅⨯=31018.3(2)轴的材料选择:因为花键轴齿轮左端同样是和花键齿轮啮合,所以由表选用45(调质),根据材料主要性能表查得:抗拉强度极限MPa b 640=σ,屈服强度极限MPa s 355=σ,弯曲疲劳极限MPa 2751=-σ,剪切疲劳极限MPa 1551=-τ,屈服许用弯曲应力为[]MPa 601=-σ(3)根据机械设计手册式12.3-1计算轴的最小直径: []3min 5τTd ≥根据表12.3-2取[]MPa 35=τ 代入数据得:[]mm Td 69.73531805533min =⨯=≥τ (4)因为轴上有花键,所以采用增大轴径的方法来增加轴的强度。
根据选用的轴承为94276/-T GB 深沟球轴承16003,根据轴承标准件查的其轴径是17mm ,长度是7mm ;借鉴双踏板设计,此处的定位右边是利用矩形花键的外轴径定位,左端是定位是箱体孔,采用过盈配合夹紧。
矩形花键长度是57.5mm ,为了便于加工与左端轴承的配合,直接将左端轴承处一起加工,总长为64.5mm 。
根据所选用的花键为420166⨯⨯⨯=⨯⨯⨯B D d N ,其轴径为20mm ,,右端为94276/-T GB 深沟球轴承16005,所以它的轴径为25mm 长度为8mm ,定位是靠右端大轴花键828246⨯⨯⨯=⨯⨯⨯B D d N 的长度为7mm ,有段突出部分轴径12mm ,长度也是12mm ,最后轴的设计总长为98.5mm 。
其中齿轮定位采用弹性挡圈定位。
至此,已初步确定了轴的各段直径和长度。
4.1.2输入花键轴二维图标注和三维图如下:4.1.3输入花键轴的校核(1)最小轴径校核公式[]MPa MPa d W T 3538.914.31216318016πT 33min max =<=⨯⨯===ττ 满足条件,所以设计合理。
联接(键联接 花键联接 销联接 型面联接 过盈联接 焊接)规范及强度校核

圆柱销
圆锥销
内螺纹圆锥销
槽 销
开尾圆锥销
销轴和开口销
详细说明
§ 6-4 其它联接 Other joints
型面联接 Shaped joints 过盈联接 Interference fit joints 焊接 Welded joints
一、型面联接 Shaped joints
型面联接是用非圆截面的柱面体或锥面体的轴与相同轮廓的毂孔配合 以传递运动和转矩的可拆联接,它是无键联接的一种型式。
焊接件的工艺及设计注意要点 1.焊缝应按被焊件厚度制成相应坡口,或进行一般的侧棱、修边工艺。 在焊接前,应对坡口进行清洗整理; 2.在满足强度条件下,焊缝的长度应按实际结构的情况尽可能地取得短 些或分段进行焊接,并应避免焊缝交叉; 3.在焊接工艺上采取措施,使构件在冷却时能有微小自由移动的可能; 4.焊缝在焊后应经热处理(如退火),消除残余应力; 5.在焊接厚度不同的对接板件时,应使对接部位厚度一致,以利于焊缝 金属均匀熔化; 6.设计焊接件时,注意恰当选择母体材料和焊条; 7.合理布置焊缝及长度; 8.对于那些有强度要求的重要焊缝,必须按照有关行业的强度规范进行 焊缝尺寸校核,明确工艺要求和技术条件,并在焊后仔细进行质量检验。
键联接1
2.半圆键联接
详细说明
键联接3
键呈半圆形,其侧面为工作面,键能在轴上的 键槽中绕其圆心摆动, 以适应轮毂上键槽的斜度, 安装方便。常用与锥形轴端与轮毂的联接。
3.楔键联接
详细说明
楔键的上、下表面为工作面,两侧面 为非工作面。键的上表面与键槽底面均有 1:100 的斜度。工作时,键的上下两工作 面分别与轮毂和轴的键槽工作面压紧,靠 其摩擦力和挤压传递扭矩。
花键联接 1
花键强度校核

花键强度校核一、已知条件1、花键副基本参数齿数:z =21模数:m= 2压力角:a =30º花键结合长度:l=64mm外花键大径:mm D ee 2.45=外花键小径:mm D ie 41=钩身内径D=270mmh 为截面高度δ为截面宽=75mm2、钩身强度计算钩身主弯曲截面(水平截面)A-A 是最危险的截面,其次是与铅垂线成45°的截面B-B 和垂直面C-C 。
(1)截面A-A 内侧最大拉应力:5.2S A A A t D K F Qh σσ≤= A F =4107675.2⨯mm2A K =1)21ln(2-++Dh h h D A A =0.141 MPa MPa S t 1375.292.92270141.0107675.236910715.245=<=⨯⨯⨯⨯⨯=σσ 所以A-A 截面通过(2)截面B-B 内侧合成应力:5.2322st στσσ≤+=∑2)5.0(6707.0707.0δδσB B B B t h e Q D K F Qh -⨯+=M P a 88.7775378)5.12755.0(10715.26707.0270144.010835.237810715.2707.02545=⨯-⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯= B F Q 707.05.1⨯=τ=4510835.210715.2707.05.1⨯⨯⨯⨯=10.156 其中:B F =410835.2⨯mm2B K =0.144 代入5.2322s t στσσ≤+=∑得∑σ=79.85MPa <137MPa所以B-B 截面通过(3)截面C-C 内侧合成应力:5.221sττττ≤+=∑ 其中:纯剪切应力c F Q 5.11=τ=15.34MPa C F =410655.2⨯mm2 扭转应力:τδτW e Q )5.0(2-= 62210735.235475291.0⨯=⨯⨯==c h K W δτ 代入得τδτW e Q )5.0(2-==2.34MPa 代入5.221s ττττ≤+=∑得MPa MPa s 21.795.233435.2075.18=⨯=<=∑ττ s τ为材料的剪切许用应力所以C-C 截面通过二、吊钩头部耳孔计算1、已知条件板钩直柄部分宽度b=280mm耳孔曲率系数α,查表得α=3.5耳顶到耳孔中心的距离0h =220mm2、头部耳孔计算耳孔水平截面E-E 和垂直截面D-D 为危险截面截面E-E 中直径d1的耳孔内侧拉应力最大,5.2b S t Q σδασ≤= 代入数据得MPa MPa Q t 13725.4575108.25.310715.2b 25<=⨯⨯⨯⨯==δασ 所以E-E 截面通过在耳孔垂直面D-D 中,切向拉应力最大5.2)25.0()25.0(220220S t d h d d h Q σδσ≤-+= 代入数据得t σ=30.58MPa<137MPa所以D-D 截面通过三、钩身挠度计算:1、已知条件:钩身截面的垂直惯性矩3101039.4mm I ⨯=起升质量m=Kg 4103.5⨯小车运行加速度2/078.0s m =α吊耳中心到钩头中心距离L= 31002.2⨯mm弹性模量E= Pa 111010.2⨯动载系数5.15=φ2、挠度计算主要计算小车行驶方向钩身的最大挠度y ≤L/1000钩身垂直力P= N m 34510201.6078.0103.55.1⨯=⨯⨯⨯=αφ钩头的最大弯矩Nmm PL M 7331025.11002.210201.6⨯=⨯⨯⨯== 钩身的最大挠度EIPL y 33=代入数据得y=0.002mm<L/1000=2.02mm 所以钩身挠度符合使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数 花键输入扭矩T 外花键大径D 内花键小径d 结合长度L 最小键宽Sfn 键数N 材料屈服强度σ0.2 材料抗拉强度σb
间接参数
平均圆直径dm 全齿高h 工作齿高hw
名义切向力Ft 载荷计算 单位载荷W
单位 N.m mm mm mm mm
Mpa Mpa
mm mm mm
N
值 22000.00
M(p1.a25~1.5 )
MPa
合格ቤተ መጻሕፍቲ ባይዱ
35.81 1.40 1.25 1.20 1.30 1.40
252.49
齿根弯曲应力σF
齿根抗弯强度 校核
抗弯强度的计算安全系数SF
齿根许用弯曲应力[σF]
比较σF/[σF]
Mpa (1.25~2.0 0) Mpa
合格
23.13
1.50 263.74
转换系数K 作用直径dh
103.00 90.50
254.00 19.05 8.00
965.00 1080.00
96.75 6.25 6.25
454780.36 223.81
齿面压应力σH
齿面接触强度的计算安全系数SH
齿面接触强度 校核
使用系数K1 齿侧间隙系数K2
分配系数K3
轴向偏载系数K4
齿面许用压应力[σH]
比较σH/[σH]
0.45
mm
95.44
齿根抗剪强度
切应力τtn 齿根圆角半径ρ 齿根抗剪强度 h/ρ 应力集中悉数atn 齿根最大切应力τFmx 许用切应力[τF] 比较τFmx/[τF]
Mpa mm
MPa MPa
128.88 0.50
12.50 3.80
489.96 131.87