超声换能器阻抗和相位测试压电陶瓷

合集下载

超声换能器的定义及工作原理

超声换能器的定义及工作原理

超声换能器的定义及工作原理超声换能器的定义及工作原理天堂的乌鸦的日志- 网易博客换能器参数是分三种:1.压电陶瓷片参数(可由生产厂商提供)2.小信号测量换能器(书上有介绍方法,目的为匹配和检查换能器的质量)3.大功率测量(实际产品,现很少有做测量的有效方法)换能器测量时包括的参数:F:谐振频率(既阻抗最小时的状态)FS:反谐振频率(阻抗最大时的状态)F1-F2:带宽R:动态电阻(阻抗)C0:静电容(电容表就可测得)C1:动态电容(匹配参数)L1:动态电感(匹配参数)以上数据可以通过阻抗分析仪/HP4139可以测得关键的是动态的参数1、从纯电学角度:它就是个电容,用电阻表量,不通;用电容表量有几百几千PF的容值;2、从纯机械角度:它是个能谐振的弹性东西,振动在它内部有特殊的模式,象二胡的琴弦,但比它要复杂一点,在不同频率下表现出串联谐振和并联谐振特性;3、从电声学角度:它是个转换器,加电压产生体积变化,限制它体积变化,就对限制它的物体产生力;加力在上就产生电压。

这种转换就象我们电源中用的变压器,描述变压器转换的参数是匝变比n,输入Vp输出Vs,则转换用Vp=-nVs表示,变压器两侧的参数都是电压V。

而描述换能器转换的参数是电声转换系数(电声比)Φ,电端参数电流I,声端(或叫机端)参数是声速v,转换用I= -Φv表示。

因为电学网络分析的理论较成熟,所以把力学向电学靠拢,就是说用电学的描述方式(如V、I、R、L、C等)来描述力学的规律。

在等效图的机端,力F相当于电学的电压V,声速v相当于电学的电流I,力阻抗Zm相当于电阻R。

于是在机端一侧,欧姆定律的力学形式为:F= v·Zm;机端侧的Lm、Cm等只做分析和理解用,是虚拟参数,难以实测,但可以通过其它参数的测量推算出来,如果用的到的话。

对物体施力物体就有状态变化的趋势,阻值形态变化的因素就是力阻Zm产生的原因,如损耗、变为动能、弹性势能等其它能量,于是Zm = Rm + j·Xm = Rm + j·(ωM -K/ω)可以这样理解:损耗因素Rm将能量转化为换能器以外的其它能量如热损,这种能量转换是不可逆的;Xm可以理解为象LC等电元件那样存储能量的因素,包括转变为机械动能的ωM 项、产生弹性形变后变成弹性势能的K/ω项,储能这两项只是暂时存储能量,什么时候回收、什么时候它们之间相互转换,不同形、材的换能器就有不同的表现。

压电陶瓷阻抗特性分析

压电陶瓷阻抗特性分析

压电陶瓷阻抗特性分析摘要:本文以压电陶瓷阻抗为研究对象,首先介绍了压电陶瓷的等效模型,然后进一步分析等效模拟的匹配及效率,对比验证推理及测试结果,推出压电陶瓷阻抗特性的关系,希望可以为有需要的人提供参考意见。

关键词:压电陶瓷、阻抗分析、阻抗匹配、效率一、压电陶瓷等效电路模型在狭窄的谐振频率范围内,压电陶瓷电路模型可以用以下电路来等效:其中,称为静态电容,称为等效电容,称为等效电感,称为等效电阻。

与晶片的尺寸、电极布置方式等有关,可以用Q表电容表在远低于其谐振频率的频率上直接测得。

串联支路上的、谐振时的频率就是串联谐振频率,在频率较低时,的容抗远大于等效电阻,对测量的值的影响可以忽略。

其总阻抗为:在、和组成的串联电路中,其阻抗特性如下图所示:和决定了压电陶瓷的串联谐振频率,其值为:在这个谐振频率下,压电陶瓷的阻抗达到极小值,并且,在附近,压电陶瓷晶片是一个效率最高的发射体。

在时,和组成的串联电路呈感性,与并联等效电容组成并联谐振,其阻抗特性如图3所示:在这个并联谐振频率下,压电陶瓷的阻抗达到极大值,在附近,压电陶瓷晶片是一个效率最高的接收器。

实测结果为。

综合图2和图3,可以绘出压电陶瓷在谐振频率附近的阻抗特性如图4所示:由图4可以得出,若使,换能器处于最佳发射状态,但接收效率最低。

若使,换能器处于最佳接受状态,但发射效率最低。

所以应该在和之间折中选择。

如果使用的是2的驱动频率,所以应选择标称谐振频率(即串联谐振频率)为1.9偏下为宜。

二、超声换能器阻抗匹配通过对超声换能器的研究可知,当压电陶瓷的工作频率远低于其固有频率时,压电陶瓷的电学特性等效于一个电容器,通常称此电容为静态电容,即图1中的,可通过电容表直接测得,在超声换能器工作过程中近似为常数。

超声换能器是一种机电转换元件,具有电学和机械两种端口。

在机械端是通过声学元件与声学负载相连,在电端则是通过匹配电路与超声功率源相连。

声学匹配的好坏决定换能器的技术特性和应用场合,而电匹配的优劣则直接影响超声设备的作用效果。

一种医用超声换能器用无铅压电陶瓷及其制备方法和应用发明专利

一种医用超声换能器用无铅压电陶瓷及其制备方法和应用发明专利

一种医用超声换能器用无铅压电陶瓷及其制备方法和应用技术领域本发明涉及一种压电陶瓷的制备方法,尤其涉及一种医用超声换能器用无铅压电陶瓷及其制备方法和应用。

背景技术超声波是指频率大于20KHz以上的声波,因其方向性好,穿透力强,已被广泛应用于超声刀手术、超声波雾化、B超检查、超声波制药等诸多医学领域。

相较于传统手术,超声刀手术具有切割精度高、创伤范围小、凝血效果佳、视野更加清晰、手术时间大幅缩短、术后恢复快等优点,给医生和患者都带来了巨大好处。

超声手术刀设备主要由高频功率源和超声振动系统两部分组成。

超声振动系统又包括三个部分:超声换能器、超声变幅杆、超声刀刀头。

其中,超声换能器是进行能量转换的器件,它可以将超声波发生器产生的振荡电信号转换成机械振动信号,即把电能转化成机械能。

超声换能器之所以具备能量转换的功能,是源于压电陶瓷的逆压电效应。

压电陶瓷因其具有压电效应而得名。

当受到机械应力的作用或感应到振动信号时,在压电陶瓷两电极面间将会有电压信号输出,此为正压电效应;反之,给压电陶瓷施加电信号时,它也可以将电信号转换成振动信号,此为逆压电效应。

目前大规模应用于医用超声换能器的压电陶瓷材料主要是铅基压电陶瓷,即以PbTiO3-PbZrO3(PZT)为主要成分的陶瓷,如PZT4和PZT8。

因其机电耦合系数高、温度稳定性好、居里温度较高,并具有良好的介电和压电性能,一直占据着压电陶瓷领域的主导地位。

以PZT8压电陶瓷为例,其主要性能为压电常数d 33=250~300pC/N,纵向机电耦合系数k 33=0.6~0.7,机械品质因素Qm=1500~3000,介电损失tanδ≤0.5%,居里温度Tc=300~330℃。

但PZT基压电陶瓷材料中Pb含量约占原料总质量的70%左右,在生产、使用及废弃后的处理过程中都会给人类及生态环境带来严重的危害,这与人类社会的可持续发展相悖。

随着人类可持续发展观念的深入和公众环境保护意识的增强,研究开发新型高性能无铅压电陶瓷来代替PZT压电陶瓷是一项重要而紧迫的课题。

超声换能器阻抗和相位测试压电陶瓷

超声换能器阻抗和相位测试压电陶瓷

超声换能器(压电陶瓷)的阻抗和相位测试1、超声波换能器,英文名称为Ultrasonic transducer,是一种将高频电能转换为机械能的能量转换器件。

其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。

2、超声波换能器原理- -结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。

其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。

3、超声波换能器原理- -应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。

(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。

(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。

(4)超声波减肥和医疗美容仪器利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。

(5)电子血压计,利用超声波换能器接收血管的压力, 当气囊加压紧压血管时, 因外加压力高于血管舒张压力, 超声波换能器感受不到血管的压力; 而当气囊逐渐泄气, 超声波换能器对血管的压力随之减小到某一数值时, 二者的压力达到平衡, 此时超声波换能器就能感受到血管的压力, 该压力即为心脏的收缩压, 通过放大器发出指示信号, 给出血压值。

电子血压计由于取消了听诊器, 可减轻医务人员的劳动强度。

医学超声成像技术、X-CT、MRI及ECT是现代医学成像技术的四大医学影像技术,己广泛应用于心脏科、产科、眼科、肝、。

超声波测试(检测)用压电换能器的选择与使用

超声波测试(检测)用压电换能器的选择与使用

型号
频率(kHz) 可承受发射电压(V)
接收灵敏度(μv/μb)
TFS—10
10
500--2500
〉20
TFS—20
20
500--2500
〉20
TFS—30
30
500--2000
〉20
TFS—50
50
500--2000
〉20
TFS—80
80
500--2000
〉20
TFS—100
100
500--2000
苏州工业园区万象精密仪器有限公司
TEL:0512-67580695 67253426
稀土超磁致大功率发射系统
SZ-28 大功率发射机 SZ-08 稀土探头系列
压电式换能器系列
FSS 系列单发射双接收单孔测井换能器 FYS 系列声透射法测试跨孔对穿换能器 NS 系列串状接收换能器 TFS 系列平面夹芯式换能器 HKN-1 型单发双收单孔干孔换能器 HKN-2 型单发单收对穿干孔换能器 HFT 系列高频换能器 WH 系列微型换能器 PS 系列横波换能器 YS 型弯曲式接收换能器 YB-2 型增压式换能器 HN-1 型侧向测柱换能器
为了更好地发挥换能器的工作性能,满足不同测试要求,本系列产品可提供普通型(收发共 用)和内置信号前放电路型(单发单收)两种规格,可根据要求选定。产品基本参数如下:
可承受 接收灵敏度 换能器体积
型号
频率(kHz)
发射电压 (V) (μv/μb)
(mm)
FYS--55
10
500--1500
>20
Φ55×300
SZ-PS10
同上
35KW
同上
800×50

大学物理实验:超声声速测定

大学物理实验:超声声速测定

大学物理实验:超声声速测定————————————————————————————————作者:————————————————————————————————日期:超声声速测定声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。

特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。

例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。

“声速的测量”是一个综合性声学实验。

实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。

通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。

(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。

(3)数据处理方法:求声波波长的逐差法。

(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。

【实验目的】1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。

2.了解压电换能器的功能。

3.学习用逐差法处理数据。

【实验仪器】SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等【实验原理】频率介于20Hz~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kH z~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60k Hz 之间。

在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。

根据声波各参量之间的关系可知f ⋅=λυ,其中υ为波速, λ为波长,f 为频率。

图4-5-1共振法测量声速实验装置在实验中,可以通过测定声波的波长λ和频率f 求声速。

超声波换能器阻抗

超声波换能器阻抗

超声波换能器阻抗超声波技术在医学、工业、安防等领域得到了广泛的应用,而超声波换能器作为超声波技术的核心部件之一,其阻抗特性对于超声波信号的产生和传输起着重要的作用。

本文将从超声波换能器阻抗的概念、特点、测量方法以及阻抗匹配等方面进行阐述。

一、超声波换能器阻抗的概念超声波换能器是将电能转化为超声波能量的一种装置,其主要由压电陶瓷材料和金属电极组成。

在超声波换能器中,电极通过交变电场作用于压电陶瓷上,使其发生压电效应,产生超声波信号,并将其传递到被测介质中。

而超声波换能器阻抗则是指超声波换能器内部电学特性与外部电学特性之间的匹配程度,即超声波信号从超声波换能器到介质的传递过程中所需要克服的电学阻力。

超声波换能器阻抗与压电陶瓷材料的厚度、直径、材料性质等因素密切相关,不同的超声波换能器阻抗会对超声波信号的发射和接收产生不同的影响。

二、超声波换能器阻抗的特点超声波换能器阻抗的特点主要体现在以下几个方面:1. 阻抗大小不同:不同类型、不同尺寸的超声波换能器阻抗大小不同,其阻抗值通常在几十到几千欧姆之间。

2. 阻抗频率特性:超声波换能器阻抗随着频率的变化而发生变化,通常存在一个最佳的工作频率。

3. 阻抗匹配问题:超声波换能器的阻抗与被测介质的阻抗不匹配会导致超声波信号的反射和衰减,进而影响信号的传输和接收。

三、超声波换能器阻抗的测量方法测量超声波换能器阻抗的方法通常有两种:一种是利用阻抗分析仪进行阻抗测试,另一种是通过超声波传播特性的测量来计算其阻抗值。

1. 阻抗分析仪测量:将超声波换能器与阻抗分析仪相连,通过测量其反射系数、透射系数等参数计算出超声波换能器的阻抗值。

2. 超声波传播特性测量:利用声速、声阻抗等参数计算出超声波在超声波换能器和介质之间的传播特性,再通过计算反射系数、透射系数等参数来推算出超声波换能器的阻抗值。

四、超声波换能器阻抗匹配为了充分利用超声波换能器的性能,需要对超声波换能器和被测介质之间的阻抗进行匹配。

阻抗分析

阻抗分析

超声波换能器参数的测试及阻抗测试仪核心提示:用阻抗分析仪可以评定压电陶瓷片、压电换能器、整个振动系统(超声波换能器加上变幅杆、模具)等各种器件设备的性能优劣。

用阻抗分析仪可以评定压电陶瓷片、压电换能器、整个振动系统(超声波换能器加上变幅杆、模具)等各种器件设备的性能优劣。

用阻抗分析仪分析超声器件设备,最重要的几个参数如下: 1. Fs:机械谐振频率,即振动系统的工作频率、设计中应尽可能接近期望值。

对于清洗机,振子的谐振频率一致性越高越好。

2. Gmax:谐振时的电导,振动系统工作时的电导值,它是动态电阻的倒数。

在相同的支撑条件下越大越好,Gmax=1/R1。

一般对于清洗或焊接振子来说,一般在50ms~500ms之间。

如果太小的话,一般来说,振子或振动系统工作会有问题,如电路不匹配或转换效率低、振子寿命短。

3. C0:超声波换能器压电器件等效电路中静态支路的电容量,C0=CT-C1(其中:CT为1kHz下的自由电容,C1为压电器件等效电路中动态支路的电容量)。

使用时要以电感对C0进行平衡。

在清洗机或超声加工机器的电路设计中,正确地平衡C0可以提高电源的功率因素,使用电感平衡有两种方法,并联调谐和串联调谐。

4. 超声波换能器机械品质因素,以电导曲线法确定,Qm=Fs/(F2-F1),Qm越高越好,因为越高,振子的效率越高;但必须与电源匹配,Qm值太高时,电源无法匹配。

对于清洗振子来说,值越高越好,一般来说,清洗振子的Qm要达到500以上,太低的话,振子效率低。

对于超声波换能器超声加工来说,振子本身的Qm值一般在500左右,加上变幅杆之后,一般达到1000左右,再加上模具,一般达到1500~3000。

5. F2,F1:振子半功率点频率,对于超声加工的整个振动系统(包含变幅杆和模具)来说,F2-F1要大于10Hz, 否则频带太窄,电源难以工作在谐振频率点,设备无法工作。

F2-F1与Qm值直接相关,Qm=Fs/(F2-F1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声换能器(压电陶瓷)的阻抗和相位测试
1、超声波换能器,英文名称为Ultrasonic transducer,是一种将高频电能转换为机械能的能
量转换器件。

其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。

2、超声波换能器原理- -结构
超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。

其中,压电陶瓷圆盘换能器起到的作用和一般的换能
器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压
电陶瓷圆盘换能器频带外产生的多普勒回拨信号。

3、超声波换能器原理- -应用
(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。

(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。

(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。

(4)超声波减肥和医疗美容仪器利用超声波换能器产生机械振动,将脂肪细胞振碎并排
出体外,进而达到减肥的效果。

(5)电子血压计,利用超声波换能器接收血管的压力, 当气囊加压紧压血管时, 因外加压力高于血管舒张压力, 超声波换能器感受不到血管的压力; 而当气囊逐渐泄气, 超声波换
能器对血管的压力随之减小到某一数值时, 二者的压力达到平衡, 此时超声波换能器就能
感受到血管的压力, 该压力即为心脏的收缩压, 通过放大器发出指示信号, 给出血压值。


子血压计由于取消了听诊器, 可减轻医务人员的劳动强度。

医学超声成像技术、X-CT、MRI及ECT是现代医学成像技术的四大医学影像技术,己广泛应用于心脏科、
产科、眼科、肝、。

肾、胆囊及血管系统等。

超声成像技术与其他成像技术相比,具有实时性好、无损伤以
及低成本等独特优点,在实际临床中得到广泛应用。

超声成像技术是利用超声换能器发出的超声波进入人体
组织后,在人体不同组织分界处形成的反射回波,而进行成像处理的技术。

作为医用超声波发射和回波接收器
件的换能器,始终是医学超声成像系统中最为关键的声学部件。

医学超声成像换能器的不断发展使超声图像
更清晰,显示更直观。

4、超声换能器核心参数, 阻抗、谐振频率、相位(用omicron-lab公司Bode100测试
如下)
Bode100可以最高测试40MHz的阻抗,可以同时显示阻抗和相位曲线,图像清晰。

相关文档
最新文档