等比数列通项公式教案

合集下载

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。

2. 培养学生运用等比数列知识解决实际问题的能力。

3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。

二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。

2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。

3. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。

2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。

3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。

4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。

5. 课堂练习:布置相关练习题,巩固所学知识。

6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。

7. 课后作业:布置适量作业,巩固所学知识。

六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。

2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。

3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。

七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。

2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。

3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。

八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,讲解应用实例。

等比数列概念及通项公式经典教案

等比数列概念及通项公式经典教案

等比数列概念及通项公式经典教案等比数列的概念及通项公式【学习目标】1.准确理解等比数列、等比中项的概念,掌握等比数列通项公式的求解方法,能够熟练应用通项公式解决等比数列的相关问题.2.通项对等比数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生对数学问题的观察、分析、概括和归纳的能力.3.激情参与、惜时高效,利用数列知识解决具体问题,感受数列的应用价值.【重点】:等比数列的概念及等比数列通项公式的推导和应用.【难点】:对等比数列中“等比”特征的理解、把握和应用.【学法指导】1. 阅读探究课本上的基础知识,初步掌握等比数列通项公式的求法; 2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.一、知识温故1.数列有几种表示方法?2.数列的项与项数有什么关系?3函数与数列之间有什么关系?教材助读1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0)。

注:1︒“从第二项起”与“前一项”之比为常数q {na }成等比数列⇔n n a a1+=q (+∈N n ,q ≠0) 2︒ 隐含:任一项00≠≠q a n 且3︒ q= 1时,{a n }为常数列.2.等比数列的通项公式① 111(0)n n a a q a q -=⋅⋅≠ ②1(0)n m n m a a q a q -=⋅⋅≠3.既是等差又是等比数列的数列:非零常数列.4.等比中项的定义:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.且2G ac =5.证明数列{}n a 为等比数列: ①定义:证明1n n a a +=常数, ②中项性质:212121n n n n n n n a a a a a a a +++++==或;6. 等比数列的性质:(1)n m n m a a q -=(,m n N +∈); (2)对于k 、l 、m 、n ∈N*,若m n p q +=+,则a k a l =a m a n .; (3)每隔k 项(k N +∈)取出一项,按原来顺序排列,所得的新数列为等比数列;(4)在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。

2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。

2. 教学难点:等比数列通项公式的推导和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。

3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。

4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。

五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。

2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。

3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。

4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。

5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。

6. 课堂练习:布置适量习题,巩固所学知识。

7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。

8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。

9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。

10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。

2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。

高一数学“四步教学法”教案:2.3 等比数列的通项公式

高一数学“四步教学法”教案:2.3 等比数列的通项公式
拓展:观察例2,当 时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?
答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。
练习:已知 是一个等比数列的前三项,求第四项.
例3、已知等比数列在例3中,等比数列的通项公式为 ,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点 均在函数 的图象上。




课后
作业
习题2.3(1)3、4、5




等比数列的通项公式
通项公式:例1练习
公式推导:例2
公式变形:例3
课后
反思







环节四当堂检测
二次备课
1.在等比数列 中,(1)已知 ;
(2)已知 ,求 .
2.已知数列 为等比数列, ,求 的值.
3.已知数列 满足条件: ,且 。求 的值.
选作题:
1.公差不为0的等差数列 中, 成等比数列,求公比。比.
2.已知数列 满足
(1)求证: 是等比数列;(2)求 的通项 .
自学指导
(1)观察等比数列,你能找到数列的各项与其序号之间有什么关系
(2)根据猜想,类比等差数列通项公式的推导方法,如何推导等比数列的通项公式?
(3)根据等比数列的通项公式,你能写出公式的哪些变形形式?
(4)如何判断一个数是否为等比数列的项?
(5)数列是特殊的函数,那么等比数列和哪类函数有关系?
(6)如果一个数列 的通项公式为 ,其中 都是非零常数,那么这个数列一定是等比数列吗?
通过观察发现 …… ……
,即:
说明:这种证明方法在以后的数列证明中有重要应用.

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。

2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。

2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。

3. 等比数列的求和公式:介绍等比数列前n项和的公式。

三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。

2. 教学难点:等比数列通项公式的推导和证明。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。

2. 运用类比法,让学生理解等比数列与等差数列的异同。

3. 利用多媒体辅助教学,展示等比数列的动态变化过程。

4. 开展小组讨论,培养学生的合作意识和解决问题的能力。

五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。

2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。

3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。

4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。

5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。

6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。

7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。

8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。

2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。

最新高教版数学教案——等比数列及其通项公式

最新高教版数学教案——等比数列及其通项公式

等比数列及其通项公式教学目标:1.通过教学使学生理解等比数列的概念,理解其通项公式的推导过程.2.掌握等比数列的通项公式,并会用公式解简单的问题.3.理解等比中项的概念.4.培养学生观察、分析、归纳、概括的思维能力.教学重点:等比数列的定义和通项公式. 教学难点:通项公式的应用.教学方法:启发讲授法.教学过程:一、复习提问什么样的数列叫等差数列?等差数列{}的通项公式是什么?指出公式中各字母的含义. 二、引入新课判断下面两个数列是不是等差数列,并说明理由,2、4、6、8、10、12、 (1)2、4、8、16、32、64、 (2)让学生观察、分析、归纳、判断.可以得出数列(1)是等差数列,理由是数列(1)从第2项起每一项与它的前一项之差都等于2,即等于同一个常数,根据定义,它是等差数列,且公差=2.数列(2)不是等差数列.理由是它不符合等差数列的定义,例如,第2项减第1项得2,但第3项减第2项则差是4,不相等.再引导学生观察数列(2),从第2项起每一项与它前一项的差不等于同一常数,再看一看与它前一项的比有什么特点?(让学生试验、探索)学生会发现,这个数列从第2项起每一项与它前面一项的比都等于同一个常数2,教师指出这样的数列就是我们今天要研究的等比数列.三、讲授新课1.等比数列的定义:如果一个数列从第2项起,每一项与它前一项的比都等于同一个常数,这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示,例如上面所说的公式(2)就是等比数列,公比=2.2.通项公式:我们知道等差数列{},公差为,则它的通项公式为=+(-1),那么等比数列呢?设等比数列{},公比为,则根据定义有=q,即a1=a2q,=,a3==()=,==()=.(要注意引导学生观察项的序号与的指数的关系,让学生往下推想( )内由学生填数,然后总结出通项公式.)……由此可知,等比数列{}的通项公式是=.大家看,这个公式是从开始推导的,当=1时,左边为,右边为·=.说明这个公式对∈时都成立,这里与均不为0.例如,数列(2)的通项公式为,(=2,=2).可见只要知道和就能写出等比数列的通项公式,有了通项公式就可求它的任一个指定项.例如我们求数列(2)的第5项,.3.例题例1 求等比数列的第10项.分析:用通项公式即可求出第10项,有和公比就可求出通项公式,需先求公比.例2 一个等比数比数列的第3项与第4项分别是12和18,求它的第1项与第2项.分析:已知=12,=18,设和公比,用和可得关于和的二元方程组,解得和便可求该数列的任一指定项.解:设这个数列的第1项是,公比是,则得代入(1)得∴这个数列的第1项是,第2项是8.解法2:根据定义÷=,,根据通项公式=,所以=,将,=12代入,得.即这个数列的第1项是,第2项是8.这两种解法各有特点,但用第一种方法更具普遍性,它对已知等比数列的任意两项都可用,方法2则用了和是相邻两项的特点.4.在等差数列里学过等差中项,和的等差中项等于什么?提问学生,并可用和的算术平均数一起作对比复习.、的等差中项是,即在、中间插入一个数,使、、成等差数列,则叫、的等差中项.对于等比数列如何呢?如果在2与8中间插入一个数4,那么这三个数成等比数列.一般地,如果在与中间插入一个数,使,,成等比数列,则叫做与的等比中项.例如上面例子中,4叫2和8的等比中项.如果是与的等比中项,那么,即和等差数列类似,一个等比数列从第2项起,每一项(有穷数列的末项除外)是它的前一项与后一项的等比中项.例3 求(1)与(2) 的等比中项.解:(1)由定义; (2) .注意:两个数的等差中项只有一个;而两个数的等比中项有两个,这两个数互为相反数,且两数必须同号才有等比中项.四、课堂练习练习第144页,五、课堂小结1.等比数列的定义与等差数列定义的区别是什么?2.等比数列的通项公式反映的是几个量之间的关系?要确定一个等比数列的通项公式,关键是哪两个量?3.等比中项是怎样定义的?两个数的等比中项有几个?六、课外作业1.复习作业:复习课文5.3.1等比数列的概念.2.书面作业:3.预习作业:预习课文5.3.2等比数列的前项和.。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。

2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。

二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。

2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。

4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。

5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。

三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。

2. 教学难点:等比数列通项公式的推导和求和公式的理解。

四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。

2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。

3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。

五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。

2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。

3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。

4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。

6. 作业:布置作业,让学生进一步巩固等比数列的知识。

六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。

2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。

3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。

七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。

2. 针对教学方法的适用性,调整教学策略,以提高教学效果。

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

第1课时等比数列的概念和通项公式(一)教学内容等比数列的概念、等比数列的通项公式(一)教学目标1.通过具体实例,能归纳出等比数列的概念,并形成符号化定义;能根据定义探索归纳出等比数列的通项公式,能解释公式的含义和限制条件;能根据等比中项的概念写出出对应等式,发展数学抽象素养.2.通过解析式、图象等,能说出等比数列的通项公式与指数函数之间的共性与差异;会用函数的观点解释等比数列,发展数学抽象、逻辑推理素养.3.通过解方程组求等比数列的基本量,能得出等比数列的一些性质,会利用通项公式解决一些简单问题,着重提升数学运算素养.(三)教学重点及难点1.重点:等比数列的定义及通项公式.2.难点:等比数列通项公式的推导.(四)教学过程设计问题1:在前面我们已经学习了等差数列,我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数”,类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究呢?师生活动:(1)独立思考后,让学生代表回答.类比等差数列的概念,从加、减、乘、除运算的角度,学生回答的可能有三种数列:等和、等积和等商(比)数列(仿照等差数列命名)。

(2)教师追问1:你能举岀相应的例子吗?(3)学生举例,如:1,4,1,4,1;0,1,0,3,0,5,…;1,2,4,8,…等数列.教师引学生了解:相对于等和与等积数列,等比数列的性质更为丰富,在生活中的应用更广泛,本节课我们将要研究等比数列.(4)教师追问2:类比差数列研究路径,你认为应该研究等比数列的哪些内容?按怎样的路径展开研究?主要的研究方法有哪些?(5)师生共研:提出本单元的研究路径:背景→概念一通项公式→性质→前n项和公式→应用.设计意图:学生利用常用的四则运算类型,可以类比等差数列得出等和、等积与等商(比)数列的名称,通过对比分析确定将要研究的对象.这样的设计可以避免先入为主,体现了研究逻辑的完整性,能提升学生发现和提出问题的能力.为了不冲淡主题,等和与等积数列可作为例1:若等比数列n 的第4项和第6项分别为48和12,求n 的第5项.例2:已知等比数列{}n a 的公比为q ,试用{}n a 的第m 项m a 表示n a .例3:数列{}n a 共有5项,前三项成等比数列,后三项成等差数列,第3项等于80,第2项与第4项的和等于136,第1项与第5项的和等于132.求这个数列.设计意图:让雪学生学会等比数列基本量的求解运算,体会等比数列的独特性,归纳出等比数列运算的方法以及策略.(五)目标检测设计当堂检测1.在等比数列{}n a 中,1336a a =,2460a a +=.求1a 和公比q .2.对数列{}n a ,若点(),*()n n a n N ∈都在函数x y cq =的图象上,其中c ,q 为常数,且0c ≠,0q ≠,1q ≠,试判断数列{}n a 是否是等比数列,并证明你的结论.课后作业1.判断下列数列是否是等比数列.如果是,写出它的公比.(1)3,9,15,21,27,33;(2)1,1.1,1.21,1.331,1.4641;(3)13,16,19,112,115,118;(4)4,8-,16,32-,64,128-.2.已知{}n a 是一个公比为q 的等比数列,在下表中填上适当的数.n 是等比数列.(1)3a ,5a ,7a 是否成等比数列?为什么?1a ,5a ,9a 呢?(2)当1n >时,1n a -,n a ,1n a +是否成等比数列?为什么?当0n k >>时,n k a -,n a ,n k a +是等比数列吗?设计意图:检测和巩固等比数列的概念和通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 等比数列的通项公式
一、教学目标
1.知识目标:
(1)理解等比数列的定义;
(2)理解等比数列通项公式.
2.能力目标:
(1)应用等比数列的通项公式,解决数列的相关计算,培养学生的计算技能;
(2)应用等比数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.
3.情感目标:
(1)经历等比数列的通项公式的探索,增强学生的创新思维;
(2)关注数学知识的应用,形成对数学的兴趣。

二、教学重难点
1.教学重点:等比数列的通项公式.
2.教学难点:等比数列通项公式的推导.
三、教学过程
(一)创设情境兴趣导入
做一做:将一张纸连续对折5次,列出每次对折纸的层数
(二)动脑思考探索新知
新知识:
⨯=(层);
第1次对折后纸的层次为122
⨯=(层);
第2次对折后纸的层次为224
第3次对折后纸的层次为428
⨯=(层);
第4次对折后纸的层次为8216
⨯=(层);
第5次对折后纸的层次为16232
⨯=(层).
各次对折后纸的层次组成数列
2,4,8,16,32.
这个数列的特点是,从第2项起,每一项与它前面一项的比都等于2.如果一个数列的首项不为零,且从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q来表示.
由定义知,若{}n a 为等比数列,q 为公比,则1a 与q 均不为零,且有1n n
a q a +=,即 1n n a a q +=⋅ (6.5)
(三)巩固知识 典型例题
例1 在等比数列{}n a 中,15a =,3q =,求2a 、3a 、4a 、5a .

213243545315,
15345,
453135,
1353405.a a q a a q a a q a a q =⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯=
试一试:你能很快地写出这个数列的第9项吗?
如何写出一个等比数列的通项公式呢?
(四)动脑思考 探索新知
与等差数列相类似,我们通过观察等比数列各项之间的关系,分析、探求规律. 设等比数列{}n a 的公比为q ,则 ()()2123211234311,
,
,a a q a a q a q q a q a a q a q q a q =⋅=⋅=⋅⋅=⋅=⋅=⋅⋅=⋅
……
依此类推,得到等比数列的通项公式:
.11-⋅=n n q a a
知道了等比数列{}n a 中的1a 和q ,利用公式(6.6),可以直接计算出数列的任意一项. 想一想:等比数列的通项公式中,共有四个量:n a 、1a 、n 和q ,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法?
(五)巩固知识 典型例题
例2求等比数列
,8
1,41,21,
1-- 的第10项. 解 由于 11a =-,12
q =-, 故,数列的通项公式为
111111
11111(1)(1)222-----⎛⎫⎛⎫=⋅=-⋅-=-⋅-⋅=-⋅ ⎪ ⎪⎝⎭⎝⎭n n n n n n n a a q , 所以
10101011
1(1)512
2a -=-=. 例3 在等比数列{}n a 中,51a =-,18
=-a 8,求13a . 解 由8
1
,185-=-=a a 有 411a q -=⋅, (1)
7118
a q -=⋅, (2) (2)式的两边分别除以(1)式的两边,得
38
1q =, 由此得
21=
q . 将2
1=q 代人(1),得 412-=a ,
所以,数列的通项公式为
4112()2
n n a -=-⋅. 故
12
124813*********a a q -⎛⎫=⋅=-⋅=-=- ⎪⎝⎭. 注意 :本例题求解过程中,通过两式相除求出公比的方法是研究等比数列问题的常用方法. 想一想:在等比数列{}n a 中,719
a =, 13q =.求3a 时,你有没有比较简单的方法?
(六)运用知识 强化练习
1.求等比数列 ,6,2,3
2.的通项公式与第7项. 2.在等比数列{}n a 中,2125a =-
,55a =-, 判断125-是否为数列中的项,如果是,请指出是第几项.
3. 已知三个数的积为27,且这三个数组成公比为3的等比数列.求这三个数.
(七)理论升华 整体建构
思考并回答下面的问题:等比数列的通项公式是什么
结论:.11-⋅=n n q
a a
(八)继续探索 活动探究
(1)读书部分:教材
(2)书面作业:教材练习6.3.2 《课课达标》P45-46。

相关文档
最新文档