数学必修四第一章试卷(含答案).
(常考题)北师大版高中数学必修四第一章《三角函数》检测(包含答案解析)

一、选择题1.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .4.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A .,63ππ⎛⎫⎪⎝⎭ B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦ 5.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦6.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米7.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<<⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( )A .76π B .56π C .2πD .3π 8.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( ) A .3π是函数()f x 的一个周期B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称 9.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B .151+ C .1916D .3410.将函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,则以下说法正确的是( ) A .1ω=B .函数()y f x =图象的一条对称轴为12x π=C .()3f f x π⎛⎫⎪⎝⎭D .函数()y f x =在区间0,2π⎛⎫⎪⎝⎭,上单调递增11.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.已知定义在R 上的奇函数()f x 满足()()20f x f x -+=,且当(]0,1x ∈时,()21log f x x=,若函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点,则实数m 的取值范围是__________. 14.函数y =的定义域为________.15.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.16.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.17.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.18.函数[]y x =的函数值表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=.则对于函数()[]f x x x =-,有下列说法:①()f x 的值域为[)0,1;②()f x 是1为周期的周期函数;③()f x 是偶函数;④()f x 在区间[)1,2上是单调递增函数.其中,正确的命题序号为___________. 19.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.如图,在扇形OMN 中,半径10OM =,圆心角6MON π∠=,D 是扇形弧上的动点,矩形ABCD 内接于扇形,记DON θ∠=,矩形ABCD 的面积为S .(1)用含θ的式子表示线段DC ,OB 的长; (2)求S 的最大值.22.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.23.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.24.长春某日气温()C y ︒是时间t (024t ≤≤,单位:小时)的函数,下面是某天不同时间的气温预报数据: t (时)3 6 9 12 15 18 21 24 ()C y ︒ 15.714.015.720.024.226.024.220.015.7cos()y A t b ωϕ=++的图象.(1)根据以上数据,试求cos()y A t b ωϕ=++(0A >,0>ω,0ϕπ<<)的表达式; (2)大数据统计显示,某种特殊商品在室外销售可获3倍于室内销售的利润,但对室外温度要求是气温不能低于23C ︒.根据(1)中所得模型,一个24小时营业的商家想获得最大利润,应在什么时间段(用区间表示)将该种商品放在室外销售,单日室外销售时间最长不能超过多长时间?(忽略商品搬运时间及其它非主要因素,理想状态下哦,奥力给!) 25.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 6:00 7:00 8:00 9:00 10:00 11:00 水深 5.000 3.754 2.835 2.500 2.835 3.754 时刻 12:00 13:00 14:00 15:00 16:00 17:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 18:00 19:00 20:00 21:00 22:00 23:00 水深5.0003.7542.8352.5002.8353.754(1)这个港口的水深与时间的关系可用函数sin()y A x b ωϕ=++(0A >,0>ω)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯, ()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))51222l n πππ⨯++==,((22332m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(113232m ππ+==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a ,则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D , 当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C . 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.4.D解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+, 当,64x ππ⎛⎫∈-⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.5.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 6.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.7.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭, 所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+ ⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+⎪⎝⎭的情况. 8.D解析:D 【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确; 当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确;当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确;函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.9.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫-⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫- ⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便. 10.C解析:C 【分析】由周期求出ω,然后由正弦函数的性质判断. 【详解】函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,所以22πωπ==,A 错;12x π=时,206x π-=,12x π=不是对称轴,B 错;3x π=时,226x ππ-=,即23f π⎛⎫= ⎪⎝⎭为最大值,因此()3f f x π⎛⎫⎪⎝⎭正确,C 正确; 0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭,而sin y x =在5,66ππ⎛⎫- ⎪⎝⎭上不单调,D 错; 故选:C . 【点睛】方法点睛:本题考查三角函数的性质,对函数()sin()f x A x ωϕ=+,掌握五点法是解题关键.解题时可由x 的值或范围求得x ωϕ+的值或范围,然后结合正弦函数性质判断.11.C解析:C 【分析】 可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 12.D解析:D【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t 的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.【分析】根据条件易得函数是关于对称以2为周期的奇函数再根据时在同一坐标系中作出函数的图象利用数形结合法求解【详解】因为是奇函数且所以即函数是关于对称以2为周期的奇函数又时在同一坐标系中作出函数的图象解析:742⎡⎫⎪⎢⎣⎭, 【分析】根据条件,易得函数()f x 是关于()1,0对称,以2为周期的奇函数,再根据(]0,1x ∈时,()21log f x x=,在同一坐标系中作出函数()y f x =,()sin y x π=的图象,利用数形结合法求解. 【详解】因为()f x 是奇函数,且()()20f x f x -+=,所以()()2f x f x -=-,即函数()f x 是关于()1,0对称,以2为周期的奇函数, 又(]0,1x ∈时,()21log f x x=, 在同一坐标系中作出函数()y f x =,()sin y x π=的图象如图所示:因为函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点, 所以函数()y f x =,()sin y x π=在区间[]1,m -上有且仅有10个交点,由图知:实数m 的取值范围是742⎡⎫⎪⎢⎣⎭,, 故答案为:742⎡⎫⎪⎢⎣⎭,【点睛】方法点睛:函数零点求参数范围问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则构造两个函数,将问题转化为两个函数图象的交点问题求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.14.(k ∈Z)【分析】解不等式2cosx -1≥0即得函数的定义域【详解】∵2cosx -1≥0∴cosx≥由三角函数线画出x 满足条件的终边的范围(如图阴影所示)∴x ∈(k ∈Z)故答案为(k ∈Z)【点睛】(解析: (k ∈Z)【分析】解不等式2cos x -1≥0即得函数的定义域. 【详解】∵2cos x -1≥0,∴cos x≥.由三角函数线画出x 满足条件的终边的范围(如图阴影所示).∴x ∈ (k ∈Z). 故答案为 (k ∈Z)【点睛】(1)本题主要考查三角函数线和解三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)三角函数线是解三角不等式较好的工具,要理解掌握并灵活运用.15.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,106CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案. 【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,106CD = 由正弦定理,得sin 45203sin 30CD BC ︒==︒在Rt ABC 中,3sin?603302AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.16.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:2114【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 1421PR PRQPQR PQ⋅⋅∠∠===故答案为:2114【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.17.【分析】根据图象变换求出解析式再结合正弦函数的性质建立不等式即可求出的取值范围【详解】将函数图像上所有点向左平移个单位得到的图象再将横坐标变为原来的倍纵坐标不变得函数在上有且仅有一条对称轴和一个对称解析:35,22⎛⎤⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围. 【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+ ⎪⎝⎭,函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x ,3242,解得3522. 故答案为:35,22⎛⎤⎥⎝⎦.【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题.18.①②④【分析】当时即可判断①④;计算即可判断②也可以作图;计算即可判断③【详解】当时所以故①④正确;当时则故②正确;所以③错误故答案为:①②④【点睛】本题考查利用所学知识研究新定义函数的性质涉及到周解析:①②④ 【分析】当[,1)x n n ∈+时,()f x x n =-,即可判断①④;计算(1)f x +,()f x 即可判断②,也可以作图;计算12()33f -=,11()33f =即可判断③. 【详解】当[,1)x n n ∈+时,[]x n =,()||f x x n x n =-=-,所以()[0,1)f x ∈,故①④正确; 当[,1)x n n ∈+时,则1[1,2)x n n +∈++,[1]1x n +=+,(1)|1[1]|f x x x +=+-+|1(1)|||()x n x n f x =+-+=-=,故②正确;1112()|[]|3333f -=---=,1111()|[]|3333f =-=,所以③错误.故答案为:①②④. 【点睛】本题考查利用所学知识研究新定义函数的性质,涉及到周期性、单调性、奇偶性以及值域,是一道中档题.19.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错. 故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+,将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;OB θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)max 100S =-【分析】(1)在Rt DCO 和Rt ABO 中利用三角函数的定义可表示出,DC OB ;(2)求出BC 后可得矩形面积S ,利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质可得最大值. 【详解】解:(1)在Rt DCO 中,10OD =,∴10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭,又Rt ABO 中,6AOB π∠=,10sin AB DC θ==,∴OB θ==,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)在Rt DOC 中,10cos OC θ=,∴10(cos )BC OC OB θθ=-=,∴100sin (cos )S AB BC θθθ=⋅=-11cos 2100sin 2100sin 2223θπθθ-⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭∵06πθ<<,∴22333πππθ<+<,∴当232ππθ+=即12πθ=时,max 100S =-【点睛】关键点点睛:本题考查三角函数的应用,解题关键是用角表示出矩形面积,然后可利用三角函数的恒等变换公式如二倍角公式、两角和与差的正弦(余弦)公式、诱导公式等化函数为一个角的一个三角函数形式,即()sin()f x A x k ωϕ=++形式,最后利用正弦函数性质求得结论.22.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩,150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 23.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析.【分析】 (1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案;(2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=-⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论.【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数 所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭ 由222,Z 262k x k k πππππ-≤+≤+∈,解得:,Z 36k x k k ππππ-≤≤+∈, 所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,即sin 26y x π⎛⎫=-⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍, 得()sin 46g x x π⎛⎫=- ⎪⎝⎭,因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦, 则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤ 【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.24.(1)36cos 20124y t ππ⎛⎫=++ ⎪⎝⎭,[0,24]t ∈;(2)[11,19]t ∈,8小时. 【分析】(1)由表中数据列方程求出b 、A 的值,再求出T 、ω和ϕ的值即可; (2)令23y ,利用余弦函数的性质求出t 的取值范围,即可得出结论. 【详解】(1)根据以上数据知,2614A b A b +=⎧⎨-+=⎩,解得20b =,6A =;由153122T=-=,解得24T =,所以212T ππω==; 由3x =时14y =,即36cos()201412πϕ++=, 解得cos()14πϕ+=-,即24k πϕππ+=+,k Z ∈;所以324k πϕπ=+,k Z ∈; 由0ϕπ<<,解得34πϕ=; 所以36cos()20124y t ππ=++,[0t ∈,24];(2)令36cos()2023124y t ππ=++,得31cos()1242t ππ+,即32231243k t k ππππππ-+++,k Z ∈;解得1324524k t k -+-+,k Z ∈; 当1k =时,1124t ,所以一个24小时营业的商家想获得最大利润,应在[11t ∈,19]时间段将该种商品放在室外销售,且单日室外销售时间最长不能超过19118-=(小时). 【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答. 25.(1) 2.5sin()56y x π=+;(2)该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【分析】(1)由表格中数据可得, 2.5,5,12A B T ===,26T ππω==,取3x =代入可得2,k k Z ϕπ=∈,则解析式可得;(2)由(1)得计算2.5sin()5 6.256x π+≥解x 范围即可得结果.【详解】解:(1)由表格中数据可得, 2.5,5,12A B T ===. 因为0>ω,所以22126T πππω===. 因为3x =时y 取得最大值,所以32,62k k Z ππϕπ⨯+=+∈,解得2,k k Z ϕπ=∈.所以这个函数解析式为 2.5sin()56y x π=+(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米, 所以2.5sin()5 6.256x π+≥,即1sin()562x π+≥, 所以522,666m x m m N πππππ+≤≤+∈,解得112512,m x m m N +≤≤+∈.取0,1,m m ==得15,1317x x ≤≤≤≤.答:该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.26.(1)()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭(2)12⎡⎤-⎢⎥⎣⎦ (3)154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦【分析】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ=,又314f ⎛⎫=- ⎪⎝⎭可求出函数表达式. (2)当[1,2]x ∈时,52444x πππππ≤+≤+,由余弦函数图像可得答案. (3)先根据图象变换求出()g x 的解析式,再根据余弦型函数的单调减区间求解即可. 【详解】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ= 所以()()cos f x x πφ=+,又当1534424x +==时,314f ⎛⎫=- ⎪⎝⎭即33cos 144f πφ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,则324k k Z πφππ+=+∈, 所以124k k Z φππ=+∈,, 所以()cos 2cos 44f x x k x πππππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭(2)当[1,2]x ∈时,52444x πππππ≤+≤+cos 124x ππ⎛⎫≤+≤ ⎪⎝⎭所以当[1,2]x ∈时,()f x 的值域为12⎡⎤-⎢⎥⎣⎦(3)将()f x 的图像向右平移112个单位后可得:cos 6y x ππ⎛⎫=+ ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()1cos 26g x x ππ⎛⎫=+ ⎪⎝⎭, 由122,26k x k k Z πππππ≤+≤+∈ 1544,33k x k k Z -≤≤+∈所以()g x 的单调递减区间为:154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦【点睛】关键点睛:本题考查根据三角函数的图象求解析式以及根据解析式求值域和解决图象平移问题,解答本题的关键是读懂三角函数的图象,得到251244T πω⎛⎫==-⨯ ⎪⎝⎭和314f ⎛⎫=- ⎪⎝⎭从而求出解析式,在根据图象左右平移求解析式时,要注意将()f x 的图像向右平移112个单位后可得:1cos 124y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,属于中档题.。
(常考题)北师大版高中数学必修四第一章《三角函数》测试卷(含答案解析)

一、选择题1.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭7.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<< ⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( )A .76πB .56π C .2πD .3π 8.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C 9.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 10.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-12.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .二、填空题13.将函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位,再将横坐标缩短到原来的一半(纵坐标不变)后,得到函数()g x 的图像,则函数()g x 的解析式为_________.14.已知函数273(0)()323(0)x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩,()3cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.15.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.16.已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.19.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭.(1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 22.已知函数()22sin cos 2cos ,x x R f x x x =+∈. (1)求()f x 的最小正周期;(2)求()f x 在[]0,π上的单调递减区间; (3)令()18g x f x π⎛⎫=+- ⎪⎝⎭,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.23.已知函数1()2sin cos 62f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[]0,π上的单调递增区间. 24.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 25.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集. 26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭.(1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 22424g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.7.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭,所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+ ⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+⎪⎝⎭的情况. 8.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.9.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.11.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--.由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 12.D解析:D 【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案. 【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B , 故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.二、填空题13.【分析】利用函数的图象变换规律即可得到的解析式【详解】函数的图像先向右平移个单位后解析式变为:再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:所以故答案为:【点睛】方法点睛:函数的图像与函数的 解析:cos4x -【分析】利用函数()()sin f x A x =+ωϕ的图象变换规律,即可得到()g x 的解析式. 【详解】函数()sin 24f x x π⎛⎫=- ⎪⎝⎭的图像先向右平移8π个单位后解析式变为:sin 2sin 2co 288s 2y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:()cos 22x y -=⨯,所以()cos 4g x x =-. 故答案为:cos4x -. 【点睛】方法点睛:函数sin ωφf xA xB 的图像与函数sin y x =的图像两者之间可以通过变化A ,ω,φ,B 来相互转化,A 、ω影响图像的形状,φ、B 影响图像与x 轴交点的位置,由A 引起的变换称为振幅变换,由ω引起的变换称为周期变换,它们都是伸缩变换;由φ引起的变换称为相位变换,由B 引起的变换称为上下平移变换,它们都是平移变换.三角函数图像变换的两种方法为先平移后伸缩和先伸缩后平移.14.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围. 【详解】对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4], ∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .15.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1)sin cos 3322f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.16.【分析】根据三角函数性质列方程求出得到进而得到利用换元法即可求出的值域【详解】根据三角函数性质的最大值为最小值为解得则函数则函数令则令由得所以的值域为故答案为:【点睛】关键点睛:解题关键在于求出后利解析:7,12⎡⎤-⎢⎥⎣⎦【分析】根据三角函数性质,列方程求出,a b ,得到()cos 2f x x =+, 进而得到22cos 2cos 3(2)2()y x f x f x x =-=--,利用换元法, 即可求出(2)2()([,]3y f x f x x ππ=-∈的值域【详解】根据三角函数性质,()cos (0)f x a x b a =+>的最大值为3a b +=,最小值为1b a -=,解得2,1b a ==,则函数()cos 2f x x =+,则函数(2)2()cos 222cos 4y f x f x x x =-=+--cos22cos 2x x =--22cos 2cos 3x x =--,3x ππ≤≤,令cos t x =,则112t -≤≤, 令2()223g t t t =--,由112t -≤≤得,7(),12g t ⎡⎤∈-⎢⎥⎣⎦,所以,(2)2()([,]3y f x f x x ππ=-∈的值域为7,12⎡⎤-⎢⎥⎣⎦故答案为:7,12⎡⎤-⎢⎥⎣⎦【点睛】关键点睛:解题关键在于求出()cos 2f x x =+后,利用换元法得出2()223g t t t =--,112t -≤≤,进而求出()g t 的范围,即可求出所求函数的值域,难度属于中档题 17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒ ()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 1421PR PRQPQR PQ⋅⋅∠∠===21【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.19.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性 3【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =,故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期; (2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈.即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).22.(1)T π=;(2)5,88ππ⎡⎤⎢⎥⎣⎦;(3)()2+∞. 【分析】(1)化简函数()214f x x π⎛⎫=++ ⎪⎝⎭,结合三角函数的图象与性质,即可求解; (2)由正弦函数的单调性可得答案;(3)化简()2g x x =,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,求得()g x ,再根据题意,得到2a ->,即可求解. 【详解】(1)由题意,函数()sin 2cos21214f x x x x π⎛⎫=++=++ ⎪⎝⎭, 可得其最小正周期是22T ππ==. (2)由3222,242k x k k Z πππππ+≤+≤+∈得 5,88k x k k Z ππππ+≤≤+∈ 又∵[]0,x π∈,∴5,88x ππ⎡⎤∈⎢⎥⎣⎦ 故单减区间为5,88ππ⎡⎤⎢⎥⎣⎦.(3)由()122844g x f x x x πππ⎛⎫⎛⎫=+-=++= ⎪ ⎪⎝⎭⎝⎭ 因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,得22,33x ππ⎡⎤∈-⎢⎥⎣⎦,则1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦,所以()22g x x ⎡=∈-⎢⎣,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 2a g x ->所以2a >+,即求实数a 的取值范围()2+∞.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质综合应用,其中解答中利用三角恒等变换的公式,求得函数的解析式,结合三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.23.(1)π;(2)单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦.【分析】(1)先根据二倍角公式、辅助角公式化简函数,再根据正弦函数的周期公式求周期; (2)根据正弦函数性质求单调区间,再取对应区间即得结果.【详解】(1)11()2sin sin 22f x x x x ⎫=+-⎪⎪⎝⎭1cos21222x x -=+-12cos 2sin 2226x x x π⎛⎫=-=- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. (2)令26z x π=-,[]0,x π∈,则11,66z ππ⎡⎤∈-⎢⎥⎣⎦, 因为sin y z =,11,66z ππ⎡⎤∈-⎢⎥⎣⎦的单调增区间是,62ππ⎡⎤-⎢⎥⎣⎦,311,26ππ⎡⎤⎢⎥⎣⎦, 由2662x πππ-≤-≤或3112266x πππ≤-≤, 得:03x π≤≤或56x ππ≤≤, 所以()f x 在[]0,π内的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二倍角公式、辅助角公式、正弦函数性质,解题关键是要熟练掌握三角函数的性质,考查分析求解能力,属基础题.24.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解.【详解】(1)由题意1()cos()2g x x ωϕ=+,由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=,∴()cos )(g x x ϕ=+,由图知()g x 图像过点(,1)3π, 所以cos()13πϕ+=, 则23k πϕπ=-+,k Z ∈, 因为||2ϕπ<,取0k =得3πϕ=-, 所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-. (2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----, 令cos()6t x π=-, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-, 此时,1cos()62x π-=,63x ππ-=,即2x π=, 当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=. 所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).25.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解;(2)根据三角函数的图象解不等式得解集.【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=; (2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题. 26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--. 【分析】(1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值; (2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值.【详解】(1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭, 由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭, 0,4πα⎛⎫∈ ⎪⎝⎭,cos sin 0αα∴>>,由已知可得2212cos sin 25cos sin 1cos sin 0αααααα⎧=⎪⎪+=⎨⎪>>⎪⎩,解得4cos 53sin 5αα⎧=⎪⎪⎨⎪=⎪⎩, 因此,sin 3tan cos 4ααα==; (2)()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+()()332223sin tan 325sin sin tan 3tan 131cos cos cos ααααααααα===-⎛⎫-+⎛⎫-+ ⎪⎪⎝⎭⎝⎭. 【点睛】方法点睛:三角函数求值问题中已知tan α,求关于sin α、cos α的代数式的值时,一般利用弦化切公式后直接代入tan α的值,在关于sin α、cos α的齐次式中,常常利用弦化切的方程转化为含tan α的代数式.。
数学必修四第一章试卷(含答案).

必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。
人教版高中数学必修四第一章单元测试(一)及参考答案

2018-2019学年必修四第一章训练卷三角函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)( )A. B.23C. D.21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A.4πB.43π C.45π D.47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A.45±B.45 C.45-D.354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( ) A.17 B.17-C.7-D.75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A.2π B.4π-C.4π D.43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( ) A.35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭B.5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭C.353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D.3,,244ππ3π⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )8.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度 D.向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( ) 此卷只装订不密封班级 姓名 准考证号 考场号座位号A.5A -B.5AC.D.10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A.2ω=,2θπ= B.12ω=,2θπ= C.12ω=,4θπ=D.2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D.312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A.6πB.4π C.3π D.2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______.14.方程1sin 4x x π=的解的个数是________.15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y 轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当0y =0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.2018-2019学年必修四第一章训练卷三角函数(一)答案一、选择题1.【答案】Bsin120=︒=故选B.2.【答案】D【解析】点33sin,cos44P⎛⎫ππ⎪⎝⎭即P⎝⎭;它落在角θ的终边上,且[)0,2θ∈π,∴4θ=7π,故选D.3.【答案】C【解析】∵3tan4α=,3,2α⎛⎫∈ππ⎪⎝⎭,∴cos45α=-,故选C.4.【答案】A【解析】4sin2sin()5αα=-π-=,∴sin45α=-.又32α⎛⎫∈π,2π⎪⎝⎭,∴cos35α=.∴sin cos1sin cos7αααα+=-,故选A.5.【答案】C【解析】检验sin84fϕππ⎛⎫=⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C.6.【答案】B【解析】sin cos0αα->且tan0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π⎪⎝⎭.故选B.7.【答案】D【解析】当0a=时()1f x=,C符合,当01a<<时2T>π,且最小值为正数,A符合,当1a>时2T<π,B符合.排除A、B、C,故选D.8.【答案】B【解析】sin2cos2cos2cos2cos2626333y x x x x xπ⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=-⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B.9.【答案】A【解析】由图象知10A=,4112300300100T=-=,∴150T=,∴2100Tωπ==π.∴()10sinI tϕ=100π+.∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin6I tπ⎛⎫=100π+⎪⎝⎭,当1100t=秒时, 5 AI=-,故选A.10.【答案】A【解析】∵()2siny xωθ=+为偶函数,∴2θπ=.∵图象与直线2y=的某两个交点横坐标为1x、2x,21minx x-=π,即minT=π,∴2ωπ=π,2ω=,故选A.11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍.又0ω>,∴243kωπ⋅=π,∴()32k kω=∈Z,∴min32ω=.故选C.12.【答案】A【解析】∵(3cos2)y xϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z . ∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+ 【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3T ω2π==.∴(32sin )y x ϕ+=,将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知, 若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =.三、解答题 17.【答案】见解析.【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭.∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-;当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭.当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +,∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+,∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-. 19.【答案】(1)6π,2;(2)023x π=或43π.因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=. 20.【答案】(1)cos α;(2);(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅.(2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭,又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-.又α是第三象限角, ∴cos α==, ∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-.由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π, ∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫⎝+⨯=-⎪⎭, 即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z ,∴()1126k k ϕπ=π-∈Z . 又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=,故()sin 226f x x π⎛⎫+ ⎝=⎪⎭.(2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦,当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭.【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭.方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭,∴3k ϕπ-+=π,k ∈Z .∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=,∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭.(2)方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫⎪⎝⎭上有两个交点,在图中作y a =的图象, 如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x =当53x π=时,()0f x =, 由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭.。
人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。
2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。
3.考试结束后,请将试题卷和答题卡一并上交。
一、选择题1.sin²120°等于( )A。
±33B。
2C。
±3/2D。
1/22.已知点P的坐标为(sin(3π/4)。
cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。
π/4B。
3π/4C。
5π/4D。
7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。
±4/5B。
±3/5C。
±5/4D。
±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。
1/7B。
-1/7C。
-7D。
75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。
π/2.3π/2B。
-π/4C。
4πD。
4π/36.若点P(sinα-cosα。
tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。
(π/2.π)B。
(0.π/2)C。
(π/3.π/2)D。
(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。
一条直线B。
一段正弦曲线C。
一段余弦曲线D。
一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。
2x+π/12B。
2x-π/12C。
2(x+π/12)D。
2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。
B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。
精品北师大版高中数学必修四:第一章综合测试题(含答案)

北师大版数学精品教学资料阶段性测试题一(第一章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.(2014·山东济南一中高一月考)下列角与-750°角终边不同的是( ) A .330° B .-30° C .680° D .-1 110°[答案] C[解析] -750°=-2×360°+(-30°), 330°=360°+(-30°), 680°=2×360°+(-40°), -1 110°=-3×360°+(-30)°, 故680°角与-750°角终边不同.2.(2014·山东德州高一期末测试)sin(-116π)=( )A .-12B .12C .-32D .32 [答案] B[解析] sin(-11π6)=-sin 11π6=-sin(2π-π6)=sin π6=12.3.(2014·浙江嘉兴一中高一月考)下列不等式中,正确的是( ) A .tan 13π4<tan 13π5B .sin π5>cos(-π7)C .sin(π-1)<sin1°D .cos 7π5<cos(-2π5)[答案] D[解析] tan 13π4=tan(3π+π4)=tan π4=1,tan 13π5=tan(2π+3π5)=tan 3π5<0,∴tan 13π4>tan 13π5,排除A ;cos(-π7)=cos π7,∵π5+π7<π2,∴π5<π2-π7, ∴sin π5<sin(π2-π7)=cos π7,排除B ;sin(π-1)=sin1>sin1°,排除C ;cos 7π5=cos(π+2π5)=-cos 2π5<0,cos(-2π5)=cos 2π5>0,故选D.4.若α是钝角,则θ=k π+α,k ∈Z 是( ) A .第二象限角B .第三象限角C .第二象限角或第三象限角D .第二象限角或第四象限角[答案] D[解析] ∵α是钝角,∴π2<α<π,∵θ=k π+α(k ∈Z ),∴令k =0,则θ=α是第二象限角,令k =1,则θ=π+α是第四象限角,故选D. 5.下列命题中不正确的个数是( ) ①终边不同的角的同名三角函数值不等; ②若sin α>0,则α是第一、二象限角;③若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.A .0B .1C .2D .3[答案] D[解析] π4和3π4终边不同,但正弦值相等,所以①错.sin π2=1,但π2不是一、二象限角,是轴线角所以②错,对于③由定义cos α=x x 2+y2,所以③错,故选D.6.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2[答案] B[解析] 由题意知α终边可在第二或第四象限. 当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.7.(2014·河南洛阳市八中高一月考)为得到函数y =cos(x +π3)的图象,只需将函数y =sin x的图象( )A .向左平移5π6个长度单位B .向右平移π6个长度单位C .向左平移π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =sin(x +5π6)=sin[π2+(x +π3)]=cos(x +π3),故选A.8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2[答案] A[解析] 由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0,∴8π3+φ=k π+π2.(k ∈Z ),∴φ=k π+π2-8π3(k ∈Z ).|φ|的最小值为π6.9.(2014·浙江临海市杜桥中学高一月考)函数y =cos(x -π2)在下面某个区间上是减函数,这个区间为( )A .[0,π]B .[-π2,π2]C .[π2,π]D .[0,π4][答案] C[解析] y =cos(x -π2)=cos(π2-x )=sin x ,故选C.10.函数y =|sin(13x -π4)|的最小正周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.11.已知函数f (x )=sin(πx -π2)-1,下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [答案] B[解析] ∵f (x )=sin(πx -π2)-1=-cosπx -1,∴周期T =2ππ=2,又f (-x )=-cos(-πx )-1=-cos x -1=f (x ), ∴f (x )为偶函数.12.如果函数f (x )=sin(x +π3)+32+a 在区间[-π3,5π6]的最小值为3,则a 的值为( )A .3+12B .32C .2+32D .3-12[答案] A[解析] ∵-π3≤x ≤5π6,∴0≤x +π3≤7π6,∴-12≤sin(x +π3)≤1,∴f (x )的最小值为-12+32+a ,∴-12+32+a =3,∴a =3+12.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.(2014·江西九江外国语高一月考)点P (-1,2)在角α的终边上,则tan αcos 2α=________. [答案] -10[解析] 由三角函数的定义知,sin α=25=255,cos α=-15=-55,∴tan α=-2.∴tan αcos 2α=-215=-10. 14.cos π3-tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________. [答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 15.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡⎦⎤2k π,2k π+π2(k ∈Z ) [解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间. 故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数; ③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6 [解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一). 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 18.(本小题满分12分)是否存在实数m ,使sin x =11-m ,cos x =mm -1成立,且x 是第二象限角?若存在,请求出实数m ;若不存在,试说明理由.[解析] 假设存在m ∈R ,使sin x =11-m ,cos x =mm -1,∵x 是第二象限角,∴sin x >0,cos x <0,∴0<m <1.由sin 2x +cos 2x =1(1-m )2+m 2(m -1)2=1,解得m =0,这时sin x =1,cos x =0,x =2k π+π2(k ∈Z ),不是第二象限角,故m 不存在.19.(本小题满分12分)已知sin α、cos α是关于x 的方程 8x 2+6mx +2m +1=0的两根,求1sin α+1cos α的值. [解析] ∵sin α、cos α是方程 8x 2+6mx +2m +1=0的两根, ∴sin α+cos α=-3m4,sin αcos α=2m +18.∴(-3m 4)2-2×2m +18=1,整理得 9m 2-8m -20=0,即(9m +10)(m -2)=0. ∴m =-109或m =2.又sin α、cos α为实根,∴Δ=36m 2-32(2m +1)≥0.即9m 2-16m -8≥0,∴m =2不合题意,舍去. 故m =-109.∴1sin α+1cos α=sin α+cos αsin αcos α=-3m42m +18=-6m 2m +1=-6×(-109)2×(-109)+1=-6011.20.(本小题满分12分)如图为函数f (x )=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2,求函数f (x )的解析式.[解析] 由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ, ∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z . 又∵φ∈⎝⎛⎭⎫-π2,π2, 所以φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. 21.(本小题满分12分)已知函数f (x )=2cos(2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.[解析] (1)∵f (x )=2cos(2x -π4),∴函数f (x )的最小正周期T =2π2=π.由-π+2k π≤2x -π4≤2k π,得k π-3π8≤x ≤k π+π8,故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)∵f (x )=2cos(2x -π4)在区间[-π8,π8]上为单调递增函数,在区间[π8,π2]上为单调递减函数,且f (-π8)=0,f (π8)=2,f (π2)=-1,故函数f (x )在区间[-π8,π2]上的最大值为2,此时,x =π8;最小值为-1,此时x =π2.22.(本小题满分14分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)若方程f (x )=m 在(0,π)内有两个不同的实数根,求实数m 的取值范围. [解析] (1)观察图象,得A =2,T =(11π12-π6)×43=π,∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数图象经过点(π6,2),∴2sin(2×π6+φ)=2,即sin(π3+φ)=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin(2x +π6).(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin(2x +π6)与g (x )=m 在(0,π)内的交点个数情况,∴在同一坐标系中画出y =2sin(2x +π6)和y =m (m ∈R )的图象如图所示.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线y =2sin(2x +π6)有两个不同的交点,即原方程有两个不同的实数根,∴m 的取值范围为-2<m <1或1<m <2.。
必修四第一章测试卷(含答案)

必修四第一章单元练习一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .1sin 2C .1sin 2D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或B .ππ4745或 C .ππ454或 D .ππ474或5. 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54 B. 54- C. 53 D.53-7. 1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >> B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y 在下列哪个区间为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .π45=x12.已知)2cos()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是 ( ) A.函数)(x g x f y⋅=)(的周期为π2 B.函数)()(x g x f y ⋅=的最大值为1C.将)(x f 的图像向左平移2π单位后得)(x g 的图像D.将)(x f 的图像向右平移2π单位后得)(x g 的图像二、填空题13、函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为__________________. 14、已知21tan -=x ,则1cos sin 3sin 2-+x x x =______. 15、设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若,1)2004(=f 则=)2005(f .16.函数])32,6[)(8cos(πππ∈-=x x y的最小值是必修四第一章单元练习答题卷一、选择题二、填空题13.____________________ 14.____________ 15.______________ 16._________________三、解答题 17、若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.18、已知),0(πθ∈,且137cos sin -=+θθ,求θtan 。
精品北师大版高中数学必修四:第一章综合测试题(含答案)

北师大版数学精品教学资料阶段性测试题一(第一章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.(2014·山东济南一中高一月考)下列角与-750°角终边不同的是( ) A .330° B .-30° C .680° D .-1 110°[答案] C[解析] -750°=-2×360°+(-30°), 330°=360°+(-30°), 680°=2×360°+(-40°), -1 110°=-3×360°+(-30)°, 故680°角与-750°角终边不同.2.(2014·山东德州高一期末测试)sin(-116π)=( )A .-12B .12C .-32D .32 [答案] B[解析] sin(-11π6)=-sin 11π6=-sin(2π-π6)=sin π6=12.3.(2014·浙江嘉兴一中高一月考)下列不等式中,正确的是( ) A .tan 13π4<tan 13π5B .sin π5>cos(-π7)C .sin(π-1)<sin1°D .cos 7π5<cos(-2π5)[答案] D[解析] tan 13π4=tan(3π+π4)=tan π4=1,tan 13π5=tan(2π+3π5)=tan 3π5<0,∴tan 13π4>tan 13π5,排除A ;cos(-π7)=cos π7,∵π5+π7<π2,∴π5<π2-π7, ∴sin π5<sin(π2-π7)=cos π7,排除B ;sin(π-1)=sin1>sin1°,排除C ;cos 7π5=cos(π+2π5)=-cos 2π5<0,cos(-2π5)=cos 2π5>0,故选D.4.若α是钝角,则θ=k π+α,k ∈Z 是( ) A .第二象限角B .第三象限角C .第二象限角或第三象限角D .第二象限角或第四象限角[答案] D[解析] ∵α是钝角,∴π2<α<π,∵θ=k π+α(k ∈Z ),∴令k =0,则θ=α是第二象限角,令k =1,则θ=π+α是第四象限角,故选D. 5.下列命题中不正确的个数是( ) ①终边不同的角的同名三角函数值不等; ②若sin α>0,则α是第一、二象限角;③若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.A .0B .1C .2D .3[答案] D[解析] π4和3π4终边不同,但正弦值相等,所以①错.sin π2=1,但π2不是一、二象限角,是轴线角所以②错,对于③由定义cos α=x x 2+y2,所以③错,故选D.6.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2[答案] B[解析] 由题意知α终边可在第二或第四象限. 当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.7.(2014·河南洛阳市八中高一月考)为得到函数y =cos(x +π3)的图象,只需将函数y =sin x的图象( )A .向左平移5π6个长度单位B .向右平移π6个长度单位C .向左平移π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =sin(x +5π6)=sin[π2+(x +π3)]=cos(x +π3),故选A.8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2[答案] A[解析] 由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0,∴8π3+φ=k π+π2.(k ∈Z ),∴φ=k π+π2-8π3(k ∈Z ).|φ|的最小值为π6.9.(2014·浙江临海市杜桥中学高一月考)函数y =cos(x -π2)在下面某个区间上是减函数,这个区间为( )A .[0,π]B .[-π2,π2]C .[π2,π]D .[0,π4][答案] C[解析] y =cos(x -π2)=cos(π2-x )=sin x ,故选C.10.函数y =|sin(13x -π4)|的最小正周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.11.已知函数f (x )=sin(πx -π2)-1,下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [答案] B[解析] ∵f (x )=sin(πx -π2)-1=-cosπx -1,∴周期T =2ππ=2,又f (-x )=-cos(-πx )-1=-cos x -1=f (x ), ∴f (x )为偶函数.12.如果函数f (x )=sin(x +π3)+32+a 在区间[-π3,5π6]的最小值为3,则a 的值为( )A .3+12B .32C .2+32D .3-12[答案] A[解析] ∵-π3≤x ≤5π6,∴0≤x +π3≤7π6,∴-12≤sin(x +π3)≤1,∴f (x )的最小值为-12+32+a ,∴-12+32+a =3,∴a =3+12.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.(2014·江西九江外国语高一月考)点P (-1,2)在角α的终边上,则tan αcos 2α=________. [答案] -10[解析] 由三角函数的定义知,sin α=25=255,cos α=-15=-55,∴tan α=-2.∴tan αcos 2α=-215=-10. 14.cos π3-tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________. [答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 15.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡⎦⎤2k π,2k π+π2(k ∈Z ) [解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间. 故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数; ③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6 [解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一). 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 18.(本小题满分12分)是否存在实数m ,使sin x =11-m ,cos x =mm -1成立,且x 是第二象限角?若存在,请求出实数m ;若不存在,试说明理由.[解析] 假设存在m ∈R ,使sin x =11-m ,cos x =mm -1,∵x 是第二象限角,∴sin x >0,cos x <0,∴0<m <1.由sin 2x +cos 2x =1(1-m )2+m 2(m -1)2=1,解得m =0,这时sin x =1,cos x =0,x =2k π+π2(k ∈Z ),不是第二象限角,故m 不存在.19.(本小题满分12分)已知sin α、cos α是关于x 的方程 8x 2+6mx +2m +1=0的两根,求1sin α+1cos α的值. [解析] ∵sin α、cos α是方程 8x 2+6mx +2m +1=0的两根, ∴sin α+cos α=-3m4,sin αcos α=2m +18.∴(-3m 4)2-2×2m +18=1,整理得 9m 2-8m -20=0,即(9m +10)(m -2)=0. ∴m =-109或m =2.又sin α、cos α为实根,∴Δ=36m 2-32(2m +1)≥0.即9m 2-16m -8≥0,∴m =2不合题意,舍去. 故m =-109.∴1sin α+1cos α=sin α+cos αsin αcos α=-3m42m +18=-6m 2m +1=-6×(-109)2×(-109)+1=-6011.20.(本小题满分12分)如图为函数f (x )=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2,求函数f (x )的解析式.[解析] 由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ, ∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z . 又∵φ∈⎝⎛⎭⎫-π2,π2, 所以φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. 21.(本小题满分12分)已知函数f (x )=2cos(2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.[解析] (1)∵f (x )=2cos(2x -π4),∴函数f (x )的最小正周期T =2π2=π.由-π+2k π≤2x -π4≤2k π,得k π-3π8≤x ≤k π+π8,故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)∵f (x )=2cos(2x -π4)在区间[-π8,π8]上为单调递增函数,在区间[π8,π2]上为单调递减函数,且f (-π8)=0,f (π8)=2,f (π2)=-1,故函数f (x )在区间[-π8,π2]上的最大值为2,此时,x =π8;最小值为-1,此时x =π2.22.(本小题满分14分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)若方程f (x )=m 在(0,π)内有两个不同的实数根,求实数m 的取值范围. [解析] (1)观察图象,得A =2,T =(11π12-π6)×43=π,∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数图象经过点(π6,2),∴2sin(2×π6+φ)=2,即sin(π3+φ)=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin(2x +π6).(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin(2x +π6)与g (x )=m 在(0,π)内的交点个数情况,∴在同一坐标系中画出y =2sin(2x +π6)和y =m (m ∈R )的图象如图所示.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线y =2sin(2x +π6)有两个不同的交点,即原方程有两个不同的实数根,∴m 的取值范围为-2<m <1或1<m <2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。
【详解】解:sin (﹣285°)=﹣sin (360°﹣75°)=sin75°=sin (45°+30°) =sin45°cos30°+cos45°sin30°1222=+⨯=. 故选:C . 【点睛】本题主要考查了诱导公式及特殊角的三角函数值,还考查了转化能力及构造能力,属于基础题。
3.B【分析】先根据sin cos x x +的值和二者的平方关系联立求得cos x 的值,进而根据同角三角函数的基本关系求得sin x 的值,最后利用商数关系求得tan x 的值. 【详解】 由1sin cos 5x x +=,得1sin cos 5x x =-,代入22sin cos 1x x +=,得(5cos 4)(5cos 3)0x x -+=, 4cos 5x ∴=或3cos 5x =-,当4cos 5x =时,得3sin 5x =-, 又0x π<,sin 0x ∴,故这组解舍去;∴当3cos 5x =-时,4sin 5x =,4tan 3x =-.故选B . 【点睛】本题主要考查了同角三角函数的基本关系的应用.解题的过程中要特别注意根据角的范围确定三角函数值的正负号,考查了计算能力和转化思想,属于基础题. 4.B 【解析】 【分析】根据诱导公式将原式化简为2sin cos 3sin 5cos αααα+--,分子分母同除以cos α,即可求出结果.【详解】因为2sin cos 2sin cos 213sin 5353cos 52tan cos tan cos αααααπααααα+++==----⎛⎫--- ⎪⎝⎭,又tan 3α=, 所以原式212311353352tan tan αα+⨯+===----⨯-.故选B 【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型. 5.A【分析】由同角三角函数基本关系即可将原式化简.【详解】︒-︒=︒-︒5050?sin50cos50sin cos.故选A【点睛】本题主要考查同角三角函数基本关系,熟记公式即可求解,属于基础题型.6.A【解析】【分析】先通过诱导公式化简,然后再通过和差公式即可得到答案.【详解】︒︒+︒︒sin110cos40cos70sin320()()=︒-︒︒+︒︒-︒sin18070cos40cos70sin36040=︒︒-︒︒sin70cos40cos70sin40()1=︒-︒=︒=,sin7040sin302故选A.【点睛】本题主要考查三角函数诱导公式及和差公式,难度不大,7.D【解析】【分析】,,,再代入求f(0).根据图象求出Aωϕ【详解】2522,2024312T A T ππππωωωπ==-∴===>∴=,,2232sin(2)222(),2()3326k k Z k k Z ππππϕϕπϕπ⨯+=-∴⨯+=+∈=+∈()||22266f x sin x πππϕϕ⎛⎫<∴==+ ⎪⎝⎭, ()02=16f sin π⎛⎫∴= ⎪⎝⎭故选:D 【点睛】本题考查根据图象求三角函数解析式,考查基本分析求解能力,属中档题. 8.B 【解析】 【分析】根据真数大于零,再解三角不等式得结果. 【详解】由题意得12cos 0x +>,所以1cos 2x >-,即得222233x k k ππππ⎛⎫∈-++ ⎪⎝⎭, ()k Z ∈ 故选:B 【点睛】本题考查对数定义域以及解三角函数不等式,考查基本分析求解能力,属中档题. 9.D 【解析】 【分析】判断最小正周期以及直线x =3π是否为对称轴,即可作出选择. 【详解】sin(2)6y x π=+最小正周期为π,但x =3π时1sin(2)1362ππ⨯+=≠±;sin(2)3y x π=+最小正周期为π,但x =3π时sin(2)0133ππ⨯+=≠±;sin(2)3y x π=-最小正周期为π,但x =3π时sin(2)133ππ⨯-=≠±;sin(2)6y x π=-最小正周期为π,但x =3π时sin(2)136ππ⨯-=;故选:D 【点睛】本题考查三角函数周期以及对称轴,考查基本分析判断能力,属基础题. 10.C 【解析】 【分析】根据三角函数图像变换的原则,即可得出结果. 【详解】先把函数sin2)6y x π=+(的图象沿x 轴向右平移4π个单位,得到sin 2)sin(2)263y x x πππ=-+=-(;再把sin(2)3y x π=-图像上各点的纵坐标不变,横坐标变为原来的12,得到()sin(4)3g x x π=-.故选C 【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型. 11.D 【解析】∵f (x )最小正周期为2π,∴2πω=2π,∴ω=4,∴f (x )=cos 243x π⎛⎫+⎪⎝⎭=cos46x π⎛⎫+ ⎪⎝⎭,g (x )=sin4x =cos 42x π⎛⎫-⎪⎝⎭=cos 42x π⎛⎫- ⎪⎝⎭=cos48x π⎛⎫- ⎪⎝⎭,故须将f (x )的图象右移6π+8π=724π个单位长度12.D 【解析】【分析】先将2sin 26y x π⎛⎫=+ ⎪⎝⎭化为2cos 26π⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦y x ,根据函数图像的平移原则,即可得出结果. 【详解】因为2sin 22cos 22cos 2636y x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以只需将2cos2y x =的图象向右平移6π个单位. 【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型. 13【解析】设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1, ∴2313824l ππαα=∴= 14【解析】 【详解】试题分析:α为第三象限角3322,,224k k k Z k k k Z πππαπππαππ∴+<<+∈∴+<<+∈,当0k =时324παπ<<,当1k =时3724παπ<<,2α∴在第二或第四象限 考点:角的概念的推广点评:角的范围推广到任意角后与角α终边相同的角为()2k k Z απ+∈ 15【解析】由题设可知443355,sin ,cos 5555a a r a a a a αα-===-====---, 432sin 2cos 2555αα+=-⨯=-. 16.1225【解析】由1sin cos 5θθ-=,平方可得221cos 2sin cos 12sin cos 25sin θθθθθθ+-=-=. 解得12sin cos 25θθ=.故答案为:1225.17.(1)-3(2)323【解析】 【分析】(1)利用诱导公式化简求解即可;(2)利用诱导公式化简,再将分子分母同时除以3cos α,“弦化切”,从而得解. 【详解】(1)因为()()sin 3cos 2απαπ-=- 所以sin =3cos αα-∴ tan 3α=-(2)原式=3333sin 5cos tan 5275323cos 333αααα----===--- 【点睛】本题主要考查了诱导公式及同角三角函数的基本关系,属于基础题.18.(1)122f π⎛⎫=- ⎪⎝⎭(2)(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【解析】 【分析】先根据诱导公式及降幂公式化简得()f x cos2x =-; (1)代入求值即可;(2)由222,k x k k Z πππ≤≤+∈即可解出答案. 【详解】解:()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭22sin cos x x =-cos2x =-;(1)cos 126f ππ⎛⎫=-=⎪⎝⎭(2)由222,k x k k Z πππ≤≤+∈得,,2k x k k Z πππ≤≤+∈,∴函数()f x 的单调递增区间是(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦.【点睛】本题主要考查三角函数的化简与性质,属于基础题.19.(1)1ω=(2)最大值为1,最小值为 【解析】 【分析】先用降幂公式将2()sin cos 2f x x x x ωωω=⋅+化为()1sin 222222f x x x ωω=-++再利用三角函数的和差公式化为()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,根据图象可得最小正周期,利用2T |2|πω=求出ω即可.(2)由,33x ππ⎡⎤∈-⎢⎥⎣⎦,得出2,33x πππ⎡⎤+∈-⎢⎥⎣⎦,即可求出sin 232x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,则得到最大最小值. 【详解】解:(1)2()sin cos 2f x x x x ωωω=⋅-+11cos 22sin cos 222x x x ωωω-=⋅⋅+1sin 222x x ωω=-++1sin 222x x ωω=+ sin 23x πω⎛⎫=+ ⎪⎝⎭∴()f x 的最小正周期25T 2(0)|2|63πππωω⎛⎫==-> ⎪⎝⎭∴1ω= (2)∵,33x ππ⎡⎤∈-⎢⎥⎣⎦∴2,33x πππ⎡⎤+∈-⎢⎥⎣⎦∴sin 23x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦∴求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值为1,最小值为【点睛】本题考查根据三角函数图象求函数解析式,以及求三角函数在给定区间内的最大最小值. 20.(1)φπ=;(2)3,,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(开闭都对)【解析】 【分析】(1)由(0)sin 0f φ==,结合02φπ<<可得解; (2)令3222,22k x k k Z ππππ+≤≤+∈,可得解. 【详解】(1)函数()sin(2)f x x φ=+是奇函数,所以(0)sin 0f φ==, 解得:,k k Z φπ=∈. 又02φπ<<,所以φπ=; (2)()sin(2)sin 2f x x x π=+=-. 令3222,22k x k k Z ππππ+≤≤+∈,解得:3,44k x k k Z ππππ+≤≤+∈.所以增区间为:3,,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(开闭都对)【点睛】本题主要考查了三角函数的奇偶性和单调性,属于基础题. 21.(1)见解析(2) 见解析(3) 22,3x k k Z ππ=+∈. 【解析】 【分析】(1)先列表如图确定五点的坐标,后描点并画图,利用“五点法”画出函数1sin()26y x π=+在长度为一个周期的闭区间的简图;(2)依据sin y x =的图象上所有的点向左平移6π个单位长度,sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到1sin 26y x π⎛⎫=+⎪⎝⎭的图象,再把所得图象的纵坐标伸长到原来的2倍(横坐标不变),得到12sin 26y x π⎛⎫=+⎪⎝⎭的图象;(3)令1262x kx ππ+=+,求出x 即可. 【详解】解:(1)先列表,后描点并画图;(2)把sin y x =的图象上所有的点向左平移6π个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin()26y x π=+的图象,即1sin()26y x π=+的图象; (3)由12,2,2623x kx x k k Z ππππ+=+=+∈, 所以函数的对称轴方程是22,3x k k Z ππ=+∈. 【点睛】本题考查五点法作函数sin()y A x ωϕ=+的图象,函数sin()y A x ωϕ=+的图象变换,考查计算能力,是基础题.22.(1)π.(2)最大值为2.(3)见解析 【解析】试题分析:(1)利用降幂公式、诱导公式、辅助角公式化简得()π2sin 23f x x ⎛⎫=++ ⎪⎝⎭由周期公式得到最小正周期;(2)利用整体思想求得π2π0233x ≤+≤,与原始函数得到最值;(3)利用整体思想得ππ4π2,333x ⎡⎤+∈⎢⎥⎣⎦,由原始函数的单调区间求得单调增区间是π0,12⎡⎤⎢⎥⎣⎦,单调减区间是ππ,122⎡⎤⎢⎥⎣⎦. 试题解析:(1)∵()()2sin π2f x x x =+-)cos21sin2x x ++sin2x x =+ π2sin 23x ⎛⎫=++ ⎪⎝⎭∴函数()f x 的最小正周期为π.(2)∵ππ66x -≤≤, ∴π2π0233x ≤+≤,∴π0sin 213x ⎛⎫≤+≤ ⎪⎝⎭,∴π2sin 223x ⎛⎫≤+≤ ⎪⎝⎭故函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最大值为2 (3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ4π2,333x ⎡⎤+∈⎢⎥⎣⎦, ∴令πππ2332x ≤+≤,得π012x ≤≤. 令ππ4π2233x ≤+≤,得ππ122x ≤≤. ∴函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调增区间是π0,12⎡⎤⎢⎥⎣⎦,单调减区间是ππ,122⎡⎤⎢⎥⎣⎦.。