最新解三角形基础练习题

合集下载

解三角形基础练习题(含答案)

解三角形基础练习题(含答案)

解三角形基础练习题(含答案)一、选择题:1、在ABC ∆中,已知8a =,60B =︒,75C =︒,则b 的值为( C )A.B.C.D.3232、在ABC ∆中,15a =,10b =,60A =︒,则cos B =( B )3、在ABC ∆中,222a cb ab -+=,则C =( A )A.60︒B.45︒或135︒C.120︒D.30︒4、在△ABC 中,若60A ∠=,45B ∠=,BC =AC = BA. B. C.D.5、已知ABC ∆中,C B A ∠∠∠,,的对边分别为a,b,c 若a=c=26+且75A ∠=o,则b= AA. 2 B .4+ C .4— D 6、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =( D )A B .34C D .11167、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是(A )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、不能确定 二、填空题:8、在△ABC 中,若a=3,b=3,∠A=3π,则∠C 的大小为_________。

【答案】︒909、在△ABC 中,已知∠BAC=60°,∠ABC=45°,3=BC ,则AC=_______.【答案】2.10、设△ABC 的内角A BC 、、 的对边分别为a b c 、、,且1c o s 4a b C ==1,=2,,则s i n B = 【答案】41511、在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若a=2 ,B=6π,b= .【答案】2.12、在△ABC 中,三边a 、b 、c 所对的角分别为A 、B 、C ,若2220a b c +-+=,则角C 的大小为 .34π(或135) 13、△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则sin sin()AA C =+ .2314、 若△ABC 的面积为3,BC=2,C=︒60,则边AB 的长度等于_____________. 解析:12sin 603,22s AC AC =⋅⋅⋅==, 所以△ABC 为等边三角形,故边AB 的长度等于2.答案应填2.15:在ABC ∆中,已知6:5:4)(:)(:)(=+++b a a c c b ,则ABC ∆中最大内角 。

解三角形练习题及答案

解三角形练习题及答案

解三角形练习题及答案一、解三角形练习题1. 已知三角形ABC,AB=5cm,AC=8cm,BC=7cm,求角A的大小。

2. 已知三角形DEF,DE=6cm,EF=9cm,DF=12cm,求角D的大小。

3. 已知三角形GHI,GH=5cm,HI=5cm,GI=7cm,求角G的大小。

4. 已知三角形JKL,JK=8cm,KL=10cm,JL=12cm,求角K的大小。

5. 已知三角形MNO,MN=4cm,NO=6cm,MO=8cm,求角M的大小。

二、解三角形练习题答案1. 解题过程:根据已知条件,我们可以使用余弦定理来求解角A的大小。

余弦定理公式为:cos(A) = (b^2 + c^2 - a^2) / (2b*c)其中,a、b、c分别表示三角形对应边的长度。

代入已知条件可得: cos(A) = (7^2 + 8^2 - 5^2) / (2*7*8)= (49 + 64 - 25) / 112= 88 / 112≈ 0.786通过查表或计算器的反余弦函数,可以得到角A的近似值为38°。

2. 解题过程:同样利用余弦定理,我们可以求解角D的大小。

代入已知条件可得:cos(D) = (9^2 + 12^2 - 6^2) / (2*9*12)= (81 + 144 - 36) / 216= 189 / 216≈ 0.875通过反余弦函数,可以得到角D的近似值为 30°。

3. 解题过程:同理,利用余弦定理求解角G的大小。

代入已知条件可得:cos(G) = (5^2 + 7^2 - 5^2) / (2*5*7)= (25 + 49 - 25) / 70= 49 / 70≈ 0.7通过反余弦函数,可以得到角G的近似值为 45°。

4. 解题过程:利用余弦定理求解角K的大小。

代入已知条件可得:cos(K) = (10^2 + 12^2 - 8^2) / (2*10*12)= (100 + 144 - 64) / 240= 180 / 240= 3 / 4= 0.75通过反余弦函数,可以得到角K的近似值为 41.4°。

解三角形 习题含答案

解三角形 习题含答案

第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。

解三角形基础大题20道

解三角形基础大题20道

解三角形基础大题20道一、解答题1.在△ABC 中,3a cos B =b sin A . (1)求∠B ;(2)若b =2,c =2a ,求△ABC 的面积. 2.如图所示,△ABC 中,AB =AC =2,BC =23.(1)求内角B 的大小;(2)设函数f (x )=2sin(x +B ),求f (x )的最大值,并指出此时x 的值.3.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-. (Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状.4.ABC 中,角,,A B C 的对的边分别为,,a b c ,且cos cos 2cos b C c B a A += (1)求角A 的大小;(2)若2a =,求ABC 面积的最大值. 5.已知()223sin cos 2cos 1f x x x x =+-.(1)求()f x 的最大值及该函数取得最大值时x 的值;(2)在ABC 中,,,a b c 分别是角,,A B C 所对的边,1a =,S 是ABC 的面积,22A f ⎛⎫= ⎪⎝⎭,比较33b c +163S 6.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足:2cos cos cos b B C Aac c a=+. (1)求B ;(2)若ABC 面积为23S =,外接圆直径为4,求ABC 的周长. 7.在ABC ∆中,已知sin()sin sin()A B B A B +=+-. (1)求角A ;(2)若7BC =,·20AB AC =,求||AB AC +. 8.如图,已知△ABC 中,AB =362,∠ABC =45°,∠ACB =60°.(1)求AC 的长;(2)若CD =5,求AD 的长.9.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知7a =2b =,60A =︒.(1)求sin B 的值; (2)求c 的值. 10.若ABC 2,1,6b c ==A ∠为锐角. (1) 求cos A 的值; (2) 求sin 2sin AC的值. 11.ABC 中,角A B C ,,的对边长分别为,,a b c ,满足222sin sin sin 3sin sin B C A B C +-=.(1)求角A 的大小; (2)若1a =,3B π=,求ABC ∆的面积.12.如图,一条东西流向的笔直河流,现利用监控船D 监控河流南岸相距150米的A 、B 两处(A 在B 的正西侧).监控中心C 在河流北岸,测得45ABC ︒∠=,75BAC ︒∠=,1206m AB =,监控过程中,保证监控船D 观测A 和监控中心C 的视角为120︒.A ,B ,C ,D 视为在同一个平面上,记ADC 的面积为S ,DAC ∠θ=.(1)求AC 的长度;(2)试用θ表示S ,并求S 的最大值. 13.△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ; (2)求∠A .14.在ABC ∆中,32b =,6cos A =,2B A π=+.(Ⅰ)求a 的值; (Ⅱ)求cos 2C 的值.15.设ABC 中,()cos cos 3cos 0C A A B +=,内角A 、B 、C 对应的对边长分别为a 、b 、c . (1)求角B 的大小;(2)若2248a c +=,求ABC 面积S 的最大值,并求出S 取得最大值时b 的值. 16.△ABC 三个内角A ,B ,C 对应的三条边长分别是a ,b ,c ,3=acosC . (1)求角C 的大小;(2)若b 3=c 11=a .17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若sin 8sin a B A =,π4C =,22265a cb ac +-=.(1)求c 的长;(2)求πcos()6A -的值.18. 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC 的面积为S ,()2223163c S b a +=-.(1)求tan B 的值;(2)若42S =,10a =,求b 的值.19.已知a ,b ,c 分别为锐角三角形ABC 三个内角A ,B ,C 的对边,2sin a C =. (1)求A ;(2)若2a =,ABC b ,c . 20.已知函数1()sin (cos sin )2f x x x x =-+. (1)求()f x 的单调递减区间;(2)在锐角ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a B a B b A =-,求(A)f 的取值范围.参考答案1.(1)3π;(2)3. 【分析】(1)由已知结合正弦定理及和差角公式进行化简即可求解tan B ,进而可求B ; (2)由余弦定理及已知条件可求a ,c 的值,然后结合三角形的面积公式可求. 【详解】解:(1)在△ABC 中,由正弦定理,cos sin B b A =,cos sin sin A B B A =, 因为sin A ≠0,sin B B =,所以tan B = 因为0<B <π, 所以3B π=,(2)因为b =2,c =2a ,由余弦定理b 2=a 2+c 2﹣2ac cos B , 可得22144222a a a a =+-⨯⨯,所以a =,c 3=,所以11223323ABCSacsinB ==⨯⨯=. 【点睛】此题考查正、余定理的应用,考查三角恒等变换有应用,考查三角形面积公式的应用,属于中档题 2.(1)6B π=,(2)f (x )的最大值为2,此时2,3x k k Z ππ=+∈【分析】(1)利用余弦定理求解即可;(2)利用正弦函数的性质直接求其最大值【详解】解:(1)因为△ABC 中,AB =AC =2,BC所以222cos 2AB BC AC B AB BC +-===⋅ 因为(0,)B π∈,所以6B π=,(2)由(1)可知()2sin()6f x x π=+,所以当2,62x k k Z πππ+=+∈时,()f x 取最大值2,即2,3x k k Z ππ=+∈【点睛】此题考查余弦定理的应用,考查正弦函数的性质的应用,属于基础题 3.(Ⅰ)60A =︒;(Ⅱ)等边三角形. 【分析】(1)由已知三边关系,结合余弦定理即可求角A ;(2)由正弦定理的边角互化,应用两角和正弦公式可得sin()0A C -=,结合(1)的结论即可知ABC 的形状. 【详解】(Ⅰ)∵22(2)(2)a b c b c b c =-+-,整理得222bc b c a =+-,∴2221cos 22b c a A bc +-==, ∴60A =︒.(Ⅱ)由正弦定理,得sin 2sin cos B C A =,而()B A C π=-+,∴sin()2sin cos sin cos cos sin A C C A A C A C +==+,即sin cos cos sin 0A C A C -=, ∴sin()0,A C A C -==, ∴60A B C ===︒, ∴ABC 为等边三角形. 【点睛】本题考查了正余弦定理,根据三边关系应用余弦定理求角,由正弦定理的边角互化、两角和正弦公式判断三角形形状,属于基础题.4.(1)3π;(2. 【分析】(1)由cos cos 2cos b C c B a A +=,由正弦定理可得:sin cos sin cos 2sin cos B C C B A A +=,可得sin 2sin cos A A A =,化简即可求值;(2)由2a =,根据余弦定理2222cos a b c bc A =+-,代入可得:224=b c bc bc +-≥, 所以4bc ≤,再根据面积公式即可得解. 【详解】(1)由cos cos 2cos b C c B a A +=,由正弦定理可得:sin cos sin cos 2sin cos B C C B A A +=, 可得sin 2sin cos A A A =,在ABC 中,0A π<<,sin 0A ≠, 可得:1cos 2A =,故3A π=; (2)由(1)知3A π=,且2a =,根据余弦定理2222cos a b c bc A =+-,代入可得:224=2b c bc bc bc bc +-≥-=, 所以4bc ≤,所以1sin 2ABC S bc A ==≤△, 当且仅当4b c ==时取等号,所以ABC 【点睛】本题考查了解三角形,考查了正弦定理和余弦定理的应用,在解题过程中主要有角化边和边化角两种化简方法,同时应用了基本不等式求最值,属于基础题.5.(1)当,6x k k Z ππ=+∈时,()f x 有最大值2;(2)33b c +≥【分析】(1)先化简函数()f x ,再根据正弦函数的性质即可求出答案;(2)先代入求出角A ,再根据立方和公式与面积公式化简代数式,再根据基本不等式即可比较大小. 【详解】解:(1)∵()2cos 2cos 1f x x x x =+-2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,∴当22,62x k k Z πππ+=+∈,即,6x k k Z ππ=+∈时,()f x 有最大值2;(2)由题意可得2sin 226A f A π⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,∴sin 16A π⎛⎫+= ⎪⎝⎭, ∴62A ππ+=,∴3A π=,由余弦定理2222cos a b c bc A =+-,代入数据得221b c bc +-=,==,∴()()3322b c b c b c bc +=++--()b c =+-0≥=, 当且仅当b c =时取等号,∴33b c +≥ 【点睛】关键点点睛:本题考查三角函数与解三角形,第一问的解题关键在于化简函数解析式,第二问的关键在于熟记立方和公式与基本不等式求最值,考查了学生的运算求解能力,属于中档题.6.(1)3π;(2)6+. 【分析】(1)首先将已知等式化简,再利用正弦定理将边化角,即可求出结果;(2)根据三角形面积公式可得ac , 再正弦定理可求b ,再利用余弦定理可求a c +,由此即可求出结果. 【详解】(1)2cos cos cos 2cos cos cos b B C Ab B a Cc A ac c a=+⇒=+, 得2sin cos sin cos sin cos sin()B B A C C A A C =+=+sin B =,1sin 0cos 2B B ≠∴=()0,B π∈∴3B π=.(2)ABC 的面积1sin 82S ac B ac ==⇒=,由正弦定理可知4sin bb B=⇒= 由222222cos 12b a c ac B a c ac =+-⇒+-=2()12336a c ac ⇒+=+=,则6a c +=,∴ABC 的周长为6+. 【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,属于基础题.7.(1)3A π=;(2【分析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式222||||2?·cos BC AB AC AB AC A =+-,将已知条件利用平面向量的数量积运算法则化简后代入求出22||AB AC +的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【详解】(1)原式可化为:sin sin()sin()B A B A B =+--sin cos cos sin sin cos cos sin 2cos sin A B A B A B A B A B =+-+=,(0,)B π∈,sin 0B ∴>,1cos 2A ∴=, 又(0,)A π∈,3A π∴=;(2)由余弦定理,得222||||2cos BC AB AC AB AC A =-⋅+,7BC =,···cos 20AB AC AB AC A ==, 22||89AB AC ∴+=,222||||28940129AB AC AB AC AB AC +=++=⋅+=, 129AB AC ∴+=【点睛】此题考查了两角和与差的正弦函数公式,考查了平面向量的数量积运算法则,以及向量模的计算,熟练掌握计算公式及法则是解本题的关键,属于基础题. 8.(1)3,(2)7 【分析】(1)在△ABC 中直接利用正弦定理求解即可;(2)先求出120ACD ∠=︒,然后在ACD △中利用余弦定理求解即可 【详解】解:(1)如图所示,在△ABC中,由正弦定理得,sin sin AC ABABC ACB=∠∠,则sin 45sin 23sin sin 60AB ABC AC ACB ︒⋅∠===∠︒, (2)因为∠ACB =60°,所以120ACD ∠=︒, 在ACD △中,由余弦定理得,7AD ===【点睛】此题考查正弦定理和余弦定理的应用,考查计算能力,属于基础题9.(1)sin B =;(2)3c =. 【分析】由正弦定理求出sin B ,由余弦定理列出关于c 的方程,然后求出c . 【详解】解:(1)因为a =2b =,60A =︒.由正弦定理sin sin a b A B =,可得2sin 60sin B =︒,所以sin 7B =;(2)由余弦定理2222cos a b c bc A =+-22222cos60c c =+-⨯︒, 3c =,1c =-(舍),所以3c =. 【点睛】本题考查正弦定理和余弦定理,在已知两边和一边对角时可用余弦定理列方程求出第三边.10.(1)cos A =(2)sin 2sin A C =【分析】(1)根据面积公式求出sinA,再求出cosA, (2)先用余弦定理求出边a ,再将式子化简sin22sin cos 2cos sin sin A A A aA C C c⋅==⋅,求解即可. 【详解】(1)因为ABC所以 11sin 1sin 222ABCSbc A A ==⨯=,所以sin 3A = . 因为 ABC 中,A ∠为锐角,所以cos A ==. (2)在ABC 中,由余弦定理,222222cos 1213a b c bc A =+-=+-⨯=,所以a = 由正弦定理=sin sin a c A C , 所以sin =sin A a C c.所以sin22sin cos 2cos sin sin A A A a A C C c ⋅==⋅==. 【点睛】本题考查了三角形的面积以及正余弦定理,公式的熟练运用是解题的关键,属于基础题.11.(1)6π;(2)2. 【分析】(1)根据正弦定理可得:222b c a +-=,代入余弦定理,即可得解; (2)根据内角和为π,求出角C ,解得ABC ∆为直角三角形,即可得解. 【详解】(1)因为222sin sin sin sin B C A B C +-=,由正弦定理可得:222b c a +-=,所以222cos 22b c a A bc +-==, 所以6A π=.(2)因为6A π=,3B π=,所以2C π=,所以b =ABC S ∆=. 【点睛】本题考查了正余弦定理的应用,考查了边化角以及三角形的性质,计算量不大,属于简单题.12.(1)240m ;(2)()2sin 2301S θ︒⎤=+-⎦,2.【分析】(1)在ABC 中,利用正弦定理解三角形即可得AC .(2)由(1)知AC 的长度,利用正弦定理求AD 的长度,结合DAC ∠θ=,利用面积公【详解】(1)在ABC 中,45ABC ︒∠=,75BAC ︒∠=,所以60ACB ︒∠=.因为AB =,所以,由正弦定理得sin 60sin 45AB AC︒︒=,所以240m AC =;(2)在ADC 中,设DAC ∠θ=,则60ACD θ︒∠=-, 由正弦定理得sin sin AC ADADC ACD=∠∠.所以()60AD θ︒=-.所以()11sin 24060sin 22S AC AD θθθ︒=⨯⨯=⨯⨯-. ()2cos21)2sin 2301θθθ︒⎤=+-=+-⎦因为060θ︒︒<<.所以当30θ︒=时,S 取到最大值2.答:AC 的长度为240m ,()2sin 2301S θ︒⎤=+-⎦,S 取到最大值2.【点睛】本题主要考查了正弦定理解三角形,三角形的面积公式,属于基础题. 13.(1)5b =;(2)∠A =120°. 【分析】由正弦定理求得b ,由余弦定理求得cos ∠A ,进而求出∠A 的值. 【详解】(1)由正弦定理得sin bB =sin c C可得, c b =sin sin C B =35,所以b =533⨯=5. (2)由余弦定理得cos A =2222c b a c b+-⋅⋅=92549235+-⨯⨯=12-,又因为()0,180A ︒︒∈,所以∠A =120°.本题考查正弦定理、余弦定理的应用,属基础题,根据正弦定理求出b 的值,是解题的关键. 14.(Ⅰ)3a =(Ⅱ)79【分析】(Ⅰ)根据同角的三角函数关系式,结合cos A =,可以求出sin A 的值,运用正弦定理,可以求出a 的值;(Ⅱ)由cos 3A =,2B A π=+,运用诱导公式,可以求出sin B 的值,根据同角的三角函数关系式,可以求出cos B 的值,运用三角形内角和定理和两角和的正弦公式求出sin C ,最后利用二倍角的余弦公式求出cos 2C 的值.【详解】解:(Ⅰ)在ABC ∆中,由cos A =,(0,)A π∈得sin A ==.因为2B A π=+,由正弦定理sin sin a bA B=,得sin()2a A A π+=,即cos a A =, 所以3a =.(Ⅱ)因为cos 3A =,2B A π=+,所以sin sin()cos 23B A A π=+==,cos 3B ==-. 所以1sin sin()sin()sin cos cos sin 3C A B A B A B A B π=--=+=⋅+⋅=. 故27cos212sin 9C C =-=. 【点睛】本题考查了正弦定理的应用,考查了同角的三角函数关系式,考查了二倍角的余弦公式,考查了两角和的正弦公式,考查了数学运算能力.15.(1)π3B =(2)面积S 的最大值为2;此时b =【分析】(1)在三角形中,()cos cos cos cos sin sin C A B A B A B =-+=-+,结合条件可得π2sin sin 03A B ⎛⎫-= ⎪⎝⎭,由此可求出答案;(2)由2248a c +=可得2ac ≤,则11sin 22222S ac B =≤⋅⋅=,此时2a =,1c =,再由余弦定理即可求出答案. 【详解】解:(1)∵()cos cos cos cos sin sin C A B A B A B =-+=-+,∴()cos cos cos sin cos cos C A A B A B A B+=π2sin sin 03A B ⎛⎫=-= ⎪⎝⎭,∵sin 0A >,0πB <<, ∴πsin 03B ⎛⎫-= ⎪⎝⎭,则π3B =; (2)因a ,0c >,2248a c +=,2244a c ac +≥,故2ac ≤,于是,11sin 222S ac B =≤⋅=,∴ABC 面积S 且当S 取得最大值时,2ac =,2a c =,可得2a =,1c =,由余弦定理,2222cos 3b a c ac B =+-=,即得b =【点睛】本题主要考查余弦定理的应用,考查三角形的面积公式,考查重要不等式的应用,属于基础题.16.(1)6C π=(2)a =【分析】(1)由正弦定理a c sinA sinC=得csinA =asinC acosC =得acosC =,即可得出.(2)由余弦定理c 2=a 2+b 2﹣2abcosC ,代入化简即可得出. 【详解】解(1)由正弦定理a c sinA sinC=得csinA =asinC ,acosC =acosC =,cosC =∵0<C <π,∴sinC ≠0,故cosC ≠0∴3tanC =又0<C <π, ∴6C π=.(2)由余弦定理c 2=a 2+b 2﹣2abcosC ,得2=a 22+-acos 6π,即a 2﹣3a ﹣8=0,解得a 32±=, 又a >0,∴a =【点睛】本题考查了正弦定理、余弦定理、方程的解法,考查了推理能力与计算能力,属于基础题.17.(1)(2 【分析】(1)先由正弦定理得8b =,再结合余弦定理求出4sin 5B =,然后结合sin sin c bC B=求解即可;(2)由两角和、差的余弦公式求解即可. 【详解】(1)由sin 8sin a B A =,结合正弦定理,得8ab a =,所以8b =,因为22265a c b ac +-=,所以222635cos 225ac a c b B ac ac +-===.因为0πB <<,所以4sin 5B ==,由正弦定理sin sin c b C B=,可得8sin 24sin 5b Cc B ⋅===(2)在ABC 中,πA B C ++=,所以π()A B C =-+,于是πππcos cos()cos()cos cos sin sin 444A B C B B B =-+=-+=-+,又3cos 5B =,4sin 5B =,故34cos 525210A =-⨯+⨯=, 因为0πA <<,所以sin A =因此πππ1cos()cos cos sin sin 6662A A A -=+==. 【点睛】本题考查了正弦定理及余弦定理,重点考查了两角和、差的余弦公式,属中档题.18.(1)34;(2)b =【分析】(1)由三角形的面积公式与余弦定理,化简已知等式,可得3sin cos 4B B =,根据同角三角函数基本关系式即可求得tan B ;(2)由同角三角函数基本关系式可求sin B 的值,根据三角形面积公式求得c 的值,代入所给等式,即可求解b 的值. 【详解】(1)在ABC 中, 由三角形面积公式得,1sin 2S ac B =, 由余弦定理得,222cos 2c a b B ac+-=,()2223163c S b a +=-,∴()222316S c a b =+-, 整理可得()22233sin cos 84c a b B B ac+-==, 又()0,B π∈,∴sin 0B >,故cos 0B >,∴sin 3tan cos 4B B B ==. (2)由(1)得3tan 4B =, ()0,B π∈,∴3sin 5B =, 42S =,10a =,∴113sin 10342225S ac B c c ==⨯⋅==, 解得14c =,()2223163c S b a +=-,∴b ===. 【点睛】本题考查了三角形的面积公式及余弦定理的应用,考查了计算能力和转化能力,属于基础题. 19.(1)3A π=;(2)2b c ==.【分析】(12sin sin C A C =,消去sin C ,可得sin A ,可得答案;(2)由(1)所求A 及1sin 2bc A =可得bc 的值,再由余弦定理2222cos a b c bc A =+-,可得b ,c 的值. 【详解】解:(12sin a C =,2sin sin C A C =,因为sin 0C ≠,所以sin A =. 因为A 为锐角,所以3A π=.(2)由2222cos a b c bc A =+-,得:224b c bc +-=.又ABC ∆1sin 2bc A = 所以4bc =.则228b c +=.解得2b c ==. 【点睛】本题主要考查利用正弦定理、余弦定理解三角形,需注意公式的灵活运用. 20.(1)5,,.88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)11(,)22- 【分析】(1)根据降幂公式化简()f x 的解析式,再用整体代入法即可求出函数的单调递减区间; (2)由正弦定理边化角,从而可求得4B π=,根据锐角三角形可得,42A ππ<<从而可求出答案. 【详解】解:(1)111()sin 2(1cos 2)222f x x x =--+1(sin 2cos 2)2x x =+)24x π=+,由222,Z,242k x k k ππ3ππ+≤+≤π+∈得,88k x k π5ππ+≤≤π+ 所以()f x 的单调递减区间为5,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)由正弦定理得sin cos2sin cos sin sin A B A B B A =-,∵sin 0,A ≠∴cos2cos sin B B B =-,即(cos sin )(cos sin )cos sin B B B B B B -+=-,(cos sin )(cos sin 1)0B B B B -+-=,得cos sin 0B B -=,或cos sin 1B B +=, 解得4B π=,或2B π=(舍),∵ABC 为锐角三角形,3+,4A C π=∴0,230,42A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩解得,42A ππ<<∴352,444A πππ<+<sin(2),242A π-<+<∴())24f A A π=+的取值范围为11(,)22-.【点睛】本题主要考查三角函数的化简与性质,考查正弦定理的作用,属于基础题.。

解三角形练习题及答案

解三角形练习题及答案

解三角形练习题及答案解三角形练习题及答案解三角形,是指已知三角形的几个元素求其他元素的过程。

一般地,把三角形的.三个角A,B,C和它们的对边a,b,c叫做三角形的元素。

一起看看下面的解三角形练习题及答案吧!1.有关正弦定理的叙述:①正弦定理仅适用于锐角三角形;②正弦定理不适用于直角三角形;③正弦定理仅适用于钝角三角形;④在给定三角形中,各边与它的对角的正弦的比为定值;⑤在△ABC中,sinAsinBsinC=abc。

其中正确的个数是()A.1 B.2C.3 D.4解析①②③不正确,④⑤正确.答案 B2.在△ABC中,若A=60°,B=45°,BC=32,则AC=()A.43 B.23C.3 D.32解析由正弦定理,得ACsinB=BCsinA,即AC=BCsinBsinA=32×sin45°sin60°=23。

答案 B3.在△ABC中,已知b=2,c=1,B=45°,则a等于()A.6-22 B.6+22C.2+1 D.3-2解析由正弦定理,得sinC=csinBb=sin45°2=12,又b>c,∴C=30°,从而A=180°-(B+C)=105°,∴a=bsinAsinB,得a=6+22。

答案 B4.在△ABC中,已知3b=23asinB,cosB=cosC,则△ABC的形状是()A.直角三角形 B.等腰三角形C.等边三角形 D.等腰直角三角形解析利用正弦定理及第一个等式,可得sinA=32,A=π3,或2π3,但由第二个等式及B与C的范围,知B=C,故△ABC必为等腰三角形.答案 B5.在△ABC中,若3a=2bsinA,则B等于()A.30° B.60°C.30°或150° D.60°或120°解析∵3a=2bsinA,∴3sinA=2sinBsinA。

(完整版)解三角形练习题(含答案)

(完整版)解三角形练习题(含答案)

一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A. B. C. D.3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A. B. C.或 D.或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B. C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A. B. C. D.10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A. B. C.或 D.或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A. B. C. D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) ( A. B. C. D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B. C. D.18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B. C. D.19、()A. B. C. D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C、 D、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D.或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A=a cos C,则sin A+sin B的最大值是( )A.1 B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c,若,则A= 。

解三角形基础练习题

解三角形基础练习题

解三角形基础练习题一、选择题1. 在三角形ABC中,已知a=5,b=7,c=6,求角A的余弦值。

A. 1/7B. 1/5C. -1/7D. -1/52. 在三角形ABC中,已知角A=60°,角B=45°,求角C的大小。

A. 75°B. 65°C. 30°D. 45°3. 根据正弦定理,若三角形ABC的边a=2,边b=3,边c=4,求角A的正弦值。

A. 1/2B. √3/2C. √2/2D. 1/√24. 在三角形ABC中,已知角A=40°,角B=70°,求边a的长度,若边b=8,边c=10。

A. 6B. 8C. 10D. 125. 根据余弦定理,若三角形ABC的边a=5,边b=7,角C=60°,求边c的长度。

A. 6B. 8C. 9D. 10二、填空题6. 在三角形ABC中,若角A=30°,角B=60°,根据三角形内角和定理,角C=______。

7. 已知三角形ABC的边a=3,边b=4,边c=5,根据海伦公式,其面积S=______。

8. 若三角形ABC的边a=7,边b=8,边c=9,且角A=45°,求角B的正弦值,结果为______。

9. 在直角三角形ABC中,若角C=90°,边a=5,边b=12,求斜边c的长度,结果为______。

10. 已知三角形ABC的边a=6,边b=8,角C=120°,求边c的长度,结果为______。

三、解答题11. 已知三角形ABC的边a=8,边b=10,求边c的长度,当角A=30°时。

12. 已知三角形ABC的边a=5,边b=7,角C=45°,求角A的正弦值和余弦值。

13. 根据余弦定理,若三角形ABC的边a=7,边b=8,边c=9,求角A 的大小。

14. 已知三角形ABC的边a=3,边b=4,边c=5,求角A的正弦值、余弦值和正切值。

(完整版)解三角形练习题及答案

(完整版)解三角形练习题及答案

解三角形习题及答案一、选择题(每题5分,共40分)1、己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150°2、在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3、若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2C .1∶4∶9D .1∶2∶34、在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ).A .25B .5C .25或5D .10或55、已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形 6、在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7、)( 37sin 83sin 37cos 7sin 的值为︒︒-︒︒A.23- B 。

21- C 。

21D 。

238、化简1tan151tan15+-等于 ( )AB.2C .3D .1二、填空题(每题5分,共20分)9、已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=_______.10、在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .11、在△ABC 中,∠A =60°,a =3,则C B A cb a sin sin sin ++++= . 12、在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值等于 .班别: 姓名: 序号: 得分:9、10、11、12、 三、解答题13、(12分)已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.14、(14分)已知21)tan(=-βα,71tan -=β,求)2tan(βα-的值15、(16分)已知x x x x f cos sin 32cos 2)(2-=,(1)求函数)(x f 的取最小值时x 的集合; (2)求函数单调增区间及周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形基础练习题
1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )
A .1
B .1-
C .32
D .32-
2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )
A .A sin
B .A cos
C .A tan
D .A tan 1
3.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为(
) A .2 B .23
C .3
D .32
4.在△ABC 中,若B a b sin 2=,则A 等于( )
A .006030或
B .006045或
C .0060120或
D .0015030或
5.边长为5,7,8的三角形的最大角与最小角的和是( )
A .090
B .0120
C .0135
D .0150
6.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )
A .1:2:3
B .3:2:1
C .2
D .2
7.在△ABC 中,若B A 2=,则a 等于( )
A .A b sin 2
B .A b cos 2
C .B b sin 2
D .B b cos 2
8.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是(
) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形
9.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )
A .090
B .060
C .0135
D .0150
10.在△ABC 中,若1413
cos ,8,7===C b a ,则最大角的余弦是( )
A .51-
B .61-
C .71-
D .81
-
11.A 为△ABC 的内角,则A A cos sin +的取值范围是( )
A .)2,2(
B .)2,2(-
C .]2,1(-
D .]2,2[-
12.在△ABC 中,若8,3,7===c b a ,则其面积等于( )
A .12
B .
2
21 C .28 D .36 13.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )
A .sin cos A A >
B .sin cos B A >
C .sin cos A B >
D .sin cos B B >
14.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )
A .090
B .060
C .0120
D .0150
二、填空题(每小题5分,共30分)
1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)
2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.若在△ABC 中,060,1,ABC A b S ∆∠===则C
B A c b a sin sin sin ++++=_______。

5.在△AB
C 中,若,12,10,9===c b a 则△ABC 的形状是_________。

6.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+==则
z y x ,,的大小关系是___________________________。

. 在△ABC 中,AC=
,BC=2 B =60°则BC 边上的高等于
A B C D
13. 在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若a=2 ,B=6π,
c=2,则b=
(13)
35
cos,cos,3,
A B b
===则c=。

相关文档
最新文档