实验三-多元线性回归模型的估计和检验
多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测

实验二:多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测实验题目:研究货运总量y(万吨)与工业总产量x1(亿元),农业总产值x2(亿元),居民非商品支出x3(亿元)的关系。
数据如表:1.计算y,x1,x2,x3的相关系数矩阵;2.求y关于x1,x2,x3的三元线性回归方程;3.对所求得的方程作拟合度检验4.对回归方程作显著性检验;5.对每一个回归系数作显著性检验;6.如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,再作回归方程的显著性检验和回归系数的显著性检验;7.求出新回归方程的每一个回归系数的置信水平为95%的置信区间;8.求标准化回归方程;9.求当x01=75,x1=42, x2=3.1时的y的预测值,给定置信水平为95%,用SPSS 软件计算精确置信区间,手工计算近似预测区间?10 结合回归方程对问题作一些基本分析。
数据如下:y x1 x2 x31607035 1.02607540 2.42106540 2.02657442 3.02407238 1.22206845 1.52757842 4.01606636 2.02757044 3.22506542 3.0实验目的:掌握多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测SPSS主要操作:操作步骤类似于一元线性回归模型的方法SPSS输出结果及答案:1:y,x1,x2,x3的相关系数矩阵如下表:由上述输出结果知:y=-348.280+3.754x1+7.101x2+12.447x3 3模型汇总b模型R R 方调整 R 方标准估计的误差1 .898a.806 .708 23.44188a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。
b. 因变量: 货运总量Y(万吨)由上述输出结果知:调整R square=0.708,拟合的较好4Anova b模型平方和df 均方 F Sig.1 回归13655.370 3 4551.790 8.283 .015a残差3297.130 6 549.522总计16952.500 9a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。
计量经济学实验三--李子奈

实验三 多元线性回归一 实验目的:(1) 掌握多元线性回归模型的估计方法 (2) 模型方程的F 检验,参数的t 检验 (3) 模型的外推预测与置信区间预测二 实验要求:应用教材P105习题11做多元线性回归模型估计,对回归方程和回归参数进行检验并做出单点预测与置信区间预测 三 实验原理:最小二乘法四 预备知识:最小二乘法估计原理、t 检验、F 检验、点预测和置信区间预测 五 实验内容:在一项对某社区家庭对某种消费品的消费需要调查中,得到书中的表所示的序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 1 591.9 23.56 7620 6 644.4 34.14 12920 2 654.5 24.44 9120 7 680.0 35.3 14340 3 623.6 32.07 10670 8 724.0 38.7 15960 4 647.0 32.46 11160 9 757.1 39.63 18000 5 674.0 31.15 11900 10706.8 46.68 19300 归分析。
(1)估计回归方程的参数及及随机干扰项的方差2,计算2R 及2R 。
(2)对方程进行F 检验,对参数进行t 检验,并构造参数95%的置信区间. (3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。
六 实验步骤:6.1 建立工作文件并录入全部数据,如图1所示:图 16.2 建立二元线性回归模型01122Y X X βββ=++点击主界面菜单Quick\Estimate Equation 选项,在弹出的对话框中输入:Y C X1 X2点击确定即可得到回归结果,如图2所示图 2根据图2的信息,得到回归模型的估计结果为:626.51939.790610.02862(15.61)( 3.06)(4.90)Y X X =-+-20.902218R = 20.874281R = .. 1.650804D W =22116.847i e =∑ 32.29408F = (2,7)df =随机干扰项的方差估计值为22116.847302.40677σ∧==6.3 结果的分析与检验 6.3.1 方程的F 检验 回归模型的F 值为:32.29408F =因为在5%的显著性水平下,F 统计量的临界值为0.05(2,7) 4.74F =所以有 0.05(2,7)F F > 所以回归方程通过F 检验,方程显著成立。
3多元线性回归模型参数估计

3多元线性回归模型参数估计多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。
其模型形式为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是模型的参数,ε是误差项。
多元线性回归模型参数的估计可以使用最小二乘法(Ordinary Least Squares,OLS)来进行。
最小二乘法的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的平方差最小。
参数估计过程如下:1.根据已有数据收集或实验,获取因变量Y和自变量X1、X2、..、Xn的观测值。
2.假设模型为线性关系,即Y=β0+β1X1+β2X2+...+βnXn+ε。
3.使用最小二乘法,计算参数估计值β0、β1、β2、..、βn:对于任意一组参数估计值β0、β1、β2、..、βn,计算出模型对于所有观测值的预测值Y'=β0+β1X1+β2X2+...+βnXn。
计算观测值Y与预测值Y'之间的平方差的和,即残差平方和(RSS,Residual Sum of Squares)。
寻找使得RSS最小的参数估计值β0、β1、β2、..、βn。
4.使用统计方法计算参数估计值的显著性:计算回归平方和(Total Sum of Squares, TSS)和残差平方和(Residual Sum of Squares, RSS)。
计算决定系数(Coefficient of Determination, R^2):R^2 = (TSS - RSS) / TSS。
计算F统计量:F=(R^2/k)/((1-R^2)/(n-k-1)),其中k为自变量的个数,n为观测值的个数。
根据F统计量的显著性,判断多元线性回归模型是否合理。
多元线性回归模型参数估计的准确性和显著性可以使用统计假设检验来判断。
常见的参数估计的显著性检验方法包括t检验和F检验。
t检验用于判断单个参数是否显著,F检验用于判断整个回归模型是否显著。
实验三_多元线性回归模型及非线性回归(1)

实验三_多元线性回归模型及⾮线性回归(1)实验三多元线性回归模型及⾮线性回归⼀、多元线性回归模型例题3.2.2 建⽴2006年中国城镇居民⼈均消费⽀出的多元线性回归模型。
数据:地区 2006年消费⽀出Y 2006年可⽀配收⼊X12005年消费⽀出X2北京 14825.41 19977.52 13244.2 天津 10548.05 14283.09 9653.3 河北 7343.49 10304.56 6699.7 ⼭西 7170.94 10027.70 6342.6 内蒙古 7666.61 10357.99 6928.6 辽宁 7987.49 10369.61 7369.3 吉林 7352.64 9775.07 6794.7 ⿊龙江 6655.43 9182.31 6178.0 上海 14761.75 20667.91 13773.4 江苏 9628.59 14084.26 8621.8 浙江 13348.51 18265.10 12253.7 安徽7294.73 9771.05 6367.7 福建 9807.71 13753.28 8794.4 江西 6645.54 9551.12 6109.4 ⼭东 8468.40 12192.24 7457.3 河南6685.18 9810.26 6038.0 湖北 7397.32 9802.65 6736.6 湖南 8169.30 10504.67 7505.0 ⼴东 12432.22 16105.58 11809.9 ⼴西 6791.95 9898.75 7032.8 海南 7126.78 9395.13 5928.8 重庆 9398.69 11569.74 8623.3 四川 7524.81 9350.11 6891.3 贵州6848.39 9116.61 6159.3 云南 7379.81 10069.89 6996.9 西藏 6192.57 8941.08 8617.1 陕西 7553.28 9267.70 6656.5 ⽢肃6974.21 8920.59 6529.2 青海 6530.11 9000.35 6245.3 宁夏 7205.57 9177.26 6404.3 新疆 6730.018871.276207.51、建⽴模型01122Y X X βββµ=+++2、估计模型(1)录⼊数据打开EViews6,点“File ”→“New ”→“Workfile ”选择“Unstructured/Undated”,在Observations 后输⼊31,如下所⽰:点“ok”。
多元线性回归——模型、估计、检验与预测

多元线性回归——模型、估计、检验与预测⼀、模型假设传统多元线性回归模型最重要的假设的原理为:1. ⾃变量和因变量之间存在多元线性关系,因变量y能够被x1,x2….x{k}完全地线性解释;2.不能被解释的部分则为纯粹的⽆法观测到的误差其它假设主要为:1.模型线性,设定正确;2.⽆多重共线性;3.⽆内⽣性;4.随机误差项具有条件零均值、同⽅差、以及⽆⾃相关;5.随机误差项正态分布具体见另⼀篇⽂章:回归模型的基本假设⼆、估计⽅法⽬标:估计出多元回归模型的参数注:下⽂皆为矩阵表述,X为⾃变量矩阵(n*k维),y为因变量向量(n*1维)OLS(普通最⼩⼆乘估计)思想:多元回归模型的参数应当能够使得,因变量y的样本向量在由⾃变量X的样本所构成的线性空间G(x)的投影(即y’= xb)为向量y 在线性空间G(x)上的正交投影。
直⽩⼀点说,就是要使得(y-y’)’(y-y’)最⼩化,从⽽能够使y的预测值与y的真实值之间的差距最⼩。
使⽤凸优化⽅法,可以求得参数的估计值为:b = (x’x)^(-1)x’y最⼤似然估计既然已经在假设中假设了随机误差项的分布为正态分布,那么⾃变量y的分布也可以由线性模型推算出来(其分布的具体函数包括参数b在内)。
进⼀步的既然已经抽取到了y的样本,那么使得y的样本出现概率(联合概率密度)最⼤的参数即为所求最终结果与OLS估计的结果是⼀致的矩估计思想:通过寻找总体矩条件(模型设定时已经有的假设,即⽆内⽣性),在总体矩条件中有参数的存在,然后⽤样本矩形条件来进⾏推导未知参数的解。
在多元回归中有外⽣性假设:对应的样本矩为:最终估计结果与OLS⽅法也是⼀样的。
三、模型检验1.拟合优度检验(1)因变量y是随机变量,⽽估计出来的y’却不是随机变量;(2)拟合优度表⽰的是模型的估计值y’能够在多⼤程度上解释因变量样本y的变动。
(3)y’的变动解释y的变动能⼒越强,则说明模型拟合的越好y-y’就越接近与假设的随机误差(4)⽽因变量的变动是由其⽅差来描述的。
多元线性回归模型的估计与检验

多元线性回归模型的估计与检验实验目的:1.熟悉建立多元线性回归模型的方法2.学会用Eviews 做多元线性回归模型的参数的估计实验要求:考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillipscurve )”模型:tt t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)下表为某国的有关数据。
表1. 1970-1982年某国实际通货膨胀率Y (%),(2)根据此模型所估计结果,作计量经济学的检验。
(3)计算修正的可决系数(写出详细计算过程)。
实验原理:1、多元线性回归模型ki k i i k i X X X X X X Y E ββββ++++=...),...,,(3322121 i ki k i i i u X X X Y +++++=ββββ...33221 UX Y +=β,βX Y E =)(2、样本回归函数:ki k i i i X X X Y ∧∧∧∧∧++++=ββββ (33221)ikiki ii e XX XY +++++=∧∧∧∧ββββ (33)221e X Y +=∧β,β∧∧=X Y3、最小二乘估计:β∧=X X YX //,Y X X X//1()-=∧β4、参数OLS估计的方差 jj i jjj c k n e c Var ⎪⎪⎭⎫⎝⎛-==⎪⎭⎫⎝⎛∑∧∧∧22σβ5、参数估计的标准误差 jj J c SE σβ=⎪⎭⎫⎝⎛∧6、2σ的无偏估计 kn e i-=∑∧22σ7、修正的可决系数 ()∑∑∑∑⎪⎭⎫⎝⎛Y -Y ---=-⎪⎭⎫ ⎝⎛Y -Y --=---22222111)(1i i i i e kn n n k n e R8、F 检验统计量 ),1(~)/()1/(k n k F k n RSS k ESS F ----=9、t 检验统计量 ()k n t C SE t JJjj J jj --=⎪⎭⎫⎝⎛-=∧∧∧∧∧~*σβββββ实验步骤:一、 模型建立:建立线性回归模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)。
多元线性回归模型检验

多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。
在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。
本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。
一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。
多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。
二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。
常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。
我们可以通过假设检验来验证这些假设的成立情况。
•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。
•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。
•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。
•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。
2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。
多元线性回归模型:估计及t检验

多元线性回归:估计方法及回归系数显著性检验线性回归模型的基本假设:i ki k i i i u x x x y +++++=ββββ 22110 i = 1 , 2 , … , n在普通最小二乘法中,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设:1.解释变量间不完全相关;2.随机误差项具有0均值和同方差。
即:0)(=i u E , 2)(σ=i u Var i = 1 , 2 , … , n 3.不同时点的随机误差项互不相关(序列不相关),即0),(=-s i i u u Cov s ≠ 0, i = 1 , 2 , … , n4.随机误差项与解释变量之间互不相关。
即0),(=i ji u x Cov j = 1 , 2 , … , k , i = 1 , 2 , … , n5.随机误差项服从0均值、同方差的正态分布。
即i u ~ ),0(2σN i = 1 , 2 , … , n当模型满足假设1 ~ 4时,将回归模型称为“标准回归模型”,当模型满足假设1 ~ 5时,将回归模型称为“标准正态回归模型”。
如果实际模型满足不了这些假设,普通最小二乘法就不再适用,而要发展其他方法来估计模型。
广义(加权)最小二乘估计(generalized least squares )当假设2和3不满足时,即随机扰动项存在异方差22)(ii i u E σ=,i = 1 , 2 , … , n ,且随机扰动项序列相关j i u u Cov ij j i ≠=,),(σ, i = 1 , 2 , … , n ,j=1 , 2 , … , n ,此时OLS 估计仍然是无偏且一致的,但不是有效估计。
线性回归的矩阵表示:y = X β + u (1)则上述两个条件等价为:Var(u )== ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn T T n n σσσσσσσσσ..............212222111211 ≠ σ 2 I 对于正定矩阵 Ω 存在矩阵M ,使得 1''-=⇒=M ΩM I M M Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:计量经济学
实验项目:实验三多元线性回归模型的
估计和检验
实验类型:综合性□设计性□验证性
专业班别:
姓名:
学号:
实验课室:
指导教师:石立
实验日期:2014年5月12日
广东商学院华商学院教务处制一、实验项目训练方案
小组合作:是□否
3.作GDPB同ZC和RY的多元线性回归,写出模型估计的结果,并分析模型检验是均否通过?(三个检验)(结果控制在本页)
得到的估计方程
GDPB=0.377170*ZC+0.353689*RY-800.5997
4.将建立的二元回归模型(GDPB同ZC和RY)同一元回归模型(GDPB同ZC、GDPB 同RY)相比较,分析优点。
(结果控制在本页)
5.结合相关的经济理论,分析估计的二元回归模型的经济意义。
(结果控制在本页)估计方程的判定系数人R2接近1;参数显著性t检验均大于2;方程显著性F检验显著。
调整的判定系数为0.99085,比上面的一元回归有明显改善。
Null Hypothesis: Obs F-Statistic Prob.
LB does not Granger Cause XFJ 26 7.19010 0.0042
XFJ does not Granger Cause LB 5.45516 0.0124
从散点图看它们之间具有线性关系,从因果关系检验看它们之间似乎具有双向因果关系。
宏观经济中确实如此。
进行一元线性回归如下:
得到回归方程
XFJ=0.986702*LB-75.99662
2.固定资产投资模型(结果控制在本页)
固定资产投资TZC显然取决于固定资产折旧ZJ、营业盈余YY和财政支出CZ,进行三元线性回归如下:
分别去掉一个解释变量进行三个二元线性回归如下:
从上面三个回归结果可以看出,只要固定资产折旧ZJ和财政支出CZ其中一个不在方程中,回归就能得到很好的拟合。
现在暂且去最后一个回归方程来使用,方程为TZG=0.430093*YY+1.869278*CZ+20.91893
3.货物和服务净流出模型(结果控制在本页)
先考虑影响货物和服务净流出CK的因素为支出法的国内生产总值GDP,看散点图和因果关系检验。
-500
500
1,000
1,500
2,000
2,500
05,00010,00015,00020,00025,000
GDP
C
K
从散点图和因果关系检验看它们具有关系,进行一元线性回归如下:
在所有收集到的统计数据中,年利率LL是一个可以考虑引入的因素,引入LL进行二元线性回归如下:
最后得到回归方程
CK=0.88239*GDP-42.65989*LL+202.2173
4.存货增加模型(结果控制在本页)
存货增加TZC显然取决于城乡储蓄CX和商品零售价格指数PSL,进行二元线性回归如下:
方程为
TZC=0.030633*CX+1.780806*PSL-209.0546。