高阶齐次线性递归数列特征方程的由来
线性常系数齐次递推

2 1 2
k 1
k 2
1 C x C x
其中
Ck x G x C j x
k j 0
k 1
k 1 j j i 0
a x
i
i
C0 1
2.7 线性常系数齐次递推关系
令
P x C j x
j 0
k 1
k 1 j j i 0
例4 an - 4an -1 4an -2 0, a0 1, a1 4.
解 : 特征方程:x 4 x 4 0 ( x 2)
2 2
特征根 r 2(2重根)
所以 an ( A B n)2n
再根据初始条件a0 A 1, a1 2( A B) 4 可解得A 1, B 1
K ( x) 0, 即 x 2 bx c 0 称为特征方程,
它的根为 r 1,2 称为特征根. b b 2 4ac 2
2.7 线性常系数齐次递推关系
于是 D( x) 1 bx cx (1- r1x)(1- r2 x)
2
下面就其根来进行讨论:
1) r1 r2的情形
根据定理可知,an c1 4n c2 (-3)n
再根据初始条件 c1 c2 a0 3 c1 5 c1 4 c2 (-3) a1 26 c2 2
2.7 线性常系数齐次递推关系
例2 an an 1 an 2 , a1 1, a2 0.
和 an ban -1 can -2 0 对应的分母1 bx cx 2在 求 an 的过程中扮演了十分重要的角色,用 D( x)表示,即D( x) 1 bx cx .
线性递归数列

第2 2卷 第 2期
20 0 2年 6月
承 德 民族 师专 学 报
J u n lo e g eTe c e sColg o o aiis o r a fCh n d a h r l ef rNa in l e e t t
其中 n ∈N, P ,… p 是 常 数 且 p ≠ 0则 称 p, k k
{ 为 k阶线 性 递 归 数 列 . 1 叫 { 的递 归 方 程 . a} () a}
b 一 c U 1 十 C v 2 + … + C w 一 k
其 特 征 方程 为
x 一 p x 一 1 + p2 + … + pk x一
数列 , 递 归 方程 为 其
S + +1 nk 一 ( 1+ P1 S + + )nk (2 p 一 P1 S + —l ) n k + … + ( — Pk 1 s +l P S pk — ) — k
收 稿 日期 : 0 1 1 — 1 20— 1 9
Vo . 2 No 2 12 .
J n 2 0 u .0 2
线 性 递 归 数 列
陈 军
( 德 民族 师 专 数 学 系 , 河北 承 德 承 07 0 ) 6 0 0
摘 要 : 论 线性 递 归 ̄ 7 的性 质 , 讨 c, 1 由递推 公 式和特 征 方程 解的 情 况得 出通项 公 式 。
是 由 ( ) 定 的数 列 。 1确
w — p1 + 一1 P2 +k 2 … +k w k + w 一 +
+ pK W
以 C, , C C … 分别 乘 以 ( ) 3 的各 式再 相 加 , 得
CU+ + Cv+ + … + CW + = C [ 1 nk1 1nk 2 k k k lp a+ 一 +
第31讲 数列的递推

第12讲 数列的递推本节主要内容两个基本递推:a n +1=a n +d ,a n =qa n ;线性递推,二阶或高阶递推的特征方程与特征根;其他递推.1.基本概念:①递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(nk <)的关系式称为递归式.②递归数列:由递归式和初始值确定的数列成为递归数列. 2.常用方法:累加法,迭代法,代换法,代入法等. 3.思想策略:构造新数列的思想. 4.常见类型: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a aa n p n q a n p a n n ()0)(()()(11(一阶递归)其特例为:(1))0(1≠+=+p q pa a n n (2))0()(1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列.①形如)(1n q a a n n +=+的递归式,其通项公式求法为:1111111()()n n n k k k k a a a a a q k --+===+-=+∑∑②形如n n a n p a)(1=+的递归式,其通项公式求法为: 3211121(1)(2)(1)n n n a a a a a a p p p n a a a -=⋅⋅⋅=⋅⋅-③形如)1()(1≠+=+p n q pa a n n 的递推式,两边同除以1+n p 得111)(++=+=n nn n n pn q pa pa ,令n nn b pa =则句可转化为①来处理. 类型Ⅱ:⎩⎨⎧==≠≠+=++为常数)b a b a a a q p qa pa a nn n ,(,)0,0(2112(二阶递归)解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα+=,代入初始值求得B A ,. ①若p+q=1时,有q a a n n -=-+1)(1--n n a a 可知}{1n n a a -+是等比数列,先求得n n a a -+1,再求出n a . ②若p+q ≠l ,则存在α,β满足=α-+n n a a 1)(1--βn n a a 整理得11)(-+αβ-β+α=n n n a a a 从而α+β=p , αβ=q ,可解出α、β,这样可先求出}{1n n a a α-+的通项表达式,再求出n a .注意α、β实质是二次方程q px x +=2的两个根,将方程q px x +=2叫做递归式n n n qa pa a +=++12的特征方程. 在数列{n a }中,给出a 1, a 2,且n n n qa pa a +=++12 ,它的特征方程q px x +=2的两根为α与β.如果α≠β,则n n n B A a βα+=;如果α=β则nnB An aα+=)(,其中A 与B 是常数,可由初始值a 1,a 2 求出.类型Ⅲ. 如果递归数列{a n }满足 a n+1dca b aa n n ++=,其中c ≠0,ad -bc ≠0,以及初始值a 0≠f (a 1),则称此数列为分式线性递归数列.我们称方程dcx b ax x ++=的根为该数列的不动点.若该数列有两个相异的不动点p 、q ,则}{qa p a n n --为等比数列;若该数列仅有惟一的不动点p ,则}1{pa n -是等差数列·5.求递归数列通项的常用方法有:换元法、特征根法、数学归纳法等.A 类例题例1 一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)N (*1∈>+n a a n n ,则该函数的图象是( )(2005年辽宁卷)(A ) (B) (C)(D) 分析 利用递推式意义及数形结合,分析清楚函数值与自变量的关系,即可判断. 解 由)(1n n a f a =+,n n a a >+1,得n n a a f >)(,即x x f >)(,故选A . 例2已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. (2004年全国高考题)分析 由于给出两个递推关系与奇数项、偶数项有关,因此因从奇数项或偶数项之间的关系入手. 解(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k = a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k, 同理a 2k -1-a 2k -3=3k -1+(-1)k -1, …… a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1) =(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k =1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnna说明 这种给出递推关系,求通项公式问题,一般是转化为等差数列或等比数列,或者通过观察、归纳,或者通过顺次迭代,以求通项公式.情景再现1.已知数列{a n }满足a 1=1,a n =2a n -1+n -2(n ≥2),求通项a n . (2004年四川省高中数学联赛) 2.设cbx x x f +=)((c b ,为常数),若21)2(=f ,且02)(=-x x f 只有唯一实数根(1)求)(x f 的解析式(2)令)(,111-==n na f a a 求数列{}na 的通项公式.B 类例题例3 (1)一次竞赛在n(n >1)轮中共发了m 枚奖章.第一轮发了1枚及余下的m -1枚的71,第2轮发了2枚及余下的71,…,直至第n 轮正好发了n 枚而没有余下奖章.这个竞赛共包括几轮?一共发了多少枚奖章?(第9届国际数学奥林匹克)(2)把一个圆分成n 个不同的扇形(n ≥2),依次记为S 1,S 2,…, S n ,每个扇形都可以用红、蓝、白三种颜色中任一种涂色,要求相邻的扇形颜色互不相同,问有多少种涂法?分析 第(1)题,每一轮发的奖章数具有一定规律,因而可以建立每一轮发的奖章数的关系或每一轮余下的奖章数的关系.第(2)题,设法建立涂法总数的递推关系和求得初始值,进而求得涂法总数. 解 (1)设竞赛进行了k 轮后,余下a k 枚奖章.因为第k 轮发出奖章数k+17(a n -1 -k )具有a k =a k -1- [k+17(a k -1 -k )]即a k = 67a k -1-67 k 且a 0=m, a n =0.进一步变形为a k +6k -36= 67[a k -1+6(k -1)-36]从而a n +6n -36= (a 0-36)n)76(= (m -36)n)76(即a n = (m -36)n)76(-(6n -36),又因为a n =0,故(m -36)=(n -6)167-n n而n -6<6n -1,且7n 与6n -1互质,m,n ∈N +,故n=6,m=36. 因此,这个竞赛共包括6轮,一共发了36枚奖章.(2)设涂法总数为a n (n ≥2)当n=2时,先对S 1涂法色,有3种涂法,继而得S 2只有两种涂法,因而a 2=6.当时n ≥3, S 1有3种涂法, S 2有2种涂法, S 3有2种涂法,…, S n -1有2种涂法, S n 仍有2种涂法. (不论是否S 1与同色),这样共有3×2n -1种涂法,但这3×2n -1种涂法分为两类:一类是S n 与S 1同色,认为S n 与S 1合为一个扇形,此时涂法有a n -1种涂法;另一类是S n 与S 1不同色,此时涂法有a n 种涂法.因而有a n + a n -1=3×2n -1(n ≥3)令p n =a n2n , 则2p n +p n -1=3 (n ≥3)于是有1-np =)1(211---n p , (n ≥3) p 2=a 222从而有1-n p =)1()21(22---p n =121-⎪⎭⎫ ⎝⎛--n于是1=n p 121-⎪⎭⎫⎝⎛--n 得a n =2n p n =2n +(-1)n ·2 (n ≥3)但当n=2时也适合上式,故得a n =2n +(-1)n ·2 (n ≥2) 故共有种a n =2n +(-1)n ·2 (n ≥2)涂法说明 这类试题经常在全国高中数学联赛及国际数学奥林匹克中出现.这两个问题都是用递推方法解决计数问题,希望读者对这类问题能够进行较为深入的钻研. 例4 数列{a n }定义如下:a 1=1,a n+1 =161(1+4 a n +na 241+),求它的通项公式.分析 带根号的部分不好处理,平方会导致较繁的关系式,容易想到作代换:令=nbn a 241+解 设=nb n a 241+,则2412-=n n b a ,.51=b 于是原递推式可化为41(16124121+=-+n b 2412-⋅n b +)nb即(2b n+1)2=(b n +3)2,由于b n 、b n+1非负,所以2b n+1=b n +3. 故b n+1-3=21(b n -3).所以b n+1-3= (b n -3)(21)n -2即2)21(3-+=n nb所以2412-=n nb a=nn 212313112+⋅+-说明 这是1981年IMO 的预选题,解题的关键是换元、转化.例5设{x n }、{y n }为如下定义的两个数列:x 0=1,x 1=1,x n+1=x n +2 x n -1,y 0=1,y 1=7,y n+1=2y n +3y n -1,(n=1,2,3…),于是这两个数列的前n 项为x n :1,1,3,5,11,21…, y n :1,7,17,55,161,487,….证明:除了“1”这项外,不存在那样的项,它同时出现在两个数列之中. (第二届美国中学生数学竞赛试题) 分析 本题题均属于线性递归数列问题,可用特征根的方法来解决.解 数列{x n }的通项公式形如nnnC C x β+α=21,其中βα、是数列的特征方程x 2=x +2的两根,即1,2-=β=α,故nnnC C x )1(221-+=.由x 0=1,x 1=1得C 1=23,C 2=13,所以 =nx 23×2n +13(-1)n = 13[2n+1+(-1)n ]同理可得数列的{y n }通项公式为 y n =2×3n -(-1)n .用反证法证明两个数列无其它公共项. 假设 x m =y n ,即13[2m+1+(-1)m ]= 2×3n -(-1)n ,则 2(3n+1-2m )=(-1)m +3(-1)n ①若奇偶性相同,则①式右边为4或-4.左边=2(奇-偶)=2×奇数,故左边不是4的倍数,因此左边不等于右边.同理若m 、n 奇偶性不相同时左边也不等于右边.说明 在求得特征方程的根以后,要依据根的重数正确写出数列通项的一般表达式,再根据初始值求得待定系数的值.例6 数列{a n }满足a 0=1,23645721-+=+n n n a a a,N n ∈,证明:(1)对于任意N n ∈,a 为整数;(2)对于任意N n ∈,11-+n n a a 为完全平方数. (2005年高中数学联赛) 证明:(1)由题设得a 1=5,且数列{a n }严格单调递增,将条件变形得36457221-=-+n n n a a a ,两边平方法整理得0972121=++-++n n n n a a a a①∴0972112=++---n nn na a a a ② ①-②得0)7)((111=-+--++n n n n n a a a a a∵1+<n na a , ∴0711=-+-+nn n a a a , 117-+-=n nn a a a ③由③及a 0=1, a 1=5可得a n 为正整数.(2)将①两边配方得=++21)(n na a )1(91-+n n a a∴11-+n n a a =21)3(nn a a ++④因为是n a 整数,故11-+n n a a 为整数,故④右边是整数的平方.即为为完全平方数. 所以对于任意N n ∈,11-+n n a a 为完全平方数.情景再现3.小伟和小明来到咖啡店,他们买了一杯咖啡和一杯牛奶各150ml,每个杯子的容积为200ml,甲杯盛牛奶,乙杯盛咖啡,想将二者混合,兑换成近乎相同的奶咖啡,没有其它的容器,只得利用二个杯子中的剩余空间倒来倒去,使其混合.规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使甲、乙杯中的饮料相等.这叫做一次操作.请你回答下列四个问题: Ⅰ、一次操作后甲杯里的饮料中牛奶的体积百分比为多少?Ⅱ、求第n 次操作后甲杯里的饮料中牛奶的体积百分比的数学表达式. Ⅲ 至少几次操作后甲杯里的饮料中牛奶的体积百分比不超过51%?Ⅳ、你能否设计新操作,得到更优的方案以减少操作次数? (2003年北京应用知识竞赛题) 4. 已知a 1=1,a 2=3,a n+2=(n+3)a n+1-(n+2)a n ,若当m ≥n ,a m 的值都能被9整除,求n 的最小值.(湖南省2002年高中数学竞赛)C 类例题例7 数列{a n }按如下法则定义:a 1=1nn n a a a 41211+=+, 证明:对n >1,1222-n a 均为正整数·(1991年全苏数学冬令营)分析 因为结论中涉及到根号及a 2n项,因而令1222-=n na b ,并对已给递推关系两边平方就容易找到解题思路. 解 令1222-=n na b , 则12222-=n na b ,因此221nnb a=+12,因为++=+222116141nn n a a a14于是++211n b 12 = 14 (++211n b12)+⎪⎪⎭⎫ ⎝⎛+2111612n b +14即 )2(22221+=+n n n b b b①所以]2)2((2[22121221++=--+n n n n b b b b=2212)1(4+-n n b b . ②4122222=-=a b ,24122233=-=a b ,由②及b 2 、b 3∈N*, 知道对n >1,1222-n a 均为正整数.说明 这道试题,通过换元,将关于如的问题转化为关于b n 的问题,得到①式后,再用)2(221212+=--n n n b b b 代入可证明21+n b是一个完全平方数的关键一步,通过这一步代入可使问题得到顺利解决.例8. 设a 1=1,a 2=3,对一切正整数n 有 a n+2=(n+3)a n+1-(n+2)a n ,求所有被11整除的如的值. 分析 先根据给定的递推关系,通过换元,把问题转化,最后求得a n 的通项公式,进而完成本题. 解 由已知条件得(a n+2-a n+1)= (n+2)(a n+1-a n )设b n+1=a n+1-a n (n ≥1),则由条件有b n+1=(n+1)(a n -a n -1)=(n+1) b n (n ≥2),故b n = nb n -1=n(n -1) b n -2= n(n -1)(n -2)…3 b 2 =n !(n ≥2) 所以a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=b n + b n -1 +…+b 2+1=1nk k =∑!由此可以算出a 4=41k k =∑!=33=11×3,a 8=81k k =∑!=46233=11×4203,a 10=101k k =∑!=4037913=11×367083.当n ≥11时,注意到11nk k =∑!能被11整除,因而a n =101k k =∑!+11nk k=∑!也能被11整除.故当n=4,n=8或当n ≥10时, a n 均被11整除.说明 这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.这是阿贝尔求和法.情景再现5.3个数列{a n }、{ b n }、{ c n }存在下列关系:a 1=1, b 1=21,b n =a n+1-a n , c n =b n+1-b n =np n --13(n=1,2,3…)这里的p 为正常数. (1)求a n ;(2)证明:若c n ≥0,则c n+1>0;(3)若数列{b n }的最小项为b 4,求p 取值范围.6.数列{a n }、{ b n }满足0<a 1<b 1,nnn b a a 21111+=+nn n b a b +=+2121 (n=1,2,3…)证明下列命题:(1) a 2<b 2<b 1;(2) 对任何正整数n 有b n > a n+1; (3) 对任何整数n ≥2,有b n <b 1.习题12A 类习题1. 已知数列{a n }满足a 1=1,a n +1=a n +n 2(n ≥2),求通项a n .2.(2003年全国高考题)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=nn a3.(2001上海春季高考)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金. (1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明); (2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义; (3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).4.已知点的序列A n (x n ,0),n ∈N*,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明; (3) 求lim ∞→n x n .5.已知+++∈-===N n a a aa a n n n ,22,4,01221求数列{a n }的通项公式.6.已知++++∈-+====N n a a a aa a a n n n n ,22,6,2,0123321求数列{a n }的通项公式.B 类习题7.已知++++∈+-====N n a a a aa a a n n n n ,8126,8,2,1123321求数列{a n }的通项公式. 8.已知++++∈+-=-===N n a a a aa a a n n n n ,12167,13,1,2123321求数列{a n }的通项公式.9.有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?10.(1)是否存在正整数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2. (2)是否存在正无理数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2.(首届中国东南地区数学奥林匹克试题)C 类习题11.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有nnnn a a 111+≥+ (湖南省2004年高中数学竞赛)12.求所有a ∈R,使得由a n+1=2n -3a n (n ∈N)所确定的数列a 0, a 1, a 2,…是递增数列.(1980年英国中学生数学竞赛试题)本节“情景再现”解答:1.解:由已知可得:a n +n =2(a n -1+n -1)(n ≥2)令b n =a n +n ,则b 1=a 1+1=2,且b n =2b n -1(n ≥2) 于是b n =2·2n -1=2n ,即a n +n =2n 故a n =2n -n (n ≥2), 因为a 1=1也适合上述式子, 所以a n =2n -n (n ≥1) 2.解:(1)bc cb f 242122)2(-=∴=+=,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-x x f 得0)2(=--bx c x当0≠b 时得方程的实数根0=x 和bc x -=2 于是1,2==b c , 当0=b 时4=c 方程有唯一实数根0=xxx x f +=∴2)(或4)(x x f =(2)当xxx f +=2)(时,211+=--n n n a a a ,令,1nna b =则121+=-n nbb ,)1(211+=+∴-n n b b 12112-=∴-=∴nn nn a b 当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=143.解:Ⅰ.设 p=150 , %pp p a 7543311==+=Ⅱ. 设n 次操作前、后甲杯里的饮料中牛奶的体积百分比分别为、a n 1-n a ,则n 次操作前、后乙杯里的饮料中牛奶的体积百分比分别为、a n 11--n a -1,pp pa p a a n n n 3131)1(11+⋅-+=--=41211+-n a , ∴法 ①)(21211----=-n n n n a a a a ∴12121++=n n a∴ 法②)21(21211-=--n n a a∴12121++=n naⅢ. ∴1005121211≤++n ∴n ≥6.Ⅳ. 规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使乙杯盛满饮料,充分搅匀.这叫做一次操作.设n 次操作后甲杯里的饮料中牛奶的体积百分比分别为n a ,乙杯里的饮料中牛奶的体积百分比为n b .43311=+=p p pa , 83323232431=+⨯=p p pb . 1693232328332432=+⨯+⨯=pp p p a 321532323283321692=+⨯+⨯=pp p p b∴ppb p a a n n n 34323211⨯+⨯=-- 第n 次操作后甲杯里的饮料p 32,乙杯里的饮料p 34.∴p b p a p n n =⨯+⨯3432∴343=+n n b a .n a =83411+-n a , ∴nn n a 212212+=-∴10051212212≤+-nn , ∴n ≥4.至少4操作后甲杯里的饮料中牛奶的体积百分比不超过51%.4.解:由)(12++-n n a a=11)2()3(-+-+-+n n n a a n an ))(2(1n n a a n -+=+))(1)(2(1--++=n n a a n n)(34)1)(2(12a a n n n -⋅⋅⋅⋅++=)2(+=n !故++-+-+= )()(23121a a a a a a n)(1--n na a=1+2!+3!+…+n !(n ≥1),由于153,33,9,3,154321=====a a a a a ,此时153被9整除.当m ≥5时∑=+=mk m ka a 15!而k ≥6时6!被9整除.于是当m ≥5时a n 被9整除,故所求的n 的最小值为55. (1)因为c n =b n+1-b n =3n -1-np,故b n =b 1+ (b 2-b 1)+ (b 3-b 2)+ …+(b n -b n -1) =12 +(1+3+…+3n -2)-[1+2+3+…+(n -1)]p=12 [3n -1-n(n -1)p], 即b n =a n+1-a n =12[3n -1-n(n -1)p]故a n =a 1+ (a 2-a 1)+ (a 3-a 2)+ …+(a n -a n -1)= 3n -1+34- p6-1)(n -2)(2)若c n =b n+1-b n =3n -1-np ≥0, 则3n -1≥np,c n+1=b n+2-b n+1=3n -(n+1)p ≥3np -(n+1)p =(2n -1)p >0.(3)因为b n =12 [3n -1-n(n -1)p]≥b 4,故应有c 3=b 4-b 3≤0,c 4=b 5-b 4≥0,即c 3=9-3p ≤0, c 4=27-4p ≥0,故3≤p≤274.利用(2)的结论验算可知,当3≤p ≤274时,对一切正整数n,均有b n ≥b 4.故p 的取值范围是[3,274] 6.(1)⎪⎪⎩⎪⎪⎨⎧+=+=++nn n n n n ba b b a a 212211111②① 因为110b a <<由①②可知n n b a ,皆正.①×②得242142121211=⋅+≥+++=++nn nn nn nn n n b a a b b a a b a b ,所以,11++≥n n a bn=1时,22a b ≥但若2111224b a a b a b =⇔=112b a =⇔,这与110b a <<矛盾,故只可能有,22a b >又由②可得1111122321212b b b b a b =+<+=,即 11243b b b <<,因此122b b a <<.(2)由(1)可知,11++≥n n a b即nna b ≥,由②得n n n b a b241+=+nn n n b a b b 2)(41-=-+=nnnb b a --)(<0,故nn b b<+1,即nn n b b a <≤++11所以n n b a<+1.(3)由(2)知nn b b<+1故{b n }卓单调递减,从而121b b bb n n<<<<- ,因此1b b n<.本节“习题12”解答: 1.∵a n +1=a n +n 2,∴a n +1-a n =n 2,故a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=-1+16n(n-1)(2n-1)= 16(n 3-3n 2+n-6)2.(Ⅰ)∵a 1=1 . ∴a 2=3+1=4, a 3=32+4=13 .(Ⅱ)证明:由已知a n -a n -1=3n -1,故.2131333)()()(21112211-=++++=+-++-+-=-----nn n n n n n n a a a a a a a a所以证得213-=nn a .3.(1)第1位职工的奖金a 1=nb ,第2位职工的奖金a 2=n1(1-n1)b ,第3位职工的奖金a 3=n1(1-n1)2b ,…,第k 位职工的奖金a k =n1 (1-n1)k -1b ;(2)a k -a k +1=21n(1-n1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设f k (b )表示奖金发给第k 位职工后所剩余数,则f 1(b )=(1-n1)b ,f 2(b )=(1-n1)2b ,…,f k (b )=(1-n1)k b .得P n (b )=f n (b )=(1-n1)nb ,故eb b P n n =∞→)(lim .4.(1)当n ≥3时,x n =221--+n n x x ;=-=--=-+=-==-=212212232121,21)(212,)2(a a x x x x x x x a a x x aaa x x x x x x x 41)21(21)(2122332334=--=--=-+=-=, 由此推测a n =(-21)n -1a (n ∈N . 证:因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n nn n n n n n n a x x x x x x x x x a (n ≥2)所以a n =(-21)n -1a .(3)当n ≥3时,有x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a n -1+a n -2+…+a 1,由(2)知{a n }是公比为-21的等比数列,所以32)21(1lim 1=--=∞→a x n n a .5.特征方程x 2=2x -2有两个相异实根x 1=1+i,x 2=1-i.则数列{a n }的通项公式为:n n n i C i C a )1()1(21-++=,代入前两项的值,得⎩⎨⎧=-++=-++4)1()1(0)1()1(222121i C i C i C i C解此方程组得:C 1=-1-i,C 2=-1+i, 故π+-=--+-=+++41cos2)1()1(2311n i i an n n n.6.特征方程x 3=2x 2+x -2有三个相异实根x 1=1,x 2=-1, x 2=2,则数列{a n }的通项公式为:nn n C C C a 2)1(321+-+=,代入前三项的值,得⎪⎩⎪⎨⎧=+-=++=+-,68,24,02321321321C C C C C C C C C解此方程组得:C 1=-2,C 2=0,C 3=1 故22-=nna.7.特征方程x 3=6x 2-12x +2有三重实根x =2,则数列{a n }的通项公式为:nn C n nC C a 2)(3221⋅++=,代入前三项的值,得⎪⎩⎪⎨⎧=++=++=++,872248,21684,1222321321321C C C C C C C C C解此方程组得:C 1=1,C 2=43-,C 3=41 故222)34(-+-=n nn n a.8.特征方程x 3=7x 2-16x +12有x 1=x 2=2, x 3=3,,则数列{a n }的通项公式为:32132)(C nC C a nn n +⋅+=,代入前三项的值,得⎪⎩⎪⎨⎧-=++=++=++,1327248,1984,2322321321321C C C C C C C C C 解此方程组得:C 1=4,C 2=23,C 3=-3, 故.3232112+-+-⋅+=n n n n n a9. 由于登上n 级台阶可以从第n -2直接上来,也可以通过第n -1级分步上来,这样登上n 级台阶的走法不仅与登上n -1级走法有关,且也与登上n -2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解.登上第一级只有一种走法,记a 1=1,登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n -1级走上来,也可能是第n -2级跨上两级上来的,故有a n =a n -1+a n -2, 显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所n 级楼梯,共有F n 种不同的走法.10.假设存在正整数列{a n }满足条件. ∵2212++≥n n n a a a , a n >0∴211≤-n n a a 22121≤--n n a a 23221---≤≤n n n a a 12a a ,n=3,4,5,又∵12a a 122221a a ⋅≤-所以有≤-1n n a a 221-n 12a a ⋅,n=2,3,4,5,∴≤⎪⎪⎭⎫ ⎝⎛⋅=--112221n n n a a a a ≤⎪⎪⎭⎫ ⎝⎛--+-2212)3()2(21n n n a a a ≤⎪⎪⎭⎫⎝⎛≤-++-+-22121)3()2(21a a a n n n∴212122212---⋅⎪⎭⎫⎝⎛≤n n n n a a a设[)Z k a k k∈∈+,2,2122取N=k+3则有<⋅⎪⎭⎫ ⎝⎛≤---212122212N N N Na a a,1122112211≤⋅⎪⎭⎫⎝⎛++++k k k k a 这Na 与是正整数矛盾.所以不存在正整数列{a n }满足条件.11.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111=+=+-+k a a a a k k k k于是 ∑∑=+-=++=nk k k nk k k a a a a n 11111由算术-几何平均值不等式,可得 nn n a a a a a a 132211+⋅⋅⋅≥+nn n a a a a a a 113120+-⋅⋅⋅注意到 110==a a ,可知nn n nn a a a 11111+++≥,即nnnn a a 111+≥+12.令b n =a n 2n ,则b n+1=-32b n +12,两边减去 15 , 得b n+1-15=-32(b n -15),即数列{ b n -15}是公比为-32的等比数列,所以b n -15=(b 0-15)(-32)n =(a 0-15)(-32n ,a n =2n b n =2n (a 0-15)·(-32)n +15·2n , 即a n =(a 0-15)·(-3)n +15·2n (n ≥0),从而a n+1-a n = 2n10[ 403 (a 0-15)·(-32)n +1] ,设A=403 (a 0-15)则a n+1-a n = 2n10[ A(-32)n +1] ,若a 0>15, 则A >0,对充分大的奇数n 有(-32)n >1A a n <a n -1, 若a 0<15,则A <0. 对充分大的偶数n 有(32)n >-1A于是a n <a n -1.综上所述,当a 0≠15时,数列{a n }不是单调递增.仅当a 0= 15时a n+1-a n = 2n10>0,数列{a n }是单调递增.。
递推数列特征方程的来源探究及应用

递推数列特征方程的来源探究及应用
递推数列(recurrence sequence)是一类是由一个数列反复递推式生成的数列,它由当前项序列和初始值共同决定,可以用下面的递推式来描述:un = f(un-1, un-2, un-3, … , u1),其中u1, u2, u3, … 是当前项序列,及该数列的上一项,上两项,上三项等。
因此可以总结出来,递推数列的特征方程可以写成:un = f(un-1, un-2, un-3, … , u1) ,其中f为函数,un是当前项,而u1、u2、u3、…等则是这一数列的初始值。
递推数列的来源主要有以下几个方面:一是根据物理过程而提出的递推关系式;二是对自然现象和社会现象的数学建模而得出的递推关系式;三是从线性代数及空间角度出发而推出的递推关系式;四是从数论和计算机科学等学科出发而推出的应用领域。
递推数列特征方程在数学上有着重要的应用。
首先,它可以用来分析和解决与数列相关的问题;其次,它可以用来分析和解决数学模型问题;第三,它可以用来分析和解决统计分析问题;第四,它可以用来分析和解决机器学习问题;最后,它可以被用来分析和解决图像处理问题。
总之,递推数列特征方程是一种描述数字特征的强大方法,它可以用来分析和解决许多数学上的问题,它可以帮助我们更清楚地认识数字,从而更深入地了解数字的性质及其本质。
例谈特征根方程求解线性递推数列

=
A a " + B l f ' 7 ,
P:
证 明: (I) 其中 , q = l 时, 由p — q = l , 得: p = 1 ,代 入递 归式 ,易得 : X n = X I +
Q( d )’
( 4 ) ②
B: t 二
者 发 现 很 多 教 师 只讲 特
数 学教 学通 讯
控 稿 l 箱 s  ̄ j k @r i p 1 6 : 3 c o m
例谈特征根方程求解线性递推数列
戴培 红 江 苏南通 市通 州 区金沙 中学
[ 摘 要 ]特征根 方程是求解线性数 列通 项 中必备的知识 [ 关键词 ]数 列 ; 特征方程 ; 线性 ; 二阶 ; 分式
f f J , 需 要 用 到 特 征 方 的 原 理 . 但 是 笔
, 4:~ 2 { z } q
-
—
x2
J
合 并 同类 项 ,可得 : :
(
“
)
( 1 I ) = , = ( 4 』 + H n ) d , {
J / 3 =
。
.
I -一 - .
{ 磊 为 = } 公 此 为 的 等
呲 l ( , 卜 I 一 叭 2 ) 一 - , 递推 之 得 : z
得: : f 2 a a :
1
3 . 4 . …) , 证明 : 数列 ; : 的通 项 公 为
I
4:
二 !
一
( . - O L I . 1 ) ( J ) , 同理 :
= ・
f 4
V 2 书 1
( + B n ) a , 其 中: ( 母 ) ( 2 ) , 联立( 1 ) ( 2 ) 两式 解得 :
特征方程求解递归方程

特征方程求解递归方程
在计算机科学和算法设计中,递归方程是非常常见的数学模型。
通常情况下,它们被用来描述某些重复性的过程或者算法的运行时间。
例如,计算斐波那契数列、快速排序算法等都可以用递归方程来描述。
解决递归方程的一种常见方法是使用特征方程。
特征方程是一个与原方程形式相似的代数方程,通过求解它的根可以得到递归方程的通项公式。
特征方程的求解需要一些数学知识,包括线性代数和微积分等。
但是,对于一些简单的递归方程,我们可以使用一些基本的技巧来求解它们的特征方程。
例如,对于斐波那契数列的递归方程f(n) = f(n-1) + f(n-2),我们可以将它转化为特征方程x^2 = x + 1,然后求解它的根为φ和1-φ(φ是黄金比例,约为1.618),从而得到斐波那契数列的通项
公式f(n) = (φ^n - (1-φ)^n) / √5。
特征方程可以帮助我们更加系统地理解递归方程,从而更好地设计和分析算法。
因此,学习特征方程的求解方法是非常有价值的。
- 1 -。
递归式 特征方程

递归式特征方程
递归式特征方程是一种用于解决递归式的数学工具。
它通过将递归式转化为一个特征方程,然后通过求解该方程来得到递归式的通用解。
递归式特征方程的求解需要一定的数学知识,包括线性代数和微积分等。
递归式特征方程的基本思想是将递归式中的子问题和递归步骤
分离出来,然后通过线性组合得到一个特征方程。
该特征方程的解就是递归式的通用解。
具体地,假设递归式为f(n)=af(n-1)+b(n),其中a和b为常数,那么我们可以将递归式变为f(n)-af(n-1)=b(n),然后定义一个新的函数g(n)=f(n)-af(n-1),这样我们就得到了一个新的递归式g(n)=b(n)。
此时,我们可以通过求解特征方程g(n)=0
来得到递归式的通用解。
递归式特征方程在算法分析中经常使用。
例如,在求解递归算法的时间复杂度时,我们通常需要先得到递归式的通用解,然后再对其进行分析。
递归式特征方程也可以用于解决其他数学问题,例如求解微分方程等。
总之,递归式特征方程是一种重要的数学工具,它可以帮助我们解决递归式相关的数学问题。
对于算法分析和其他数学领域的研究人员来说,掌握递归式特征方程的求解方法是非常有用的。
- 1 -。
数列特征方程的来源与应用

关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列:设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1-=c dt ,当1≠c 时可得 )1(11-+=-++c da c c d a n n知数列⎭⎬⎫⎩⎨⎧-+1c d a n 是以c 为公比的等比数列,11)1(1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得()11---+=-c dc bd bc a n n n对于二阶线性递推数列,很多文章都采用特征方程法[2]:设递推公式为,11-++=n n n qa pa a 其特征方程为022=--+=q px x q px x 即,1、 若方程有两相异根A 、B ,则nn n B c A c a 21+= 2、 若方程有两等根,B A =则nn A nc c a )(21+=其中1c 、2c 可由初始条件确定。
很明显,如果将以上结论作为此类问题的统一解法直接表现出来,学生是难以接受的,也是不负责任的。
下面我们结合求一阶线性递推数列的参数法,探讨上述结论的“来源”。
设)(11-+-=-n n n n ta a s ta a ,则11)(-+-+=n n n sta a t s a ,令⎩⎨⎧-==+qst pt s (*)(1) 若方程组(*)有两组不同的解),(),,(2211t s t s , 则)(11111-+-=-n n n n a t a s a t a , )(12221-+-=-n n n n a t a s a t a , 由等比数列性质可得1111211)(-+-=-n n n s a t a a t a , 1212221)(1-+-=-n n n s a t a a t a ,,21t t ≠ 由上两式消去1+n a 可得()()()nn n s t t s a t a s t t s a t a a 21221221121112..-----=.特别地,若方程组(*)有一对共扼虚根(),sin cos θθi r ±通过复数三角形式运算不难求得此时数列的通项公式为(),sin cos 21θθn c n c r a nn +=其中1c 、2c 可由初始条件求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b?+b?=βb?b?=-γ?
将?式代入?式得:
α+b?+b?=p?αb?+αb?+b?b?=-p?αb?b?=p?
表明α,b?,b?是特征方程x?-p?x?-p?x-p?=0的根.
现假设当r=m-1时,x?=p?x?+p?x?+„+p?x?的特征方程根与系数的关系满足:
α?+α?+„+α?=-
α?α?α?+α?α?+„+α?α?=α?α?α?α?+α?α?α?+„+α?α?α?=-α?„„α?α?„α?=(-1)?α?
这就是n次多项式的根与系数的关系定理,也称为韦达定理.
三、高阶齐次线性递归数列特征方程的由来
要说明特征方程的由来,只需说明根与系数具有上述关系,从而构造高阶齐次线性递归数列的特征方程.
b?+b?+„+b?=p??b?b?=-
p??b?b?b?=p?b?b?„b?=(-1)?p?
其中b?,b?,„,b?是m-1阶特征方程的根.
那么,当r=m时,有x?=p?x?+p?x?+„+p?x??
利用分配降阶的思想,将?式变形为:
x?-c?x?=c?(x?-c?x?)+c?(x?-c?x?)+„+c?(x?-c?x?) ?
<a href=";
target="_blank">泡芙面膜</a>
用数学归纳法推导高阶齐次线性递归数列
x?=p?x?+p?x?+„+p?x?(r?3)的特征方程.
当r=3时x?p?x?+p?x?+p?x??
x?-αx?=β(x?-αx?)+γ(x?-αx?)?
比较?式、?式得
α+β=p?γ-αβ=p?γα=-p??
令A?=x?-αx?,则A?=x?-αx?,那么?式就变形为A?=βA?+γA?.
二、预备知识
先介绍一元次方程根与系数的关系[2].
设n次多项式f(x)=x?+a?x?+„a?x+a?的n个根为α?,α?,„α?,那么f(x)就可以分解成:f(x)=(x-α?)(x-α?)„(x-α?)
即:x?+α?x?+„+α?x+α?=(x-α?)(x-α?)„(x-α?)
将上式右端展开、整理,并比较等式两边同次项系数得
令A?=x?-c?x?,则A?=x?-c?x?,?式就变形为A?=c?A?=c?A?+c?A?+„+c?A?.
由假设可知,此m-1阶特征方程根与系数的关系满足:
b?+b?+„+b?=c??b?b?=-
c??b?b?b?=c?b?b?„b?=(-1)?c??
比较?、?式得:
c?+c?=p?c?-c?c?=p?„c?c?=-p??
先来回顾文[1]中二阶线性递归数列:
x?=p?x?+p?x??
采用分配降阶得:x?=(α+β)x?-αβx??
比较?式与?式,得p?=α+β,p?=-αβ,由韦达定理可知:α,β是方程x?-p?x-p?=0的根,此方程就称为二阶齐次线性递归数列?的特征方程.
把这种分配的思想运用到三阶、四阶,甚至阶齐次线性递归数列中,#43;b?+„+b?=p??b?b?+c??b?=-p?c?b?b?„b?=(-1)?p?
上式表明c?,b?,„,b?是方程
x?=p?x?+p?x?+„+p?x+p?的根,
亦即x?=p?x?+p?x?+„+p?x?的特征方程.
四、结语
在教学过程中,教师需要传授的不仅仅是知识本身,更重要的是给学生创造探索其来源的机会,让他们在不断探索的过程中感受隐藏在知识背后的数学魅力.
高阶齐次线性递归数列特征方程的由来
泡芙面膜
一、问题提出
高阶齐次线性递归数列是一种十分重要的数列,它不仅在高考中占有一席之地,在各类数学竞赛中也是常客,大多是将高阶齐次线性递归数列与特征方程联系起来,利用特征根法求得其通项公式,但是特征方程是如何“从天而降”,递归数列如何与特征方程联系起来是许多读者困惑的问题.教学,不仅要知其然更要知其所以然,才能深刻理解知识的“来龙去脉”,才能称得上掌握知识.本文就针对高阶齐次线性递归数列,还原其特征方程的由来过程.