10kV线路中避雷器爆顶问题分析和解决方法
10KV配电线路雷击事故分析及防雷对策

10KV配电线路雷击事故分析及防雷对策一、雷击事故分析雷击是自然界极为危险的天气现象,当雷电活动发生时,如果雷电与建筑物、电力设施等接触,就会造成雷击事故。
10KV配电线路作为电力系统的重要组成部分,也面临着雷击的风险。
雷击事故一旦发生,不仅会造成设备的损坏和停电,还可能危及人民群众的生命财产安全。
对于10KV配电线路雷击事故的分析及防雷对策显得尤为重要。
1.1 10KV配电线路雷击事故特点雷击事故频率较高。
由于10KV配电线路横跨大片地面,搭设在高空,很容易成为雷电活动的“目标”,导致雷击事故频率较高。
雷击事故损失严重。
由于10KV配电线路所承载的电力负荷较大,一旦发生雷击事故,不仅会造成设备的损毁,还可能导致大面积停电,影响供电正常运行。
雷击事故风险难以预测。
雷电活动具有突发性和随机性,难以准确地对雷击事故的发生时间和位置进行预测,10KV配电线路的雷击事故防范面临一定的困难。
10KV配电线路雷击事故的发生有其特定的原因,主要包括以下几个方面:第一,雷电活动频繁。
气象部门数据显示,我国每年的雷电次数约为50-60天,雷电主要发生在夏季,而10KV配电线路正是这段时间电力需求相对较大的时候,因此雷击事故发生的概率相对较高。
第二,线路接地不良。
10KV配电线路若接地不良,导致接地电阻增大,容易成为雷击事故的“好发地”,因为雷电冲击时,会通过接地电阻进入地下,造成线路损毁。
线路设备缺陷。
10KV配电线路设备长期使用后,会出现老化、漏电、接触不良等缺陷,这些缺陷会增加雷击事故的风险。
直接雷击。
直接雷击是指雷电直接击中10KV配电线路或设备,在瞬间产生高压电流,造成线路设备损坏。
雷电流跳闸。
雷电冲击使得10KV配电线路中的电流瞬间增大,导致电力系统保护设备跳闸,造成线路停电。
设备损坏。
10KV配电线路遭受雷击冲击后,线路设备会受到严重损坏,需要更换或维修,增加了电力系统的维护成本。
停电影响。
10KV配电线路发生雷击事故后,可能会造成区域性的停电,影响用户正常用电。
10kV配电用避雷器常见故障与处理措施

10 kV配电用避雷器常见故障与处理措施摘要:避雷器能够保护电网设备不受雷击,进而保证其能够更加安全地发挥自己的作用,确保配电设备能够高效运行。
但应用避雷器时可能会有些故障,导致配电网的安全性无法得到有效保障。
通过分析避雷器的故障并采取科学措施,就能够很好地为配电网的安全性提供坚实的基础,进而为实现配电网运行的高质量发展提供有效的帮助。
关键词:10kV配电线路;常见故障;对应措施引言:避雷器作为一个过电压保护装置,在输配电网中获得了十分普遍的使用。
它也使得城市供电网的耐雷性获得有效的提高。
而避雷装置若被击穿,将会使得供电系统的安全性遭到巨大的挑战。
这主要由于10kv佩迪安网络当被避雷装置被击穿后,通过避雷装置产生接地,需要停电后进行处理。
针对在运营维护中遇见的故障进行深入分析,同时提出相对应的解决策略,就能够有效提升避雷器的运行质量,为更好的保证配电网运行的安全性提供有效的帮助。
一、线路避雷器在10kV配电线路中的应用线路避雷器的基本原理是在导线发生放电后,对线路电流加以分流。
在电缆上加装避雷器装置之后,在遭遇电击的过程中,电流就会沿避雷线进入相邻的杆塔内。
而此时接地电流就会呈现暂态电流的特征,对10kv以上供电线也的抗雷电能力和雷电流强度,都有着很大的关系。
一般情况下,雷电电流的强度与其所处的自然环境有很大的关联,在绝缘子50%放电电压固定的情况,若想提高杆塔的耐雷水平,如果不安装避雷器,就必须要采取相对应的措施。
但在某些区域,采取必要的措施是相对困难的。
因此,10kv配电线路往往会遭受电击。
基于此,加装线路避雷器就能够有效避免雷电的侵扰。
这种避雷方式对接地电阻并没有严格的要求,因此其防雷效果相对较好,成为目前配电网线路在开展避雷工作的过程中,所主要采用的一种设备。
二、10kV配电线路避雷器故障原因分析(一)高阻层裂纹的原因分析产生这个问题的主要因素,就是由于其采用了由各种有机材料所混合的涂层制作绝缘层,而绝缘层则采用了高温烧结工艺件的特殊工艺加工而成。
10KV配电线路雷击事故分析及防雷对策

10KV配电线路雷击事故分析及防雷对策一、事故分析10KV配电线路是城市和乡村供电的重要组成部分。
在雷电天气中,由于线路遭到雷击可能会导致线路短路、设备损坏,进而引发停电和安全事故。
对于10KV配电线路的雷击事故分析以及防雷措施显得尤为重要。
1.1 雷击事故原因分析10KV配电线路遭到雷击主要是因为雷电天气中,大气层中云与地面或物体之间会发生静电荷分离,在这种情况下产生静电场、电位差和大气放电现象,从而形成闪电。
当闪电击中10KV配电线路时,会造成线路短路、设备损坏,进而影响到供电安全。
1.2 雷击事故后果分析一旦10KV配电线路遭受雷击,可能会引发以下后果:1) 线路短路。
雷击会导致线路短路,影响供电正常运行。
2) 设备损坏。
雷击会损坏线路上的设备,提高运维成本。
3) 供电中断。
雷击事故可能导致配电线路供电中断,给用户带来不便。
4) 安全事故。
雷击引发的火灾、爆炸等安全事故可能造成人员伤亡和财产损失。
二、防雷对策为了避免10KV配电线路遭受雷击,减少雷击事故带来的不良影响,需要采取有效的防雷措施。
2.1 安装避雷设备在10KV配电线路上安装避雷设备是一种常见的防雷措施。
避雷设备能够吸收、分散和释放雷击能量,减少雷击对线路和设备的影响。
一般来说,主要包括避雷针、避雷带、避雷网等设备,通过这些设备将雷电引到地面,减少对线路的影响。
2.2 地面接地保护地面接地是防止雷击损害的重要措施。
良好的接地能够将雷电引到地面,减少雷电对设备和线路的影响。
对10KV配电线路进行定期的接地检查和维护显得尤为重要。
2.3 配电线路绝缘保护绝缘保护是为了防止雷击对设备和线路产生影响的重要手段。
通过对线路绝缘进行加强和保养,可以减少雷击对设备和线路的损害。
2.4 定期检查维护定期检查维护是保证10KV配电线路安全运行的保障。
通过对线路设备的定期检查和维护,能够及时发现潜在的雷击风险并进行相应的处理,减少雷击事故的发生。
2.5 安全管理及培训加强安全管理和员工培训是预防雷击事故的重要措施。
10kV线路中避雷器顶部爆裂问题原因分析和解决方法(论文)

10kV线路中避雷器爆顶问题分析和解决方法000(广东电网公司佛山供电局,广东佛山 528100)摘要:10kV线路运行中的避雷器通常的故障表现是本体爆炸,造成线路接地跳闸,而这类型的故障占线路运行故障的大部分。
目前对于该类型的故障防范未能找到有效的技术防范措施。
本文通过对10kV线路中避雷器自身防护问题、爆炸原因分析,寻找有效可行的防止避雷器本体爆炸所导致线路跳闸的技术措施和方法,为有效降低10kV线路的接地跳闸率提供技术参考。
关键词:避雷器爆顶问题分析技术措施1.避雷器自身过电压防护问题避雷器是过电压保护电器,其自身仍存在过电压防护问题。
对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。
对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。
如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。
碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。
无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。
对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。
2.避雷器其连续雷电冲击保护能力有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。
10kV线路避雷器故障研究及处理办法

10kV线路避雷器故障研究及处理办法摘要:目前,中国的城市供电系统已经普遍采取10kV供电线路的方式。
但是,在10kV的供电线路运营方式中也存在着相应的缺陷,部分10kV供电线路并不能配备避雷装置或避雷装置配备上的可靠性不足,对避雷的装置维护重视度也比较不足。
还有10kV供电线路设置不当导致的防雷作用不能满足要求。
如果线路遭到闪电击中将可能造成爆裂、起火等安全事故,对供电线路及附近群众生命安全也造成极大的威胁。
基于此,文章对10kV供电线路的避雷器问题原因和预防措施加以研究,以供参考。
关键词:10kV线路;避雷器故障;处理办法引言:当今电能已经成为日常生活中必不可少的资源之一,如何保障电能的供给对于国家的经济社会发展以及人民的生活质量的改善具有重大的作用。
随着经济社会的日益发达,用电线路的增加,雷电对我们供电系统的冲击将会愈来愈大,配电网的防雷体系的设计也将变得日益关键。
配电网的供电线路具有联系电力供应与整个电力系统之间的纽带功能,它又是整个电力供应系统中非常容易发生事故的一环,而雷电产生了很大的破坏力,所以防雷与接地就显得尤为重要。
一、10kV配电线路防雷装置的原理和避雷器故障(一)10kV防雷装置的原理防雷防技术是一个工程,一般包括了外表防雷和内在防雷二个层面。
外表防雷防一般是对直击雷电的保护,内部结构一般是利用金属杆、引下线、接地体系统把由通讯装置所引起的雷电流引入地下,进而把全部雷电均匀放出地面,把大部分的雷电能量直接引入地面,以防止对电路的正常工作产生干扰。
而内在保护一般是对过电压防护,作用在于平衡系统电位变化,控制过电压频率。
防雷方法的运用必须充分考虑现场的自然状况,并结合分析条件,以确定防雷设施的作用。
对供电导线的防雷方式,一般有疏导和封堵[1]。
疏导式是利用平衡系统电压变化的释放方法进行防雷,而封堵则是利用增加供电导线所承载通讯装置能量变化的方法进行防雷。
防雷性能比较好的方法主要是有选择防雷高压支柱绝缘子、设置有间距的氧化锌避雷器、电缆直联氧化锌避雷器、在电缆铺设架空地网、增加绝缘强度以及增加绝缘子闪络能力等。
10KV配电线路上避雷器故障分析及防范措施

10KV 配电线路上避雷器故障分析及防范措施发布时间:2023-02-15T09:00:52.251Z 来源:《当代电力文化》2022年19期作者:郑棉鑫[导读] 避雷器是在架空线路和配电室线路上安装郑棉鑫广东电网有限责任公司汕尾陆丰供电局广东汕尾 516600摘要:避雷器是在架空线路和配电室线路上安装的一种保护电力设备免受雷击或过电压的装置,可以起到防雷和泄雷的作用。
它在10kv配电线路中发挥着重要的保护作用,能够有效保证其安全运行。
由于避雷器运行于架空线路和配电室内,所以一旦发生故障后它的影响范围会更大、影响时间更持久。
当避雷器发生故障时,如果不及时处理,就会发生短路电流和闪络电压。
基于此,本文将重点分析导致避雷器运行故障的原因,并制定相应解决措施。
关键词:10kV配电线路;避雷器;防范措施;引言:随着我国城市化进程的不断加快,越来越多的电力线路进入人们的生活。
10 kV配电线路作为电力系统中的重要设备之一,其运行状况直接影响着电力线路运行的安全和可靠性。
单纯依靠设备自身的绝缘来承受过电压,不论是经济层面还是技术层面都几乎是不可能实现的。
为提高电气设备的安全性,加强10kv配电线路的可靠性,故在线路上加装了避雷器设备。
因此加强对配电线路避雷器故障事故原因的分析,对预防配电线路避雷器故障有重要意义。
一、10kV配电线路上安装避雷器的必要性10kv配电线路属于高压电网的一部分,肩负着电力系统供电的重要使命和功能,因此在10kv配电网的保护和控制线路上安装避雷器是非常有必要的。
一方面,在配电线路上安装避雷器能够有效地避免因为配电线路受到雷击而引起漏电故障进而导致电力线路损坏事故;另一方面,在配电线路上安装避雷器能够减少配电线路受到意外电压所引起的电气设备损坏和人身安全事故发生的概率。
在输电线路上架空线路和配电室数量日趋增多的背景下,短路电流、闪络电压在10 kV输电线路上已逐渐呈现增长态势,因此对避雷器的要求是能在短路电流超过50μs时不影响线路工作。
10kV配电线路上避雷器故障分析及防范措施

10kV配电线路上避雷器故障分析及防范措施摘要:目前我国的电力系统广泛采用10kV配电线路的形式。
但在10kV配电线路运行过程中存在着一定的不足,部分10kV配电线路没有安装避雷装置或避雷装置安装的合理性较差,对避雷设施维护重视程度也较低。
还有10kV配电线路设计不合理使线路防雷效果没有达到标准。
一旦线路被雷电击中将会引发爆炸、火灾等安全事故,对配电线路与周围群众安全都有很大的影响。
基于此,本文对10kV配电线路上避雷器故障分析及防范措施进行深入研究,以供参考。
关键词:10kV配电线路;避雷器故障;防范措施引言当今电力已成为生活生产必要的能源之一,如何保证电力的供应对国民的经济发展和人们的生活水平的提高有着重要的意义。
随着社会的不断发展,电力线路的增多,雷电对我们供电系统的影响也是越来越大,配电网线路防雷系统的研究也就显得越来越重要。
配电网和配电线起到连接电力供应整个电力使用的纽带作用,它也是整个电力供应过程中极易出现问题的一环,而雷电具有极强的破坏性,因此防雷变得尤为重要。
110kV配电线路防雷装置的原理和避雷器故障1.110kV防雷装置的原理防雷技术是一项系统工程,包含外部防雷和内部防雷两方面。
外部防雷是对直击雷的保护,主要是通过金属杆、引下线、接地体系统将雷击产生的雷电流导入地底,从而将雷电均匀释放,将绝大部分雷电能量直接导入大地,从而避免对线路的运行造成影响。
内部保护是过电压保护,作用是均衡系统电位,限制过电压幅值。
防雷技术的应用需要充分考虑当地的情况,综合分析环境,保证防雷装置的效果。
配电线路的防雷技术主要有疏导式和堵塞式。
疏导式是通过电流的释放方式实现防雷,堵塞式是通过提升配电线路承受雷击能力的方式实现防雷。
防雷效果较好的措施主要包括采用防雷绝缘子、安装带间隙的氧化锌避雷器、线路直连氧化锌避雷器、全线路敷设架空地线、提高绝缘水平以及增大绝缘子闪络路径等。
需要说明的是,防雷措施的应用应该保证对正常线路运行没有影响。
10KV配电线路雷击事故分析及防雷对策

10KV配电线路雷击事故分析及防雷对策近年来,随着电力设备的广泛使用,10KV配电线路雷击事故频繁发生,给人们的生命和财产造成了极大的威胁。
因此,对配电线路的雷击事故进行分析,并提出针对性的防范措施,具有极其重要的现实意义。
本文将对10KV配电线路雷击事故进行分析,并提出相关的防雷对策。
1、配电线路雷击事故的原因(1)配电系统天气条件的影响:雷霆风暴、大风、雨雪等天气条件都将增大雷击风险。
(2)线路局部悬挂物:在设备处或绝缘子处,悬挂物会影响电气场分布,并导致局部电场强度的增强,从而增大雷击的概率。
(3)地面状况:介质内部的导电性改变会影响介质的闪络电压和局部电场的分布,从而加大雷击风险。
(4)电力设备的缺陷:例如设备本身的绝缘损坏或损坏时部分零部件可能打开,生成电晕现象等。
(1)对设备的损害:雷击能够对设备产生强大的电磁力和热量,对设备形成电弧烧毁以及产生火灾等严重损害。
(2)对人身的危害:雷电产生的电压和电流大得惊人,雷电是对人类生命最具危害性的自然现象之一,雷击会造成人的死亡或重伤等严重危害。
1、线路建设技术(1)悬挂地线:在地线电阻足够小的情况下,在配电线路的贯穿点挂设一段地线,地线的作用是在线路、设备与大地之间建立低阻抗连接,以吸收雷电冲击电流。
(2)绝缘子选型:绝缘子应采用透平型、耐性负荷大的绝缘子。
如果电压等级较高,绝缘子表面还需涂抹高分子绝缘涂料或污染层防护剂,以杜绝绝缘子表面分布的水滴和污染物。
(3)地面处理:做好配电线路的接地工作,需在电线旁边埋深足够的接地棒,并在大面积降水时清除杂草和污物,以保证电线的良好接地。
2、设备维护保障(1)检查导线接头和连接夹的状态:以确保连接接地是否良好。
(2)定期检查设备的绝缘状态:以确保绝缘状态是否牢固,并检查电缆、电机和开关等设备的绝缘电阻。
(3)清洗设备表面:定期清洗设备表面的灰尘和污垢,防止表面水滴从而增大局部电场,提高雷击发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV线路中避雷器爆顶问题分析和解决方法
摘要:10kV线路运行中的避雷器通常的故障表现是本体爆炸,造成线路接地跳闸,而这类型的故障占线路运行故障的大部分。
目前对于该类型的故障防范未能找到有效的技术防范措施。
本文通过对10kV线路中避雷器自身防护问题、爆炸原因分析,寻找有效可行的防止避雷器本体爆炸所导致线路跳闸的技术措施和方法,为有效降低10kV线路的接地跳闸率提供技术参考。
关键词:避雷器爆顶问题分析技术措施
Abstract: 10kV line running arrester fault is usually caused by body blast, ground line tripping, and this type of fault line running fault accounted for most of the. Now for the type of fault prevention fails to find the effective technical measures. This article through to the 10kV transmission line lightning arrester protection problems, analysis of explosion, and find out the effective feasible preventing arrester body explosion caused tripping of the technical measures and methods, in order to effectively reduce the 10kV line ground tripping rate to provide technical reference.
Key Words: arrester explosion problem analysis and technical measures
中图分类号:F407.61文献标识码:A 文章编号:
1.避雷器自身过电压防护问题避雷器是过电压保护电器,其自身仍存在过电压防护问题。
对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。
对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。
如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。
碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。
无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅
2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~
3.5Uxg,故有暂态过电压承受能差的缺点。
对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。
2.避雷器其连续雷电冲击保护能力有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。
碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗
最大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。
氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。
3.10kV线路中常用避雷器的对比选用
氧化锌避雷器在日常运行使用常使用的类型主要有两种:一、是瓷外套氧化锌避雷器;二、是硅橡胶外套氧化锌避雷器。
前者存在的问题就是避雷器本体爆炸,导到高压引线接地线路跳闸,故障点容易发现。
后者在使用中主要存在的问题就是避雷器本体击穿,从外观上难以查找故障点。
所以目前所使用的避雷器普遍使用瓷外套氧化锌避雷器。
4.氧化锌避雷器的安装
避雷器一般安装在高压熔丝上侧,按规程规定:“变台底座离地面高度不得小于2.5m。
”这样在避雷器损坏或造成接地、短路、校验更换时,需要整条10kV 线路停电,且不利于装、拆。
另外,避雷器的接地引线离地面过长,不符合有关技术要求。
鉴于以上问题,我们对配变避雷器的安装位置进行了改变,把它安装在了高压熔丝的下侧。
这样既不影响避雷器的保护效果和范围,又有利于避雷器的正常装拆,减少了全线路停电的次数。
同时,当避雷器性能下降遭雷电后,通过工频续流增加,必然导致避雷器自身故障,配变熔丝熔断,起到隔离故障点的作用,减少线路单相接地或短路跳闸的机会,提高供电可靠率。
(如下图示)
5.安装注意事项避雷器的安装点距熔丝应大于0.7m,以保证检修时满足《电业安全工作规程》中规定的安全距离。
避雷器的引线长度应尽可能短,并接触可靠。
导线应选用35~50mm2的黑胶线,减小引线电抗,降低残压。
避雷器距离变压器应大于2m,增加电线上的电感,提高变压器的相对耐雷水平。
避雷器拆下再安装时,不能用铁丝、导线等绑扎,而应重新用专用夹具安好,以防爬电现象发生。
另外,避雷器的引下线一定要接好,并绑扎在横担、电杆上,以防止避雷器爆炸时引起接地、短路或损坏变压器的事故。
6.氧化锌避雷器运行中爆炸的原因及造成线路接地跳闸分析
6.1氧化锌避雷器运行中爆炸的原因分析
6.1.1氧化锌避雷器的密封问题氧化锌避雷器密封老化问题,主要是生产厂采用的密封技术不完善,或采用的密封材料抗老化性能不稳定,在温差变化较大时或运行时间接近产品寿命后期,造成其密封不良而后使潮气浸入,造成内部绝缘损坏,加速了电阻片的劣化而引起爆炸。
6.1.2电阻片抗老化性能差在氧化锌避雷器运行在其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至造
成与瓷套内部放电,放电严重时避雷器内部气体压力和温度急剧增高,而引起氧化锌避雷器本体爆炸,内部放电不太严重时可引起系统单相接地。
6.1.3瓷套污染由于工作在室外的氧化锌避雷器,瓷套受到环境粉尘的污染,特别是设置在冶金厂区内变电所,由于粉尘中金属粉尘的比例较大,故给瓷套造成严重的污染而引起污闪或因污秽在瓷套表面的不均匀,而使沿瓷套表面电流也不均匀分布,势必导致电阻片中电流IMOA的不均匀分布(或沿电阻片的电压不均匀分布),使流过电阻片的电流较正常时大1—2个数量级,造成附加温升,使吸收过电压能力大为降低,也加速了电阻片的劣化。
6.1.4高次谐波冶金企业电网随着大吨位电弧炉、大型整流、变频设备的应用及轧钢生产的冲击负荷等的影响,使电网上的高次谐波值严重超标。
由于电阻片的非线性,当正弦电压作用时,还有一系列的奇次谐波,而在高次谐波作用时就更加速了电阻片的劣化速度。
6.1.5抗冲击能力差氧化锌避雷器多在操作过电压或雷电条件下发生事故,其原因是因电阻片在制造工艺过程中,由于其各工艺质量控制点控制不严,而使电阻片的耐受方波冲击能力不强,在频繁吸收过电压能量过程中,加速了电阻片的劣化而损坏,失去了自身的技术性能。
6.2氧化锌避雷器爆炸后造成线路接地跳闸分析
氧化锌避雷器爆炸造成线路接地跳闸如下图:
由图可看出,现有避雷器的安装方法由于空间上的制约引线都比较长,一旦发生爆顶,引线不可避免地接触角铁。
(如左图)线路接地跳闸。
7.防止避雷器爆炸的技术措施及解决方案
7.1加强谐波治理
针对电网的特点及氧化锌避雷器特性应加强电网中的谐波治理力度。
在有谐波源的母线段增设动态无功补偿和滤波装置,以使电网的高次谐波值控制在国家标准允许范围内。
7.2改进避雷器安装工艺
通过改变避雷器的安装方向在安全距离不变的情况下有效缩短高压引线的长度,当避雷器发生爆炸后高压引线不会接触到线路中金属部分,从而避免发生线路的接地跳闸。
如下图示:
当发生避雷器爆炸顶高压引线脱离器体只会悬挂在安全位置,如下图:
据国外有关技术资料统计,氧化锌避雷器损坏的原因有雷电和操作过电压,受潮、污闪、系统条件、本身故障等,但仍有一定比例损坏的原因不详,故仍有其在运行中对事故原因不明确的问题。
但是通过改进避雷器的安装工艺后,无论它是什么原因爆炸都不会导致的线路接地跳闸。
参考文献
[1]中国计划出版社,《电气装置安装工程施工及验收规范合编》,1999年
[2] 卓乐友,电力工程电气设计200例,中国电力出版社2004年6月
[3] 中华人民共和国国家发展和改革委员会,中华人民共和国电力行业标准氧化锌避雷器阻性电流测试仪通用技术条件DL/T987-2005,中国电力出版社,2006年5月
注:文章内所有公式及图表请用PDF形式查看。