水的自净能力

合集下载

试述水体自净机制和影响因素有哪些

试述水体自净机制和影响因素有哪些

水体自净机制和影响因素1. 水体自净机制概述水体自净是指水体自身通过一系列的物理、化学和生物过程,净化和恢复水质的能力。

水体自净机制主要包括生物自净、化学自净和物理自净三个方面。

1.1 生物自净生物自净是指水体内的生物通过代谢活动和相互作用,对水体中的有机物和无机物进行分解、转化、吸附和沉淀,从而净化水质。

生物自净的主要过程包括生物降解、生物吸附和生物沉淀。

•生物降解:水体中的微生物通过代谢作用将有机物分解为水和二氧化碳等无害物质。

例如,细菌可以分解有机废物中的蛋白质、脂肪和糖类,将其转化为无害的物质。

•生物吸附:水体中的生物通过吸附作用将有机物和无机物吸附在其表面,从而使其从水体中去除。

例如,藻类可以吸附水中的重金属离子,净化水质。

•生物沉淀:水体中的生物通过生长和繁殖过程形成的生物体,可以与水中的悬浮物质结合并沉淀到水底,从而净化水质。

1.2 化学自净化学自净是指水体中的化学反应通过氧化、还原、酸碱中和等过程,将有害物质转化为无害物质,从而净化水质。

化学自净的主要过程包括氧化、还原和酸碱中和。

•氧化:水体中的氧气和氧化剂可以与有机物和无机物发生氧化反应,将其转化为无害物质。

例如,氧气可以将有机物氧化为二氧化碳和水。

•还原:水体中的还原剂可以与氧化剂反应,将有害物质还原为无害物质。

例如,还原剂可以将重金属离子还原为金属沉淀,净化水质。

•酸碱中和:水体中的酸和碱可以相互中和,将水体中的酸碱度调节到适宜的范围,净化水质。

1.3 物理自净物理自净是指水体中的物理过程通过沉淀、过滤和扩散等方式,将悬浮物质和溶解物质从水体中去除,从而净化水质。

物理自净的主要过程包括沉淀、过滤和扩散。

•沉淀:水体中的悬浮物质由于重力作用而沉降到水底,从而净化水质。

例如,悬浮在水中的泥沙会随着时间的推移逐渐沉淀到水底。

•过滤:水体通过地下层土壤和岩石的过滤作用,将悬浮物质和溶解物质去除。

例如,地下水经过土壤层的过滤后,水质得到净化。

大自然的神奇功能——自净

大自然的神奇功能——自净

龙源期刊网 大自然的神奇功能——自净作者:高峰来源:《初中生世界(初一年级)》2007年第06期大气、土壤和水受到污染后,可以通过物理、化学、生物等作用,使自己逐渐恢复到正常状态,这就是大自然的神奇功能——自净。

水的自净能力是非常强大的。

印度的恒河被佛教徒视为圣河,他们认为河水能消灾除难,强身健体。

因此,每一位教徒都爱到河中洗浴,甚至有人在此投水“升天”。

河水中常常漂起尸体,尸体火化后骨灰也被倒入河中。

即便如此,虔诚的教徒仍然一边沐浴,一边开怀畅饮。

奇怪的是,他们并没有因此而生病。

另一种现象也令人费解:世界各国往来的船只储存的恒河水,行经万里后仍能新鲜不腐。

科学家发现,恒河的水质良好,其中的细菌并没有对人构成危险。

原来,恒河河床里含有一种放射性的矿化物——铋,它能有效地杀灭河水中99%的细菌。

我国的长江也有这样特殊的自净能力。

在支流较多的中下游地区,有色金属分布较集中。

有史以来,长江的不少支流发生过金属污染事件,但长江干流及一些湖泊从未发生过此类事件。

这是因为长江在流经三峡时带入了大量的碳酸盐,江水呈弱碱性,而较多支流的水呈弱酸性。

它们相通后,经中和反应,很多有毒的化学物质沉淀在入江口的三角洲,保证了长江水不受或少受污染。

辽阔的海洋是地球上最大的“清理场”。

石油是海洋最主要的污染源。

海上油田的开采以及运输油轮的泄漏,都可能造成大面积的海洋污染。

1991年的海湾战争中,科威特有几十万吨原油流入海洋,所到之处生物遭受灭顶之灾。

但是经过10年左右的时间,受害的海域生态大都恢复正常。

陆地的自净能力也令人惊叹。

海湾战争中,泄漏的石油在科威特的沙漠里形成了一个50平方千米的“油湖”,清除它们十分困难,且耗资巨大。

就在人们对此束手无策的时候,大自然显示其“自净”的本领:流动的沙粒覆盖了油层,沙层中长出了绿色的小草,沙漠中异常的高温也促使了原油的分解和挥发。

但是,人类不要以为大自然具有自净能力就可以对它们为所欲为。

水化验指标及方法

水化验指标及方法

水化验指标及方法
标题:水化验指标及方法
一、引言
水质检测是保护水资源,防止水污染的重要手段。

通过科学的化验方法,可以准确地掌握水体中各种物质的含量,从而判断水体的质量。

本文主要介绍一些常见的水化验指标以及相应的化验方法。

二、水化验的主要指标
1. 溶解氧:溶解氧是指水中氧气的溶解量,它是评价水体自净能力的重要指标。

2. pH值:pH值是衡量水体酸碱性的重要参数,正常情况下,饮用水的pH值应在6.5-8.5之间。

3. 总硬度:总硬度是指水中钙、镁离子的总量,它影响到水的口感和对管道设备的腐蚀性。

4. 悬浮物:悬浮物是指水体中不溶于水的颗粒物,它直接影响水的透明度和颜色。

5. 重金属:如铅、镉、汞等,它们对人体健康有严重影响,因此也是重要的化验指标。

三、水化验的方法
1. 溶解氧的测定:通常使用碘量法或电化学法进行测定。

2. pH值的测定:常用的方法是玻璃电极法。

3. 总硬度的测定:一般采用EDTA络合滴定法。

4. 悬浮物的测定:主要通过过滤和烘干法来测定。

5. 重金属的测定:常用原子吸收光谱法、原子荧光光谱法或者电感耦合等离子体质谱法等。

四、结论
水化验是一项技术性强、要求高的工作,需要专业的知识和技能。

通过对水体的各项指标进行科学的化验,可以及时发现并解决水质问题,保障人们的饮水安全和生态环境的健康。

浅析河流水体自净能力

浅析河流水体自净能力

浅析河流水体自净能力摘要:分析了河流自净过程,并综述了影响水体自净能力的因素,主要包括:污染物质种类与性质、水体性质、水生生物、水中的溶解氧、其他环境因素;同时还阐述了河水体自净能力定性分析,主要包括物理自净能力、化学自净能力和生物自净能力。

关键词:水体污染自净能力河流作为最终的陆源污染物排放途径,具有一定的自然净化功能。

它可以通过稀释、降解、转化和运移,使一部分污染物无害化或降低负荷,对保护陆地生态环境和减少人类治污压力有积极作用。

如何正确地评价河流的自净能力,合理地制定排污方案,对水资源和水环境保护有重要意义。

一、影响水体自净能力的因素水体自净是一个比较复杂的过程[1],影响自净能力的因素很多且相互联系,这些因素主要有以下几个方面:1.污染物质种类与性质有些污染物质易于分解,有的则难于分解。

有的易受微生物分解,有的不易微生物分解,有的在好氧条件下易分解,有的在厌氧条件下易分解。

例如合成洗涤剂、有机农药(DDT、六六六)、多氯联苯等合成有机化合物,化学稳定性极高,在自然界需要十年以上时间才能完成分解,可以成为环境中长期存在的污染物质,它们可以随着水的循环过程在地球上蔓延、积累。

2.水体性质水体水温、流量、流速、含沙量都对水体自净作用有很多影响。

流量大、流速高易于稀释扩散。

含沙浓度与污染物质有一定关系。

3.水生生物水生生物的种类和数量与自净有密切关系,能分解污染物的微生物多,则自净速度快。

4.水中的溶解氧水中溶解氧含量与自净作用关系密切,水体的自净过程也就是复氧过程[2]。

水体在未纳污以前,河内溶解氧是充足的,当受到污染后,由于有机物聚增,好氧分解剧烈,耗氧超过溶氧,河水中溶解氧降低。

如果水体复氧速度较快,水质将会较快由坏变好。

水中氧的补给受到水面和大气之间条件影响,如水面形态,水流方式、大气与水中的氧气分压,大气与水体的水温等。

5.其他环境因素太阳光照条件也是一个影响因素,紫外线能使水中污染物迅速分解,太阳光可以促使浮游植物与水生植物光合作用,改变溶解氧条件。

水体污染与水体自净

水体污染与水体自净

水体污染与水体自净水体污染与水体自净水是人类赖以生存的重要资源之一,然而,由于人类的不当行为和工业化进程的加速,水体污染已经成为一个严重的问题。

正因为如此,我们需要加强对水体污染的了解,并且研究水体自净的方法。

水体污染主要分为几个主要类别:有机污染物、无机污染物、重金属污染和生物污染。

每种污染物都对水体和生物环境造成不良影响。

有机污染物主要是由废水排放、农业和工业活动引起的,如农药、化肥、工业废料等。

无机污染物主要是来自于地下水中的氨氮、亚硝酸盐和硝酸盐等。

重金属污染来源于工业废料、矿山废料和燃煤废气等。

生物污染则主要是细菌、病毒和寄生虫等。

水体自净是指通过天然的生物和化学过程,将具有污染的水体完全净化的过程。

水体自净的过程可以分为物理净化、生物净化和化学净化等多个阶段。

物理净化主要是通过流动、沉淀和过滤等方法来清洁水体。

例如,在水体自然流动的过程中,碎屑颗粒会沉淀下来,从而净化水体。

在河流或湖泊中,过滤是一种重要的净化方式,通过过滤会去除水中的大颗粒物质,使水变得更清澈。

生物净化是指利用水体生态系统中的生物群落来去除污染物。

最常见的生物净化就是植物的吸附和分解。

例如,在湿地中,植物的根系可以吸附和分解大部分有机物质和重金属。

另外,水中的微生物如细菌和藻类也可以分解有机污染物,并净化水体。

化学净化主要通过一系列的化学反应来去除污染物。

例如,氧化反应可以将有机污染物氧化成无害的物质。

另外,还有一些化学添加剂可以将重金属和其他有毒化合物转变为不活跃或不溶于水的形态,从而净化水体。

除了以上的净化方式,水体的自净还依赖于温度、光照、pH 值等环境条件的变化。

这些因素都会影响水体中的微生物和化学反应速率。

当然,水体自净的能力也是有限的。

在目前人类活动频繁且污染源不断增加的情况下,水体的自净能力已经无法完全满足需求。

因此,我们仍然需要通过防止污染发生和控制污染源的排放来保护水体。

在减少水体污染的同时,水体的自净能力也是值得深入研究和探索的。

水体自净的程度指标

水体自净的程度指标

水体自净程度的指标背景资料各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。

水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。

当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。

氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。

通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。

这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。

在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。

随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。

有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。

目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。

表6-1 水体中三氮检出的环境化学意义NH3—N NO2—N NO3—N 三氮检出的环境化学意义- - - 清洁水+ - - 表示水体受到新近污染+ + - 水体受到污染不久,且正在分解中- + - 污染物已正在分解,但未完全自净- + + 污染物已基本分解完全,但未自净- - + 污染物已无机化,水体已基本自净+ - + 有新的污染,在此前的污染物已基本自净+ + + 以前受到污染,正在自净过程,且又有新的污染物一、实验目的1. 掌握测定三氮的基本原理和方法。

2. 了解测定三氮对环境化学研究的作用和意义。

二、仪器(1) 玻璃蒸馏装置。

(2) 分光光度计。

(3) 电炉:220V/1KW。

水体富营养化水体

水体富营养化水体

1. 水体富营养化水体: 水体富营养化)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

2. 水体自净能力:广义的水体自净是指在物理、化学和生物作用下,受污染的水体逐渐自然净化,水质复原的过程。

狭义的水体自净是指水体中微生物氧化分解有机污染物而使水体净化的作用。

3. 反应速率:化学反应体系中各物质浓度随时间的变化率,即化学反应过程进行的快慢。

4. 凝聚:胶体颗粒的聚集亦可称为凝聚或絮凝。

5. 絮凝:从工艺上看,是指絮粒通过吸附、交联、网捕,聚结为大絮体沉降的过程。

6. 脱稳:不用的化学试剂能使胶体以不同的方式脱稳,脱稳的机理有:1.压缩双电层:胶体的稳定性取决于静电斥力力与范德华力(分子间作用力)何者占主导地位,当距离很近时,范德华力占优势,合力为引力,两个颗粒可以互相吸住,胶体脱稳.当距离较远时,库仑力占优势,合力为斥力,颗粒间相互排斥,胶体将保持稳定.7. ζ电位:是指双电层中扩散层与固定层交界处的电位与自由溶液电位之差,亦即扩散层内外界之间的电位差。

ζ-电位控制着扩散层的厚度和结合水的数量,因而对粘性土的工程地质性质有重要影响。

8. 胶体稳定性:胶体因质点很小,强烈的布朗运动使它不致很快沉降,故具有一定的动力学稳定性;另一方面,疏液胶体是高度分散的多相体系,相界面很大,质点之间有强烈的聚结倾向,所以又是热力学不稳定体系。

一旦质点聚结变大,动力学稳定性也随之消失。

因此,胶体的聚结稳定性是胶体稳定与否的关键。

9. 异相絮凝:指由布朗运动引起的颗粒碰撞聚集。

10. 最佳投加量:有两种涵义,一种是指处理后水质达到最优时的混凝剂投加量;另一种是指达到某一特定水质指标时的最小混凝剂投加量,这在生产中更具有实际意义。

11、搅拌强度:单位时间的转数,相当于速度梯度G值,即某个方向上的速度差。

水体自净能力影响因素与水质模型选择的研究综述

水体自净能力影响因素与水质模型选择的研究综述

第33卷第1期2021年1月黄河水利职业技术学院学报Journal of Yellow River Conservancy Technical InstituteVol.33No.1Jan.2021水体自净能力影响因素与水质模型选择的研究综述杨新吉勒图,尹慧燕,韩炜宏(内蒙古工业大学经济管理学院,内蒙古自治区呼和浩特010000)摘要:在进行水质分析时,因选择的水质模型不同或考虑的影响因素不同,使得对同一水域的测算结果存在差异。

从客观性、主观性及资源性3方面分析了影响水体自净能力的因素,探讨了零维水质模型、一维水质模型、一维S-P水质模型、二维水质模型和三维水质模型的特点、适用条件和改进方法。

研究结果表明:客观性影响因素是水质模型设置的重要参数,而主观性因素的实施会直接影响客观性因素,但在水质模型中,并不会直接体现主观因素。

关键词:水体自净能力;影响因素;水质模型;模型特点;适用条件中图分类号:TV213.5 文献标识码:B doi:10.13681/41-1282/tv.2021.01.0050引言水体自净能力是水体自然净化污染物的能力。

正确评价水体的自净能力对水资源和水环境保护具有重要意义。

随着水环境问题的日益突出,水体自净能力的相关研究已成为国内外研究的热点之一。

我国对于水体自净能力的研究始于20世纪80年代,研究初期,侧重于对水体自净机理的定性和定量研究,之后为了增强研究的准确性,把水体自净能力与水环境监测数据结合起来进行研究咱1]。

目前,国内关于水体自净能力的研究方向主要是多学科与水体自净能力的融合。

而国外对水体自净能力的研究主要集中于水质模型方面咱耳。

在国际上,常用的水质模型为丹麦水资源及水环境研究所开发的MIKE系列水利模型、美国国家环境保护局开发的WASP水质模型和QUAL系列模型。

国内外关于水体自净能力的研究主要包括影响因素与水质模型两个方面,而影响因素对于水质模型的设置与选择具有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水的自净能力
一、简介:
污染物投入水体后,使水环境受到污染。

污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。

污染物投入水体后,使水环境受到污染。

污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。

有机的自净过程,一般分为三个阶段。

第一阶段是易被氧化的有机物所进行的化学氧化分解。

该阶段在污染物进入水体以后数小时之内即可完成。

第二阶段是有机物在水中微生物作用下的生物化学氧化分解。

该阶段持续时间的长短随水温、有机物浓度、微生物种类与数量等而不同。

一般要延续数天,但被生物化学氧化的物质一般在5天内可全部完成。

第三阶段是含氮有机物的硝化过程。

这个过程最慢,一般要持续一个月左右。

二、特征:
废水或污染物一旦进入水体后,就开始了自净过程。

该过程由弱到强,直到趋于恒定,使水质逐渐恢复到正常水平。

全过程的特征是:
1)进入水体中的污染物,在连续的自净过程中,总的趋势是浓度逐渐下降。

2)大多数有毒污染物经各种物理、化学和生物作用,转变为低毒或无毒化合物。

3)重金属一类污染物,从溶解状态被吸附或转变为不溶性化合物,沉淀后进入底泥。

4)复杂的有机物,如碳水化合物,脂肪和蛋白质等,不论在溶解氧富裕或缺氧条件下,都能被微生物利用和分解。

先降解为较简单的有机物,再进一步分解为二氧化碳和水。

5)不稳定的污染物在自净过程中转变为稳定的化合物。

如氨转变为亚硝酸盐,再氧化为硝酸盐。

6)在自净过程的初期,水中溶解氧数量急剧下降,到达最低点后又缓慢上升,逐渐恢复到正常水平。

7)进入水体的大量污染物,如果是有毒的,则生物不能栖息,如不逃避就要死亡,水中生物种类和个体数量就要随之大量减少。

随着自净过程的进行,有毒物质浓度或数量下降,生物种类和个体数量也逐渐随之回升,最终趋于正常的生物分布。

进入水体的大量污染物中,如果含有机物过高,那么微生物就可以利用丰富的有机物为食料而迅速的繁殖,溶解氧随之减少。

随着自净过程的进行,使纤毛虫之类的原生动物有条件取食于细菌,则细菌数量又随之减少;而纤毛虫又被轮虫、甲壳类吞食,使后者成为优势种群。

有机物分解所生成的大量无机营养成分,如氮、磷等,使藻类生长旺盛,藻类旺盛又使鱼、贝类动物随之繁殖起来。

三、实现方式:
水体自净主要通过三方面作用来实现。

1、物理作用
物理作用包括可沉性固体逐渐下沉,悬浮物、胶体和溶解性污染物稀释混合,浓度逐渐降低。

其中稀释作用是一项重要的物理净化过程。

2、化学作用
污染物质由于氧化、还原、酸碱反应、分解、化合、吸附和凝聚等作用而使污染物质的
存在形态发生变化和浓度降低。

3、生物作用
由于各种生物(藻类、微生物等)的活动特别是微生物对水中有机物的氧化分解作用使污染物降解。

它在水体自净中起非常重要的作用。

水体中的污染物的沉淀、稀释、混合等物理过程,氧化还原、分解化合、吸附凝聚等化学和物理化学过程以及生物化学过程等,往往是同时发生,相互影响,并相互交织进行。

一般说来,物理和生物化学过程在水体自净中占主要地位。

水体的自净能力是有限的,如果排入水体的污染物数量超过某一界限时,将造成水体的永久性污染,这一界限称为水体的自净容量或水环境容量。

影响水体自净的因素很多,其中主要因素有:受纳水体的地理、水文条件、微生物的种类与数量、水温、复氧能力以及水体和污染物的组成、污染物浓度等。

四、影响因素:
1、水文要素
流速、流量直接影响到移流强度和紊动扩散强度。

流速和流量大,不仅水体中污染物浓度稀释扩散能力随之加强,而且水汽界面上的气体交换速度也随之增大。

河流中流速和流量有明显的季节变化,洪水季节,流速和流量大,有利于自净;枯水季节,流速和流量小,给自净带来不利。

河流中含沙量的多少与水中某些污染物质浓度有一定关系。

例如,研究发现中国黄河含沙量与含砷量呈正相关关系。

这是因为泥沙颗粒对砷有强烈的吸附作用。

一旦河水澄清,含砷量就大为减少。

水温不仅直接影响到水体中污染物质的化学转化的速度,而且能通过影响水体中微生物的活动对生物化学降解速度产生影响,随着水温的增加,bod(生物耗氧量)的降低速度明显加快。

但水温高却不利于水体富氧。

2、太阳辐射
太阳辐射对水体自净作用有直接影响和间接影响两个方面。

直接影响指太阳辐射能使水中污染物质产生光转化;间接影响指可以引起水温变化和促进浮游植物及水生植物进行光合作用。

太阳辐射对水深小的河流的自净作用的影响比对水深大的河流大。

3、底质
底质能富集某些污染物质。

河水与河床基岩和沉积物也有一定物质交换过程。

这两方面都可能对河流的自净作用产生影响。

例如河底若有铬铁矿露头,则河水中含铬可能较高;又如汞易被吸附在泥沙上,随之沉淀而在底泥中累积,虽较稳定,但在水与底泥界面上存在十分缓慢的释放过程,使汞重新回到河水中,所谓形成二次污染。

此外,底质不同,底栖生物的种类和数量不同,对水体自净作用的影响也不同。

4、水生物和水中微生物
水中微生物对污染物有生物降解作用。

某些水生物对污染物有富集作用,这两方面都能减低水中污染物的浓度。

因此,若水体中能分解污染物质的微生物和能富集污染物质的的水生物品种多、数量大,对水体自净过程较为有利。

5、污染物的性质和浓度
易于化学降解、光转化和生物降解的污染物显然最容易得以自净。

例如酚和氰,由于它们易挥发和氧化分解,而又能为泥沙和底泥吸附,因此在水体中较易净化。

难于化学讲解、光转化和生物降解的污染物也难在水体中的得以自净。

例如合成洗涤剂、有机农药等化学稳定性级高的合成有机化合物,在自然状态下需十年以上的时间才能完全分解,它们以水流作为载体,逐渐蔓延,不断积累,成为全球性污染的代表性物质。

水体中某些重金属类污染物可能对微生物有害,从而降低了生物降解能力。

相关文档
最新文档